first commit

This commit is contained in:
Ayxan
2022-05-23 00:16:32 +04:00
commit d660f2a4ca
24786 changed files with 4428337 additions and 0 deletions

View File

@ -0,0 +1,937 @@
"""Unit tests for altair API"""
import io
import json
import operator
import os
import tempfile
import jsonschema
import pytest
import pandas as pd
import altair.vegalite.v3 as alt
from altair.utils import AltairDeprecationWarning
try:
import altair_saver # noqa: F401
except ImportError:
altair_saver = None
def getargs(*args, **kwargs):
return args, kwargs
OP_DICT = {
"layer": operator.add,
"hconcat": operator.or_,
"vconcat": operator.and_,
}
def _make_chart_type(chart_type):
data = pd.DataFrame(
{
"x": [28, 55, 43, 91, 81, 53, 19, 87],
"y": [43, 91, 81, 53, 19, 87, 52, 28],
"color": list("AAAABBBB"),
}
)
base = (
alt.Chart(data)
.mark_point()
.encode(
x="x",
y="y",
color="color",
)
)
if chart_type in ["layer", "hconcat", "vconcat", "concat"]:
func = getattr(alt, chart_type)
return func(base.mark_square(), base.mark_circle())
elif chart_type == "facet":
return base.facet("color")
elif chart_type == "facet_encoding":
return base.encode(facet="color")
elif chart_type == "repeat":
return base.encode(alt.X(alt.repeat(), type="quantitative")).repeat(["x", "y"])
elif chart_type == "chart":
return base
else:
raise ValueError("chart_type='{}' is not recognized".format(chart_type))
@pytest.fixture
def basic_chart():
data = pd.DataFrame(
{
"a": ["A", "B", "C", "D", "E", "F", "G", "H", "I"],
"b": [28, 55, 43, 91, 81, 53, 19, 87, 52],
}
)
return alt.Chart(data).mark_bar().encode(x="a", y="b")
def test_chart_data_types():
def Chart(data):
return alt.Chart(data).mark_point().encode(x="x:Q", y="y:Q")
# Url Data
data = "/path/to/my/data.csv"
dct = Chart(data).to_dict()
assert dct["data"] == {"url": data}
# Dict Data
data = {"values": [{"x": 1, "y": 2}, {"x": 2, "y": 3}]}
with alt.data_transformers.enable(consolidate_datasets=False):
dct = Chart(data).to_dict()
assert dct["data"] == data
with alt.data_transformers.enable(consolidate_datasets=True):
dct = Chart(data).to_dict()
name = dct["data"]["name"]
assert dct["datasets"][name] == data["values"]
# DataFrame data
data = pd.DataFrame({"x": range(5), "y": range(5)})
with alt.data_transformers.enable(consolidate_datasets=False):
dct = Chart(data).to_dict()
assert dct["data"]["values"] == data.to_dict(orient="records")
with alt.data_transformers.enable(consolidate_datasets=True):
dct = Chart(data).to_dict()
name = dct["data"]["name"]
assert dct["datasets"][name] == data.to_dict(orient="records")
# Named data object
data = alt.NamedData(name="Foo")
dct = Chart(data).to_dict()
assert dct["data"] == {"name": "Foo"}
def test_chart_infer_types():
data = pd.DataFrame(
{
"x": pd.date_range("2012", periods=10, freq="Y"),
"y": range(10),
"c": list("abcabcabca"),
}
)
def _check_encodings(chart):
dct = chart.to_dict()
assert dct["encoding"]["x"]["type"] == "temporal"
assert dct["encoding"]["x"]["field"] == "x"
assert dct["encoding"]["y"]["type"] == "quantitative"
assert dct["encoding"]["y"]["field"] == "y"
assert dct["encoding"]["color"]["type"] == "nominal"
assert dct["encoding"]["color"]["field"] == "c"
# Pass field names by keyword
chart = alt.Chart(data).mark_point().encode(x="x", y="y", color="c")
_check_encodings(chart)
# pass Channel objects by keyword
chart = (
alt.Chart(data)
.mark_point()
.encode(x=alt.X("x"), y=alt.Y("y"), color=alt.Color("c"))
)
_check_encodings(chart)
# pass Channel objects by value
chart = alt.Chart(data).mark_point().encode(alt.X("x"), alt.Y("y"), alt.Color("c"))
_check_encodings(chart)
# override default types
chart = (
alt.Chart(data)
.mark_point()
.encode(alt.X("x", type="nominal"), alt.Y("y", type="ordinal"))
)
dct = chart.to_dict()
assert dct["encoding"]["x"]["type"] == "nominal"
assert dct["encoding"]["y"]["type"] == "ordinal"
@pytest.mark.parametrize(
"args, kwargs",
[
getargs(detail=["value:Q", "name:N"], tooltip=["value:Q", "name:N"]),
getargs(detail=["value", "name"], tooltip=["value", "name"]),
getargs(alt.Detail(["value:Q", "name:N"]), alt.Tooltip(["value:Q", "name:N"])),
getargs(alt.Detail(["value", "name"]), alt.Tooltip(["value", "name"])),
getargs(
[alt.Detail("value:Q"), alt.Detail("name:N")],
[alt.Tooltip("value:Q"), alt.Tooltip("name:N")],
),
getargs(
[alt.Detail("value"), alt.Detail("name")],
[alt.Tooltip("value"), alt.Tooltip("name")],
),
],
)
def test_multiple_encodings(args, kwargs):
df = pd.DataFrame({"value": [1, 2, 3], "name": ["A", "B", "C"]})
encoding_dct = [
{"field": "value", "type": "quantitative"},
{"field": "name", "type": "nominal"},
]
chart = alt.Chart(df).mark_point().encode(*args, **kwargs)
dct = chart.to_dict()
assert dct["encoding"]["detail"] == encoding_dct
assert dct["encoding"]["tooltip"] == encoding_dct
def test_chart_operations():
data = pd.DataFrame(
{
"x": pd.date_range("2012", periods=10, freq="Y"),
"y": range(10),
"c": list("abcabcabca"),
}
)
chart1 = alt.Chart(data).mark_line().encode(x="x", y="y", color="c")
chart2 = chart1.mark_point()
chart3 = chart1.mark_circle()
chart4 = chart1.mark_square()
chart = chart1 + chart2 + chart3
assert isinstance(chart, alt.LayerChart)
assert len(chart.layer) == 3
chart += chart4
assert len(chart.layer) == 4
chart = chart1 | chart2 | chart3
assert isinstance(chart, alt.HConcatChart)
assert len(chart.hconcat) == 3
chart |= chart4
assert len(chart.hconcat) == 4
chart = chart1 & chart2 & chart3
assert isinstance(chart, alt.VConcatChart)
assert len(chart.vconcat) == 3
chart &= chart4
assert len(chart.vconcat) == 4
def test_selection_to_dict():
brush = alt.selection(type="interval")
# test some value selections
# Note: X and Y cannot have conditions
alt.Chart("path/to/data.json").mark_point().encode(
color=alt.condition(brush, alt.ColorValue("red"), alt.ColorValue("blue")),
opacity=alt.condition(brush, alt.value(0.5), alt.value(1.0)),
text=alt.condition(brush, alt.TextValue("foo"), alt.value("bar")),
).to_dict()
# test some field selections
# Note: X and Y cannot have conditions
# Conditions cannot both be fields
alt.Chart("path/to/data.json").mark_point().encode(
color=alt.condition(brush, alt.Color("col1:N"), alt.value("blue")),
opacity=alt.condition(brush, "col1:N", alt.value(0.5)),
text=alt.condition(brush, alt.value("abc"), alt.Text("col2:N")),
size=alt.condition(brush, alt.value(20), "col2:N"),
).to_dict()
def test_selection_expression():
selection = alt.selection_single(fields=["value"])
assert isinstance(selection.value, alt.expr.Expression)
assert selection.value.to_dict() == "{0}.value".format(selection.name)
assert isinstance(selection["value"], alt.expr.Expression)
assert selection["value"].to_dict() == "{0}['value']".format(selection.name)
with pytest.raises(AttributeError):
selection.__magic__
@pytest.mark.parametrize("format", ["html", "json", "png", "svg", "pdf"])
def test_save(format, basic_chart):
if format in ["pdf", "png"]:
out = io.BytesIO()
mode = "rb"
else:
out = io.StringIO()
mode = "r"
if format in ["svg", "png", "pdf"]:
if not altair_saver:
with pytest.raises(ValueError) as err:
basic_chart.save(out, format=format)
assert "github.com/altair-viz/altair_saver" in str(err.value)
return
elif format not in altair_saver.available_formats():
with pytest.raises(ValueError) as err:
basic_chart.save(out, format=format)
assert f"No enabled saver found that supports format='{format}'" in str(
err.value
)
return
basic_chart.save(out, format=format)
out.seek(0)
content = out.read()
if format == "json":
assert "$schema" in json.loads(content)
if format == "html":
assert content.startswith("<!DOCTYPE html>")
fid, filename = tempfile.mkstemp(suffix="." + format)
os.close(fid)
try:
basic_chart.save(filename)
with open(filename, mode) as f:
assert f.read()[:1000] == content[:1000]
finally:
os.remove(filename)
def test_facet_basic():
# wrapped facet
chart1 = (
alt.Chart("data.csv")
.mark_point()
.encode(
x="x:Q",
y="y:Q",
)
.facet("category:N", columns=2)
)
dct1 = chart1.to_dict()
assert dct1["facet"] == alt.Facet("category:N").to_dict()
assert dct1["columns"] == 2
assert dct1["data"] == alt.UrlData("data.csv").to_dict()
# explicit row/col facet
chart2 = (
alt.Chart("data.csv")
.mark_point()
.encode(
x="x:Q",
y="y:Q",
)
.facet(row="category1:Q", column="category2:Q")
)
dct2 = chart2.to_dict()
assert dct2["facet"]["row"] == alt.Facet("category1:Q").to_dict()
assert dct2["facet"]["column"] == alt.Facet("category2:Q").to_dict()
assert "columns" not in dct2
assert dct2["data"] == alt.UrlData("data.csv").to_dict()
def test_facet_parse():
chart = (
alt.Chart("data.csv")
.mark_point()
.encode(x="x:Q", y="y:Q")
.facet(row="row:N", column="column:O")
)
dct = chart.to_dict()
assert dct["data"] == {"url": "data.csv"}
assert "data" not in dct["spec"]
assert dct["facet"] == {
"column": {"field": "column", "type": "ordinal"},
"row": {"field": "row", "type": "nominal"},
}
def test_facet_parse_data():
data = pd.DataFrame({"x": range(5), "y": range(5), "row": list("abcab")})
chart = (
alt.Chart(data)
.mark_point()
.encode(x="x", y="y:O")
.facet(row="row", column="column:O")
)
with alt.data_transformers.enable(consolidate_datasets=False):
dct = chart.to_dict()
assert "values" in dct["data"]
assert "data" not in dct["spec"]
assert dct["facet"] == {
"column": {"field": "column", "type": "ordinal"},
"row": {"field": "row", "type": "nominal"},
}
with alt.data_transformers.enable(consolidate_datasets=True):
dct = chart.to_dict()
assert "datasets" in dct
assert "name" in dct["data"]
assert "data" not in dct["spec"]
assert dct["facet"] == {
"column": {"field": "column", "type": "ordinal"},
"row": {"field": "row", "type": "nominal"},
}
def test_selection():
# test instantiation of selections
interval = alt.selection_interval(name="selec_1")
assert interval.selection.type == "interval"
assert interval.name == "selec_1"
single = alt.selection_single(name="selec_2")
assert single.selection.type == "single"
assert single.name == "selec_2"
multi = alt.selection_multi(name="selec_3")
assert multi.selection.type == "multi"
assert multi.name == "selec_3"
# test adding to chart
chart = alt.Chart().add_selection(single)
chart = chart.add_selection(multi, interval)
assert set(chart.selection.keys()) == {"selec_1", "selec_2", "selec_3"}
# test logical operations
assert isinstance(single & multi, alt.Selection)
assert isinstance(single | multi, alt.Selection)
assert isinstance(~single, alt.Selection)
assert isinstance((single & multi)[0].group, alt.SelectionAnd)
assert isinstance((single | multi)[0].group, alt.SelectionOr)
assert isinstance((~single)[0].group, alt.SelectionNot)
# test that default names increment (regression for #1454)
sel1 = alt.selection_single()
sel2 = alt.selection_multi()
sel3 = alt.selection_interval()
names = {s.name for s in (sel1, sel2, sel3)}
assert len(names) == 3
def test_transforms():
# aggregate transform
agg1 = alt.AggregatedFieldDef(**{"as": "x1", "op": "mean", "field": "y"})
agg2 = alt.AggregatedFieldDef(**{"as": "x2", "op": "median", "field": "z"})
chart = alt.Chart().transform_aggregate([agg1], ["foo"], x2="median(z)")
kwds = dict(aggregate=[agg1, agg2], groupby=["foo"])
assert chart.transform == [alt.AggregateTransform(**kwds)]
# bin transform
chart = alt.Chart().transform_bin("binned", field="field", bin=True)
kwds = {"as": "binned", "field": "field", "bin": True}
assert chart.transform == [alt.BinTransform(**kwds)]
# calcualte transform
chart = alt.Chart().transform_calculate("calc", "datum.a * 4")
kwds = {"as": "calc", "calculate": "datum.a * 4"}
assert chart.transform == [alt.CalculateTransform(**kwds)]
# impute transform
chart = alt.Chart().transform_impute("field", "key", groupby=["x"])
kwds = {"impute": "field", "key": "key", "groupby": ["x"]}
assert chart.transform == [alt.ImputeTransform(**kwds)]
# joinaggregate transform
chart = alt.Chart().transform_joinaggregate(min="min(x)", groupby=["key"])
kwds = {
"joinaggregate": [
alt.JoinAggregateFieldDef(field="x", op="min", **{"as": "min"})
],
"groupby": ["key"],
}
assert chart.transform == [alt.JoinAggregateTransform(**kwds)]
# filter transform
chart = alt.Chart().transform_filter("datum.a < 4")
assert chart.transform == [alt.FilterTransform(filter="datum.a < 4")]
# flatten transform
chart = alt.Chart().transform_flatten(["A", "B"], ["X", "Y"])
kwds = {"as": ["X", "Y"], "flatten": ["A", "B"]}
assert chart.transform == [alt.FlattenTransform(**kwds)]
# fold transform
chart = alt.Chart().transform_fold(["A", "B", "C"], as_=["key", "val"])
kwds = {"as": ["key", "val"], "fold": ["A", "B", "C"]}
assert chart.transform == [alt.FoldTransform(**kwds)]
# lookup transform
lookup_data = alt.LookupData(alt.UrlData("foo.csv"), "id", ["rate"])
chart = alt.Chart().transform_lookup(
from_=lookup_data, as_="a", lookup="a", default="b"
)
kwds = {"from": lookup_data, "as": "a", "lookup": "a", "default": "b"}
assert chart.transform == [alt.LookupTransform(**kwds)]
# sample transform
chart = alt.Chart().transform_sample()
assert chart.transform == [alt.SampleTransform(1000)]
# stack transform
chart = alt.Chart().transform_stack("stacked", "x", groupby=["y"])
assert chart.transform == [
alt.StackTransform(stack="x", groupby=["y"], **{"as": "stacked"})
]
# timeUnit transform
chart = alt.Chart().transform_timeunit("foo", field="x", timeUnit="date")
kwds = {"as": "foo", "field": "x", "timeUnit": "date"}
assert chart.transform == [alt.TimeUnitTransform(**kwds)]
# window transform
chart = alt.Chart().transform_window(xsum="sum(x)", ymin="min(y)", frame=[None, 0])
window = [
alt.WindowFieldDef(**{"as": "xsum", "field": "x", "op": "sum"}),
alt.WindowFieldDef(**{"as": "ymin", "field": "y", "op": "min"}),
]
# kwargs don't maintain order in Python < 3.6, so window list can
# be reversed
assert chart.transform == [
alt.WindowTransform(frame=[None, 0], window=window)
] or chart.transform == [alt.WindowTransform(frame=[None, 0], window=window[::-1])]
def test_filter_transform_selection_predicates():
selector1 = alt.selection_interval(name="s1")
selector2 = alt.selection_interval(name="s2")
base = alt.Chart("data.txt").mark_point()
chart = base.transform_filter(selector1)
assert chart.to_dict()["transform"] == [{"filter": {"selection": "s1"}}]
chart = base.transform_filter(~selector1)
assert chart.to_dict()["transform"] == [{"filter": {"selection": {"not": "s1"}}}]
chart = base.transform_filter(selector1 & selector2)
assert chart.to_dict()["transform"] == [
{"filter": {"selection": {"and": ["s1", "s2"]}}}
]
chart = base.transform_filter(selector1 | selector2)
assert chart.to_dict()["transform"] == [
{"filter": {"selection": {"or": ["s1", "s2"]}}}
]
chart = base.transform_filter(selector1 | ~selector2)
assert chart.to_dict()["transform"] == [
{"filter": {"selection": {"or": ["s1", {"not": "s2"}]}}}
]
chart = base.transform_filter(~selector1 | ~selector2)
assert chart.to_dict()["transform"] == [
{"filter": {"selection": {"or": [{"not": "s1"}, {"not": "s2"}]}}}
]
chart = base.transform_filter(~(selector1 & selector2))
assert chart.to_dict()["transform"] == [
{"filter": {"selection": {"not": {"and": ["s1", "s2"]}}}}
]
def test_resolve_methods():
chart = alt.LayerChart().resolve_axis(x="shared", y="independent")
assert chart.resolve == alt.Resolve(
axis=alt.AxisResolveMap(x="shared", y="independent")
)
chart = alt.LayerChart().resolve_legend(color="shared", fill="independent")
assert chart.resolve == alt.Resolve(
legend=alt.LegendResolveMap(color="shared", fill="independent")
)
chart = alt.LayerChart().resolve_scale(x="shared", y="independent")
assert chart.resolve == alt.Resolve(
scale=alt.ScaleResolveMap(x="shared", y="independent")
)
def test_layer_encodings():
chart = alt.LayerChart().encode(x="column:Q")
assert chart.encoding.x == alt.X(shorthand="column:Q")
def test_add_selection():
selections = [
alt.selection_interval(),
alt.selection_single(),
alt.selection_multi(),
]
chart = (
alt.Chart()
.mark_point()
.add_selection(selections[0])
.add_selection(selections[1], selections[2])
)
expected = {s.name: s.selection for s in selections}
assert chart.selection == expected
def test_repeat_add_selections():
base = alt.Chart("data.csv").mark_point()
selection = alt.selection_single()
chart1 = base.add_selection(selection).repeat(list("ABC"))
chart2 = base.repeat(list("ABC")).add_selection(selection)
assert chart1.to_dict() == chart2.to_dict()
def test_facet_add_selections():
base = alt.Chart("data.csv").mark_point()
selection = alt.selection_single()
chart1 = base.add_selection(selection).facet("val:Q")
chart2 = base.facet("val:Q").add_selection(selection)
assert chart1.to_dict() == chart2.to_dict()
def test_layer_add_selection():
base = alt.Chart("data.csv").mark_point()
selection = alt.selection_single()
chart1 = alt.layer(base.add_selection(selection), base)
chart2 = alt.layer(base, base).add_selection(selection)
assert chart1.to_dict() == chart2.to_dict()
@pytest.mark.parametrize("charttype", [alt.concat, alt.hconcat, alt.vconcat])
def test_compound_add_selections(charttype):
base = alt.Chart("data.csv").mark_point()
selection = alt.selection_single()
chart1 = charttype(base.add_selection(selection), base.add_selection(selection))
chart2 = charttype(base, base).add_selection(selection)
assert chart1.to_dict() == chart2.to_dict()
def test_selection_property():
sel = alt.selection_interval()
chart = alt.Chart("data.csv").mark_point().properties(selection=sel)
assert list(chart["selection"].keys()) == [sel.name]
def test_LookupData():
df = pd.DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})
lookup = alt.LookupData(data=df, key="x")
dct = lookup.to_dict()
assert dct["key"] == "x"
assert dct["data"] == {
"values": [{"x": 1, "y": 4}, {"x": 2, "y": 5}, {"x": 3, "y": 6}]
}
def test_themes():
chart = alt.Chart("foo.txt").mark_point()
active = alt.themes.active
try:
alt.themes.enable("default")
assert chart.to_dict()["config"] == {
"mark": {"tooltip": None},
"view": {"width": 400, "height": 300},
}
alt.themes.enable("opaque")
assert chart.to_dict()["config"] == {
"background": "white",
"mark": {"tooltip": None},
"view": {"width": 400, "height": 300},
}
alt.themes.enable("none")
assert "config" not in chart.to_dict()
finally:
# re-enable the original active theme
alt.themes.enable(active)
def test_chart_from_dict():
base = alt.Chart("data.csv").mark_point().encode(x="x:Q", y="y:Q")
charts = [
base,
base + base,
base | base,
base & base,
base.facet("c:N"),
(base + base).facet(row="c:N", data="data.csv"),
base.repeat(["c", "d"]),
(base + base).repeat(row=["c", "d"]),
]
for chart in charts:
print(chart)
chart_out = alt.Chart.from_dict(chart.to_dict())
assert type(chart_out) is type(chart)
# test that an invalid spec leads to a schema validation error
with pytest.raises(jsonschema.ValidationError):
alt.Chart.from_dict({"invalid": "spec"})
def test_consolidate_datasets(basic_chart):
subchart1 = basic_chart
subchart2 = basic_chart.copy()
subchart2.data = basic_chart.data.copy()
chart = subchart1 | subchart2
with alt.data_transformers.enable(consolidate_datasets=True):
dct_consolidated = chart.to_dict()
with alt.data_transformers.enable(consolidate_datasets=False):
dct_standard = chart.to_dict()
assert "datasets" in dct_consolidated
assert "datasets" not in dct_standard
datasets = dct_consolidated["datasets"]
# two dataset copies should be recognized as duplicates
assert len(datasets) == 1
# make sure data matches original & names are correct
name, data = datasets.popitem()
for spec in dct_standard["hconcat"]:
assert spec["data"]["values"] == data
for spec in dct_consolidated["hconcat"]:
assert spec["data"] == {"name": name}
def test_consolidate_InlineData():
data = alt.InlineData(
values=[{"a": 1, "b": 1}, {"a": 2, "b": 2}], format={"type": "csv"}
)
chart = alt.Chart(data).mark_point()
with alt.data_transformers.enable(consolidate_datasets=False):
dct = chart.to_dict()
assert dct["data"]["format"] == data.format
assert dct["data"]["values"] == data.values
with alt.data_transformers.enable(consolidate_datasets=True):
dct = chart.to_dict()
assert dct["data"]["format"] == data.format
assert list(dct["datasets"].values())[0] == data.values
data = alt.InlineData(values=[], name="runtime_data")
chart = alt.Chart(data).mark_point()
with alt.data_transformers.enable(consolidate_datasets=False):
dct = chart.to_dict()
assert dct["data"] == data.to_dict()
with alt.data_transformers.enable(consolidate_datasets=True):
dct = chart.to_dict()
assert dct["data"] == data.to_dict()
def test_deprecated_encodings():
base = alt.Chart("data.txt").mark_point()
with pytest.warns(AltairDeprecationWarning) as record:
chart1 = base.encode(strokeOpacity=alt.Strokeopacity("x:Q")).to_dict()
assert "alt.StrokeOpacity" in record[0].message.args[0]
chart2 = base.encode(strokeOpacity=alt.StrokeOpacity("x:Q")).to_dict()
assert chart1 == chart2
def test_repeat():
# wrapped repeat
chart1 = (
alt.Chart("data.csv")
.mark_point()
.encode(
x=alt.X(alt.repeat(), type="quantitative"),
y="y:Q",
)
.repeat(["A", "B", "C", "D"], columns=2)
)
dct1 = chart1.to_dict()
assert dct1["repeat"] == ["A", "B", "C", "D"]
assert dct1["columns"] == 2
assert dct1["spec"]["encoding"]["x"]["field"] == {"repeat": "repeat"}
# explicit row/col repeat
chart2 = (
alt.Chart("data.csv")
.mark_point()
.encode(
x=alt.X(alt.repeat("row"), type="quantitative"),
y=alt.Y(alt.repeat("column"), type="quantitative"),
)
.repeat(row=["A", "B", "C"], column=["C", "B", "A"])
)
dct2 = chart2.to_dict()
assert dct2["repeat"] == {"row": ["A", "B", "C"], "column": ["C", "B", "A"]}
assert "columns" not in dct2
assert dct2["spec"]["encoding"]["x"]["field"] == {"repeat": "row"}
assert dct2["spec"]["encoding"]["y"]["field"] == {"repeat": "column"}
def test_data_property():
data = pd.DataFrame({"x": [1, 2, 3], "y": list("ABC")})
chart1 = alt.Chart(data).mark_point()
chart2 = alt.Chart().mark_point().properties(data=data)
assert chart1.to_dict() == chart2.to_dict()
@pytest.mark.parametrize("method", ["layer", "hconcat", "vconcat", "concat"])
@pytest.mark.parametrize(
"data", ["data.json", pd.DataFrame({"x": range(3), "y": list("abc")})]
)
def test_subcharts_with_same_data(method, data):
func = getattr(alt, method)
point = alt.Chart(data).mark_point().encode(x="x:Q", y="y:Q")
line = point.mark_line()
text = point.mark_text()
chart1 = func(point, line, text)
assert chart1.data is not alt.Undefined
assert all(c.data is alt.Undefined for c in getattr(chart1, method))
if method != "concat":
op = OP_DICT[method]
chart2 = op(op(point, line), text)
assert chart2.data is not alt.Undefined
assert all(c.data is alt.Undefined for c in getattr(chart2, method))
@pytest.mark.parametrize("method", ["layer", "hconcat", "vconcat", "concat"])
@pytest.mark.parametrize(
"data", ["data.json", pd.DataFrame({"x": range(3), "y": list("abc")})]
)
def test_subcharts_different_data(method, data):
func = getattr(alt, method)
point = alt.Chart(data).mark_point().encode(x="x:Q", y="y:Q")
otherdata = alt.Chart("data.csv").mark_point().encode(x="x:Q", y="y:Q")
nodata = alt.Chart().mark_point().encode(x="x:Q", y="y:Q")
chart1 = func(point, otherdata)
assert chart1.data is alt.Undefined
assert getattr(chart1, method)[0].data is data
chart2 = func(point, nodata)
assert chart2.data is alt.Undefined
assert getattr(chart2, method)[0].data is data
def test_layer_facet(basic_chart):
chart = (basic_chart + basic_chart).facet(row="row:Q")
assert chart.data is not alt.Undefined
assert chart.spec.data is alt.Undefined
for layer in chart.spec.layer:
assert layer.data is alt.Undefined
dct = chart.to_dict()
assert "data" in dct
def test_layer_errors():
toplevel_chart = alt.Chart("data.txt").mark_point().configure_legend(columns=2)
facet_chart1 = alt.Chart("data.txt").mark_point().encode(facet="row:Q")
facet_chart2 = alt.Chart("data.txt").mark_point().facet("row:Q")
repeat_chart = alt.Chart("data.txt").mark_point().repeat(["A", "B", "C"])
simple_chart = alt.Chart("data.txt").mark_point()
with pytest.raises(ValueError) as err:
toplevel_chart + simple_chart
assert str(err.value).startswith(
'Objects with "config" attribute cannot be used within LayerChart.'
)
with pytest.raises(ValueError) as err:
repeat_chart + simple_chart
assert str(err.value) == "Repeat charts cannot be layered."
with pytest.raises(ValueError) as err:
facet_chart1 + simple_chart
assert str(err.value) == "Faceted charts cannot be layered."
with pytest.raises(ValueError) as err:
alt.layer(simple_chart) + facet_chart2
assert str(err.value) == "Faceted charts cannot be layered."
@pytest.mark.parametrize(
"chart_type",
["layer", "hconcat", "vconcat", "concat", "facet", "facet_encoding", "repeat"],
)
def test_resolve(chart_type):
chart = _make_chart_type(chart_type)
chart = (
chart.resolve_scale(
x="independent",
)
.resolve_legend(color="independent")
.resolve_axis(y="independent")
)
dct = chart.to_dict()
assert dct["resolve"] == {
"scale": {"x": "independent"},
"legend": {"color": "independent"},
"axis": {"y": "independent"},
}
# TODO: test vconcat, hconcat, concat when schema allows them.
# This is blocked by https://github.com/vega/vega-lite/issues/5261
@pytest.mark.parametrize("chart_type", ["chart", "layer", "facet_encoding"])
@pytest.mark.parametrize("facet_arg", [None, "facet", "row", "column"])
def test_facet(chart_type, facet_arg):
chart = _make_chart_type(chart_type)
if facet_arg is None:
chart = chart.facet("color:N", columns=2)
else:
chart = chart.facet(**{facet_arg: "color:N", "columns": 2})
dct = chart.to_dict()
assert "spec" in dct
assert dct["columns"] == 2
expected = {"field": "color", "type": "nominal"}
if facet_arg is None or facet_arg == "facet":
assert dct["facet"] == expected
else:
assert dct["facet"][facet_arg] == expected
def test_sequence():
data = alt.sequence(100)
assert data.to_dict() == {"sequence": {"start": 0, "stop": 100}}
data = alt.sequence(5, 10)
assert data.to_dict() == {"sequence": {"start": 5, "stop": 10}}
data = alt.sequence(0, 1, 0.1, as_="x")
assert data.to_dict() == {
"sequence": {"start": 0, "stop": 1, "step": 0.1, "as": "x"}
}
def test_graticule():
data = alt.graticule()
assert data.to_dict() == {"graticule": True}
data = alt.graticule(step=[15, 15])
assert data.to_dict() == {"graticule": {"step": [15, 15]}}
def test_sphere():
data = alt.sphere()
assert data.to_dict() == {"sphere": True}

View File

@ -0,0 +1,33 @@
import os
import pandas as pd
import pytest
from .. import data as alt
@pytest.fixture
def sample_data():
return pd.DataFrame({"x": range(10), "y": range(10)})
def test_disable_max_rows(sample_data):
with alt.data_transformers.enable("default", max_rows=5):
# Ensure max rows error is raised.
with pytest.raises(alt.MaxRowsError):
alt.data_transformers.get()(sample_data)
# Ensure that max rows error is properly disabled.
with alt.data_transformers.disable_max_rows():
alt.data_transformers.get()(sample_data)
try:
with alt.data_transformers.enable("json"):
# Ensure that there is no TypeError for non-max_rows transformers.
with alt.data_transformers.disable_max_rows():
jsonfile = alt.data_transformers.get()(sample_data)
except TypeError:
jsonfile = {}
finally:
if jsonfile:
os.remove(jsonfile["url"])

View File

@ -0,0 +1,69 @@
from contextlib import contextmanager
import pytest
import altair.vegalite.v3 as alt
@contextmanager
def check_render_options(**options):
"""
Context manager that will assert that alt.renderers.options are equivalent
to the given options in the IPython.display.display call
"""
import IPython.display
def check_options(obj):
assert alt.renderers.options == options
_display = IPython.display.display
IPython.display.display = check_options
try:
yield
finally:
IPython.display.display = _display
def test_check_renderer_options():
# this test should pass
with check_render_options():
from IPython.display import display
display(None)
# check that an error is appropriately raised if the test fails
with pytest.raises(AssertionError):
with check_render_options(foo="bar"):
from IPython.display import display
display(None)
def test_display_options():
chart = alt.Chart("data.csv").mark_point().encode(x="foo:Q")
# check that there are no options by default
with check_render_options():
chart.display()
# check that display options are passed
with check_render_options(embed_options={"tooltip": False, "renderer": "canvas"}):
chart.display("canvas", tooltip=False)
# check that above options do not persist
with check_render_options():
chart.display()
# check that display options augment rather than overwrite pre-set options
with alt.renderers.enable(embed_options={"tooltip": True, "renderer": "svg"}):
with check_render_options(embed_options={"tooltip": True, "renderer": "svg"}):
chart.display()
with check_render_options(
embed_options={"tooltip": True, "renderer": "canvas"}
):
chart.display("canvas")
# check that above options do not persist
with check_render_options():
chart.display()

View File

@ -0,0 +1,204 @@
import pytest
import altair.vegalite.v3 as alt
def geom_obj(geom):
class Geom(object):
pass
geom_obj = Geom()
setattr(geom_obj, "__geo_interface__", geom)
return geom_obj
# correct translation of Polygon geometry to Feature type
def test_geo_interface_polygon_feature():
geom = {
"coordinates": [[(0, 0), (0, 2), (2, 2), (2, 0), (0, 0)]],
"type": "Polygon",
}
feat = geom_obj(geom)
with alt.data_transformers.enable(consolidate_datasets=False):
spec = alt.Chart(feat).mark_geoshape().to_dict()
assert spec["data"]["values"]["type"] == "Feature"
# merge geometry with empty properties dictionary
def test_geo_interface_removal_empty_properties():
geom = {
"geometry": {
"coordinates": [
[[6.90, 53.48], [5.98, 51.85], [6.07, 53.51], [6.90, 53.48]]
],
"type": "Polygon",
},
"id": None,
"properties": {},
"type": "Feature",
}
feat = geom_obj(geom)
with alt.data_transformers.enable(consolidate_datasets=False):
spec = alt.Chart(feat).mark_geoshape().to_dict()
assert spec["data"]["values"]["type"] == "Feature"
# only register metadata in the properties member
def test_geo_interface_register_foreign_member():
geom = {
"geometry": {
"coordinates": [
[[6.90, 53.48], [5.98, 51.85], [6.07, 53.51], [6.90, 53.48]]
],
"type": "Polygon",
},
"id": 2,
"properties": {"foo": "bah"},
"type": "Feature",
}
feat = geom_obj(geom)
with alt.data_transformers.enable(consolidate_datasets=False):
spec = alt.Chart(feat).mark_geoshape().to_dict()
with pytest.raises(KeyError):
spec["data"]["values"]["id"]
assert spec["data"]["values"]["foo"] == "bah"
# correct serializing of arrays and nested tuples
def test_geo_interface_serializing_arrays_tuples():
import array as arr
geom = {
"bbox": arr.array("d", [1, 2, 3, 4]),
"geometry": {
"coordinates": [
tuple(
(
tuple((6.90, 53.48)),
tuple((5.98, 51.85)),
tuple((6.07, 53.51)),
tuple((6.90, 53.48)),
)
)
],
"type": "Polygon",
},
"id": 27,
"properties": {},
"type": "Feature",
}
feat = geom_obj(geom)
with alt.data_transformers.enable(consolidate_datasets=False):
spec = alt.Chart(feat).mark_geoshape().to_dict()
assert spec["data"]["values"]["geometry"]["coordinates"][0][0] == [6.9, 53.48]
# overwrite existing 'type' value in properties with `Feature`
def test_geo_interface_reserved_members():
geom = {
"geometry": {
"coordinates": [
[[6.90, 53.48], [5.98, 51.85], [6.07, 53.51], [6.90, 53.48]]
],
"type": "Polygon",
},
"id": 27,
"properties": {"type": "foo"},
"type": "Feature",
}
feat = geom_obj(geom)
with alt.data_transformers.enable(consolidate_datasets=False):
spec = alt.Chart(feat).mark_geoshape().to_dict()
assert spec["data"]["values"]["type"] == "Feature"
# an empty FeatureCollection is valid
def test_geo_interface_empty_feature_collection():
geom = {"type": "FeatureCollection", "features": []}
feat = geom_obj(geom)
with alt.data_transformers.enable(consolidate_datasets=False):
spec = alt.Chart(feat).mark_geoshape().to_dict()
assert spec["data"]["values"] == []
# Features in a FeatureCollection only keep properties and geometry
def test_geo_interface_feature_collection():
geom = {
"type": "FeatureCollection",
"features": [
{
"geometry": {
"coordinates": [
[[6.90, 53.48], [5.98, 51.85], [6.07, 53.51], [6.90, 53.48]]
],
"type": "Polygon",
},
"id": 27,
"properties": {"type": "foo", "id": 1, "geometry": 1},
"type": "Feature",
},
{
"geometry": {
"coordinates": [
[[8.90, 53.48], [7.98, 51.85], [8.07, 53.51], [8.90, 53.48]]
],
"type": "Polygon",
},
"id": 28,
"properties": {"type": "foo", "id": 2, "geometry": 1},
"type": "Feature",
},
],
}
feat = geom_obj(geom)
with alt.data_transformers.enable(consolidate_datasets=False):
spec = alt.Chart(feat).mark_geoshape().to_dict()
assert spec["data"]["values"][0]["id"] == 1
assert spec["data"]["values"][1]["id"] == 2
assert "coordinates" in spec["data"]["values"][0]["geometry"]
assert "coordinates" in spec["data"]["values"][1]["geometry"]
assert spec["data"]["values"][0]["type"] == "Feature"
assert spec["data"]["values"][1]["type"] == "Feature"
# typical output of a __geo_interface__ from geopandas GeoDataFrame
# notic that the index value is registerd as a commonly used identifier
# with the name "id" (in this case 49). Similar to serialization of a
# pandas DataFrame is the index not included in the output
def test_geo_interface_feature_collection_gdf():
geom = {
"bbox": (19.89, -26.82, 29.43, -17.66),
"features": [
{
"bbox": (19.89, -26.82, 29.43, -17.66),
"geometry": {
"coordinates": [
[[6.90, 53.48], [5.98, 51.85], [6.07, 53.51], [6.90, 53.48]]
],
"type": "Polygon",
},
"id": "49",
"properties": {
"continent": "Africa",
"gdp_md_est": 35900.0,
"id": "BWA",
"iso_a3": "BWA",
"name": "Botswana",
"pop_est": 2214858,
},
"type": "Feature",
}
],
"type": "FeatureCollection",
}
feat = geom_obj(geom)
with alt.data_transformers.enable(consolidate_datasets=False):
spec = alt.Chart(feat).mark_geoshape().to_dict()
assert spec["data"]["values"][0]["id"] == "BWA"

View File

@ -0,0 +1,86 @@
"""Tests of various renderers"""
import json
import re
import pytest
import altair.vegalite.v3 as alt
def _extract_embedOpt(html):
"""Extract an embedOpt definition from an html string.
Note: this is very brittle, but works for the specific test in this file.
"""
result = re.search(r"embedOpt\s+=\s+(?P<embedOpt>\{.*?\})", html)
if not result:
return None
else:
return json.loads(result.groupdict()["embedOpt"])
@pytest.fixture
def chart():
return alt.Chart("data.csv").mark_point()
def test_colab_renderer_embed_options(chart):
"""Test that embed_options in renderer metadata are correctly manifest in html"""
def assert_actions_true(chart):
bundle = chart._repr_mimebundle_(None, None)
embedOpt = _extract_embedOpt(bundle["text/html"])
assert embedOpt == {"actions": True, "mode": "vega-lite"}
def assert_actions_false(chart):
bundle = chart._repr_mimebundle_(None, None)
embedOpt = _extract_embedOpt(bundle["text/html"])
assert embedOpt == {"actions": False, "mode": "vega-lite"}
with alt.renderers.enable("colab", embed_options=dict(actions=False)):
assert_actions_false(chart)
with alt.renderers.enable("colab"):
with alt.renderers.enable(embed_options=dict(actions=True)):
assert_actions_true(chart)
with alt.renderers.set_embed_options(actions=False):
assert_actions_false(chart)
with alt.renderers.set_embed_options(actions=True):
assert_actions_true(chart)
def test_default_renderer_embed_options(chart, renderer="default"):
# check that metadata is passed appropriately
mimetype = alt.display.VEGALITE_MIME_TYPE
spec = chart.to_dict()
with alt.renderers.enable(renderer, embed_options=dict(actions=False)):
bundle, metadata = chart._repr_mimebundle_(None, None)
assert set(bundle.keys()) == {mimetype, "text/plain"}
assert bundle[mimetype] == spec
assert metadata == {mimetype: {"embed_options": {"actions": False}}}
# Sanity check: no metadata specified
with alt.renderers.enable(renderer):
bundle, metadata = chart._repr_mimebundle_(None, None)
assert bundle[mimetype] == spec
assert metadata == {}
def test_json_renderer_embed_options(chart, renderer="json"):
"""Test that embed_options in renderer metadata are correctly manifest in html"""
mimetype = "application/json"
spec = chart.to_dict()
with alt.renderers.enable("json", option="foo"):
bundle, metadata = chart._repr_mimebundle_(None, None)
assert set(bundle.keys()) == {mimetype, "text/plain"}
assert bundle[mimetype] == spec
assert metadata == {mimetype: {"option": "foo"}}
# Sanity check: no options specified
with alt.renderers.enable(renderer):
bundle, metadata = chart._repr_mimebundle_(None, None)
assert bundle[mimetype] == spec
assert metadata == {}

View File

@ -0,0 +1,20 @@
import pytest
import altair.vegalite.v3 as alt
from altair.vegalite.v3.theme import VEGA_THEMES
@pytest.fixture
def chart():
return alt.Chart("data.csv").mark_bar().encode(x="x:Q")
def test_vega_themes(chart):
for theme in VEGA_THEMES:
with alt.themes.enable(theme):
dct = chart.to_dict()
assert dct["usermeta"] == {"embedOptions": {"theme": theme}}
assert dct["config"] == {
"view": {"width": 400, "height": 300},
"mark": {"tooltip": None},
}