first commit

This commit is contained in:
Ayxan
2022-05-23 00:16:32 +04:00
commit d660f2a4ca
24786 changed files with 4428337 additions and 0 deletions

View File

@ -0,0 +1,23 @@
# flake8: noqa
from .schema import *
from .api import *
from ...datasets import list_datasets, load_dataset
from ... import expr
from ...expr import datum
from .display import VegaLite, renderers
from .data import (
MaxRowsError,
pipe,
curry,
limit_rows,
sample,
to_json,
to_csv,
to_values,
default_data_transformer,
data_transformers,
)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,43 @@
from ..data import (
MaxRowsError,
curry,
default_data_transformer,
limit_rows,
pipe,
sample,
to_csv,
to_json,
to_values,
DataTransformerRegistry,
)
# ==============================================================================
# VegaLite 4 data transformers
# ==============================================================================
ENTRY_POINT_GROUP = "altair.vegalite.v4.data_transformer" # type: str
data_transformers = DataTransformerRegistry(
entry_point_group=ENTRY_POINT_GROUP
) # type: DataTransformerRegistry
data_transformers.register("default", default_data_transformer)
data_transformers.register("json", to_json)
data_transformers.register("csv", to_csv)
data_transformers.enable("default")
__all__ = (
"MaxRowsError",
"curry",
"default_data_transformer",
"limit_rows",
"pipe",
"sample",
"to_csv",
"to_json",
"to_values",
"data_transformers",
)

View File

@ -0,0 +1,119 @@
import os
from ...utils.mimebundle import spec_to_mimebundle
from ..display import Displayable
from ..display import default_renderer_base
from ..display import json_renderer_base
from ..display import RendererRegistry
from ..display import HTMLRenderer
from .schema import SCHEMA_VERSION
VEGALITE_VERSION = SCHEMA_VERSION.lstrip("v")
VEGA_VERSION = "5"
VEGAEMBED_VERSION = "6"
# ==============================================================================
# VegaLite v4 renderer logic
# ==============================================================================
# The MIME type for Vega-Lite 4.x releases.
VEGALITE_MIME_TYPE = "application/vnd.vegalite.v4+json" # type: str
# The entry point group that can be used by other packages to declare other
# renderers that will be auto-detected. Explicit registration is also
# allowed by the PluginRegistery API.
ENTRY_POINT_GROUP = "altair.vegalite.v4.renderer" # type: str
# The display message when rendering fails
DEFAULT_DISPLAY = """\
<VegaLite 4 object>
If you see this message, it means the renderer has not been properly enabled
for the frontend that you are using. For more information, see
https://altair-viz.github.io/user_guide/troubleshooting.html
"""
renderers = RendererRegistry(entry_point_group=ENTRY_POINT_GROUP)
here = os.path.dirname(os.path.realpath(__file__))
def mimetype_renderer(spec, **metadata):
return default_renderer_base(spec, VEGALITE_MIME_TYPE, DEFAULT_DISPLAY, **metadata)
def json_renderer(spec, **metadata):
return json_renderer_base(spec, DEFAULT_DISPLAY, **metadata)
def png_renderer(spec, **metadata):
return spec_to_mimebundle(
spec,
format="png",
mode="vega-lite",
vega_version=VEGA_VERSION,
vegaembed_version=VEGAEMBED_VERSION,
vegalite_version=VEGALITE_VERSION,
**metadata,
)
def svg_renderer(spec, **metadata):
return spec_to_mimebundle(
spec,
format="svg",
mode="vega-lite",
vega_version=VEGA_VERSION,
vegaembed_version=VEGAEMBED_VERSION,
vegalite_version=VEGALITE_VERSION,
**metadata,
)
html_renderer = HTMLRenderer(
mode="vega-lite",
template="universal",
vega_version=VEGA_VERSION,
vegaembed_version=VEGAEMBED_VERSION,
vegalite_version=VEGALITE_VERSION,
)
renderers.register("default", html_renderer)
renderers.register("html", html_renderer)
renderers.register("colab", html_renderer)
renderers.register("kaggle", html_renderer)
renderers.register("zeppelin", html_renderer)
renderers.register("mimetype", mimetype_renderer)
renderers.register("jupyterlab", mimetype_renderer)
renderers.register("nteract", mimetype_renderer)
renderers.register("json", json_renderer)
renderers.register("png", png_renderer)
renderers.register("svg", svg_renderer)
renderers.enable("default")
class VegaLite(Displayable):
"""An IPython/Jupyter display class for rendering VegaLite 4."""
renderers = renderers
schema_path = (__name__, "schema/vega-lite-schema.json")
def vegalite(spec, validate=True):
"""Render and optionally validate a VegaLite 4 spec.
This will use the currently enabled renderer to render the spec.
Parameters
==========
spec: dict
A fully compliant VegaLite 4 spec, with the data portion fully processed.
validate: bool
Should the spec be validated against the VegaLite 4 schema?
"""
from IPython.display import display
display(VegaLite(spec, validate=validate))

View File

@ -0,0 +1,5 @@
# flake8: noqa
from .core import *
from .channels import *
SCHEMA_VERSION = 'v4.17.0'
SCHEMA_URL = 'https://vega.github.io/schema/vega-lite/v4.17.0.json'

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,958 @@
"""Unit tests for altair API"""
import io
import json
import operator
import os
import pathlib
import tempfile
import jsonschema
import pytest
import pandas as pd
import altair.vegalite.v4 as alt
try:
import altair_saver # noqa: F401
except ImportError:
altair_saver = None
def getargs(*args, **kwargs):
return args, kwargs
OP_DICT = {
"layer": operator.add,
"hconcat": operator.or_,
"vconcat": operator.and_,
}
def _make_chart_type(chart_type):
data = pd.DataFrame(
{
"x": [28, 55, 43, 91, 81, 53, 19, 87],
"y": [43, 91, 81, 53, 19, 87, 52, 28],
"color": list("AAAABBBB"),
}
)
base = (
alt.Chart(data)
.mark_point()
.encode(
x="x",
y="y",
color="color",
)
)
if chart_type in ["layer", "hconcat", "vconcat", "concat"]:
func = getattr(alt, chart_type)
return func(base.mark_square(), base.mark_circle())
elif chart_type == "facet":
return base.facet("color")
elif chart_type == "facet_encoding":
return base.encode(facet="color")
elif chart_type == "repeat":
return base.encode(alt.X(alt.repeat(), type="quantitative")).repeat(["x", "y"])
elif chart_type == "chart":
return base
else:
raise ValueError("chart_type='{}' is not recognized".format(chart_type))
@pytest.fixture
def basic_chart():
data = pd.DataFrame(
{
"a": ["A", "B", "C", "D", "E", "F", "G", "H", "I"],
"b": [28, 55, 43, 91, 81, 53, 19, 87, 52],
}
)
return alt.Chart(data).mark_bar().encode(x="a", y="b")
def test_chart_data_types():
def Chart(data):
return alt.Chart(data).mark_point().encode(x="x:Q", y="y:Q")
# Url Data
data = "/path/to/my/data.csv"
dct = Chart(data).to_dict()
assert dct["data"] == {"url": data}
# Dict Data
data = {"values": [{"x": 1, "y": 2}, {"x": 2, "y": 3}]}
with alt.data_transformers.enable(consolidate_datasets=False):
dct = Chart(data).to_dict()
assert dct["data"] == data
with alt.data_transformers.enable(consolidate_datasets=True):
dct = Chart(data).to_dict()
name = dct["data"]["name"]
assert dct["datasets"][name] == data["values"]
# DataFrame data
data = pd.DataFrame({"x": range(5), "y": range(5)})
with alt.data_transformers.enable(consolidate_datasets=False):
dct = Chart(data).to_dict()
assert dct["data"]["values"] == data.to_dict(orient="records")
with alt.data_transformers.enable(consolidate_datasets=True):
dct = Chart(data).to_dict()
name = dct["data"]["name"]
assert dct["datasets"][name] == data.to_dict(orient="records")
# Named data object
data = alt.NamedData(name="Foo")
dct = Chart(data).to_dict()
assert dct["data"] == {"name": "Foo"}
def test_chart_infer_types():
data = pd.DataFrame(
{
"x": pd.date_range("2012", periods=10, freq="Y"),
"y": range(10),
"c": list("abcabcabca"),
}
)
def _check_encodings(chart):
dct = chart.to_dict()
assert dct["encoding"]["x"]["type"] == "temporal"
assert dct["encoding"]["x"]["field"] == "x"
assert dct["encoding"]["y"]["type"] == "quantitative"
assert dct["encoding"]["y"]["field"] == "y"
assert dct["encoding"]["color"]["type"] == "nominal"
assert dct["encoding"]["color"]["field"] == "c"
# Pass field names by keyword
chart = alt.Chart(data).mark_point().encode(x="x", y="y", color="c")
_check_encodings(chart)
# pass Channel objects by keyword
chart = (
alt.Chart(data)
.mark_point()
.encode(x=alt.X("x"), y=alt.Y("y"), color=alt.Color("c"))
)
_check_encodings(chart)
# pass Channel objects by value
chart = alt.Chart(data).mark_point().encode(alt.X("x"), alt.Y("y"), alt.Color("c"))
_check_encodings(chart)
# override default types
chart = (
alt.Chart(data)
.mark_point()
.encode(alt.X("x", type="nominal"), alt.Y("y", type="ordinal"))
)
dct = chart.to_dict()
assert dct["encoding"]["x"]["type"] == "nominal"
assert dct["encoding"]["y"]["type"] == "ordinal"
@pytest.mark.parametrize(
"args, kwargs",
[
getargs(detail=["value:Q", "name:N"], tooltip=["value:Q", "name:N"]),
getargs(detail=["value", "name"], tooltip=["value", "name"]),
getargs(alt.Detail(["value:Q", "name:N"]), alt.Tooltip(["value:Q", "name:N"])),
getargs(alt.Detail(["value", "name"]), alt.Tooltip(["value", "name"])),
getargs(
[alt.Detail("value:Q"), alt.Detail("name:N")],
[alt.Tooltip("value:Q"), alt.Tooltip("name:N")],
),
getargs(
[alt.Detail("value"), alt.Detail("name")],
[alt.Tooltip("value"), alt.Tooltip("name")],
),
],
)
def test_multiple_encodings(args, kwargs):
df = pd.DataFrame({"value": [1, 2, 3], "name": ["A", "B", "C"]})
encoding_dct = [
{"field": "value", "type": "quantitative"},
{"field": "name", "type": "nominal"},
]
chart = alt.Chart(df).mark_point().encode(*args, **kwargs)
dct = chart.to_dict()
assert dct["encoding"]["detail"] == encoding_dct
assert dct["encoding"]["tooltip"] == encoding_dct
def test_chart_operations():
data = pd.DataFrame(
{
"x": pd.date_range("2012", periods=10, freq="Y"),
"y": range(10),
"c": list("abcabcabca"),
}
)
chart1 = alt.Chart(data).mark_line().encode(x="x", y="y", color="c")
chart2 = chart1.mark_point()
chart3 = chart1.mark_circle()
chart4 = chart1.mark_square()
chart = chart1 + chart2 + chart3
assert isinstance(chart, alt.LayerChart)
assert len(chart.layer) == 3
chart += chart4
assert len(chart.layer) == 4
chart = chart1 | chart2 | chart3
assert isinstance(chart, alt.HConcatChart)
assert len(chart.hconcat) == 3
chart |= chart4
assert len(chart.hconcat) == 4
chart = chart1 & chart2 & chart3
assert isinstance(chart, alt.VConcatChart)
assert len(chart.vconcat) == 3
chart &= chart4
assert len(chart.vconcat) == 4
def test_selection_to_dict():
brush = alt.selection(type="interval")
# test some value selections
# Note: X and Y cannot have conditions
alt.Chart("path/to/data.json").mark_point().encode(
color=alt.condition(brush, alt.ColorValue("red"), alt.ColorValue("blue")),
opacity=alt.condition(brush, alt.value(0.5), alt.value(1.0)),
text=alt.condition(brush, alt.TextValue("foo"), alt.value("bar")),
).to_dict()
# test some field selections
# Note: X and Y cannot have conditions
# Conditions cannot both be fields
alt.Chart("path/to/data.json").mark_point().encode(
color=alt.condition(brush, alt.Color("col1:N"), alt.value("blue")),
opacity=alt.condition(brush, "col1:N", alt.value(0.5)),
text=alt.condition(brush, alt.value("abc"), alt.Text("col2:N")),
size=alt.condition(brush, alt.value(20), "col2:N"),
).to_dict()
def test_selection_expression():
selection = alt.selection_single(fields=["value"])
assert isinstance(selection.value, alt.expr.Expression)
assert selection.value.to_dict() == "{0}.value".format(selection.name)
assert isinstance(selection["value"], alt.expr.Expression)
assert selection["value"].to_dict() == "{0}['value']".format(selection.name)
with pytest.raises(AttributeError):
selection.__magic__
@pytest.mark.parametrize("format", ["html", "json", "png", "svg", "pdf"])
def test_save(format, basic_chart):
if format in ["pdf", "png"]:
out = io.BytesIO()
mode = "rb"
else:
out = io.StringIO()
mode = "r"
if format in ["svg", "png", "pdf"]:
if not altair_saver:
with pytest.raises(ValueError) as err:
basic_chart.save(out, format=format)
assert "github.com/altair-viz/altair_saver" in str(err.value)
return
elif format not in altair_saver.available_formats():
with pytest.raises(ValueError) as err:
basic_chart.save(out, format=format)
assert f"No enabled saver found that supports format='{format}'" in str(
err.value
)
return
basic_chart.save(out, format=format)
out.seek(0)
content = out.read()
if format == "json":
assert "$schema" in json.loads(content)
if format == "html":
assert content.startswith("<!DOCTYPE html>")
fid, filename = tempfile.mkstemp(suffix="." + format)
os.close(fid)
# test both string filenames and pathlib.Paths
for fp in [filename, pathlib.Path(filename)]:
try:
basic_chart.save(fp)
with open(fp, mode) as f:
assert f.read()[:1000] == content[:1000]
finally:
os.remove(fp)
def test_facet_basic():
# wrapped facet
chart1 = (
alt.Chart("data.csv")
.mark_point()
.encode(
x="x:Q",
y="y:Q",
)
.facet("category:N", columns=2)
)
dct1 = chart1.to_dict()
assert dct1["facet"] == alt.Facet("category:N").to_dict()
assert dct1["columns"] == 2
assert dct1["data"] == alt.UrlData("data.csv").to_dict()
# explicit row/col facet
chart2 = (
alt.Chart("data.csv")
.mark_point()
.encode(
x="x:Q",
y="y:Q",
)
.facet(row="category1:Q", column="category2:Q")
)
dct2 = chart2.to_dict()
assert dct2["facet"]["row"] == alt.Facet("category1:Q").to_dict()
assert dct2["facet"]["column"] == alt.Facet("category2:Q").to_dict()
assert "columns" not in dct2
assert dct2["data"] == alt.UrlData("data.csv").to_dict()
def test_facet_parse():
chart = (
alt.Chart("data.csv")
.mark_point()
.encode(x="x:Q", y="y:Q")
.facet(row="row:N", column="column:O")
)
dct = chart.to_dict()
assert dct["data"] == {"url": "data.csv"}
assert "data" not in dct["spec"]
assert dct["facet"] == {
"column": {"field": "column", "type": "ordinal"},
"row": {"field": "row", "type": "nominal"},
}
def test_facet_parse_data():
data = pd.DataFrame({"x": range(5), "y": range(5), "row": list("abcab")})
chart = (
alt.Chart(data)
.mark_point()
.encode(x="x", y="y:O")
.facet(row="row", column="column:O")
)
with alt.data_transformers.enable(consolidate_datasets=False):
dct = chart.to_dict()
assert "values" in dct["data"]
assert "data" not in dct["spec"]
assert dct["facet"] == {
"column": {"field": "column", "type": "ordinal"},
"row": {"field": "row", "type": "nominal"},
}
with alt.data_transformers.enable(consolidate_datasets=True):
dct = chart.to_dict()
assert "datasets" in dct
assert "name" in dct["data"]
assert "data" not in dct["spec"]
assert dct["facet"] == {
"column": {"field": "column", "type": "ordinal"},
"row": {"field": "row", "type": "nominal"},
}
def test_selection():
# test instantiation of selections
interval = alt.selection_interval(name="selec_1")
assert interval.selection.type == "interval"
assert interval.name == "selec_1"
single = alt.selection_single(name="selec_2")
assert single.selection.type == "single"
assert single.name == "selec_2"
multi = alt.selection_multi(name="selec_3")
assert multi.selection.type == "multi"
assert multi.name == "selec_3"
# test adding to chart
chart = alt.Chart().add_selection(single)
chart = chart.add_selection(multi, interval)
assert set(chart.selection.keys()) == {"selec_1", "selec_2", "selec_3"}
# test logical operations
assert isinstance(single & multi, alt.Selection)
assert isinstance(single | multi, alt.Selection)
assert isinstance(~single, alt.Selection)
assert isinstance((single & multi)[0].group, alt.SelectionAnd)
assert isinstance((single | multi)[0].group, alt.SelectionOr)
assert isinstance((~single)[0].group, alt.SelectionNot)
# test that default names increment (regression for #1454)
sel1 = alt.selection_single()
sel2 = alt.selection_multi()
sel3 = alt.selection_interval()
names = {s.name for s in (sel1, sel2, sel3)}
assert len(names) == 3
def test_transforms():
# aggregate transform
agg1 = alt.AggregatedFieldDef(**{"as": "x1", "op": "mean", "field": "y"})
agg2 = alt.AggregatedFieldDef(**{"as": "x2", "op": "median", "field": "z"})
chart = alt.Chart().transform_aggregate([agg1], ["foo"], x2="median(z)")
kwds = dict(aggregate=[agg1, agg2], groupby=["foo"])
assert chart.transform == [alt.AggregateTransform(**kwds)]
# bin transform
chart = alt.Chart().transform_bin("binned", field="field", bin=True)
kwds = {"as": "binned", "field": "field", "bin": True}
assert chart.transform == [alt.BinTransform(**kwds)]
# calcualte transform
chart = alt.Chart().transform_calculate("calc", "datum.a * 4")
kwds = {"as": "calc", "calculate": "datum.a * 4"}
assert chart.transform == [alt.CalculateTransform(**kwds)]
# density transform
chart = alt.Chart().transform_density("x", as_=["value", "density"])
kwds = {"as": ["value", "density"], "density": "x"}
assert chart.transform == [alt.DensityTransform(**kwds)]
# filter transform
chart = alt.Chart().transform_filter("datum.a < 4")
assert chart.transform == [alt.FilterTransform(filter="datum.a < 4")]
# flatten transform
chart = alt.Chart().transform_flatten(["A", "B"], ["X", "Y"])
kwds = {"as": ["X", "Y"], "flatten": ["A", "B"]}
assert chart.transform == [alt.FlattenTransform(**kwds)]
# fold transform
chart = alt.Chart().transform_fold(["A", "B", "C"], as_=["key", "val"])
kwds = {"as": ["key", "val"], "fold": ["A", "B", "C"]}
assert chart.transform == [alt.FoldTransform(**kwds)]
# impute transform
chart = alt.Chart().transform_impute("field", "key", groupby=["x"])
kwds = {"impute": "field", "key": "key", "groupby": ["x"]}
assert chart.transform == [alt.ImputeTransform(**kwds)]
# joinaggregate transform
chart = alt.Chart().transform_joinaggregate(min="min(x)", groupby=["key"])
kwds = {
"joinaggregate": [
alt.JoinAggregateFieldDef(field="x", op="min", **{"as": "min"})
],
"groupby": ["key"],
}
assert chart.transform == [alt.JoinAggregateTransform(**kwds)]
# loess transform
chart = alt.Chart().transform_loess("x", "y", as_=["xx", "yy"])
kwds = {"on": "x", "loess": "y", "as": ["xx", "yy"]}
assert chart.transform == [alt.LoessTransform(**kwds)]
# lookup transform (data)
lookup_data = alt.LookupData(alt.UrlData("foo.csv"), "id", ["rate"])
chart = alt.Chart().transform_lookup("a", from_=lookup_data, as_="a", default="b")
kwds = {"from": lookup_data, "as": "a", "lookup": "a", "default": "b"}
assert chart.transform == [alt.LookupTransform(**kwds)]
# lookup transform (selection)
lookup_selection = alt.LookupSelection(key="key", selection="sel")
chart = alt.Chart().transform_lookup(
"a", from_=lookup_selection, as_="a", default="b"
)
kwds = {"from": lookup_selection, "as": "a", "lookup": "a", "default": "b"}
assert chart.transform == [alt.LookupTransform(**kwds)]
# pivot transform
chart = alt.Chart().transform_pivot("x", "y")
assert chart.transform == [alt.PivotTransform(pivot="x", value="y")]
# quantile transform
chart = alt.Chart().transform_quantile("x", as_=["prob", "value"])
kwds = {"quantile": "x", "as": ["prob", "value"]}
assert chart.transform == [alt.QuantileTransform(**kwds)]
# regression transform
chart = alt.Chart().transform_regression("x", "y", as_=["xx", "yy"])
kwds = {"on": "x", "regression": "y", "as": ["xx", "yy"]}
assert chart.transform == [alt.RegressionTransform(**kwds)]
# sample transform
chart = alt.Chart().transform_sample()
assert chart.transform == [alt.SampleTransform(1000)]
# stack transform
chart = alt.Chart().transform_stack("stacked", "x", groupby=["y"])
assert chart.transform == [
alt.StackTransform(stack="x", groupby=["y"], **{"as": "stacked"})
]
# timeUnit transform
chart = alt.Chart().transform_timeunit("foo", field="x", timeUnit="date")
kwds = {"as": "foo", "field": "x", "timeUnit": "date"}
assert chart.transform == [alt.TimeUnitTransform(**kwds)]
# window transform
chart = alt.Chart().transform_window(xsum="sum(x)", ymin="min(y)", frame=[None, 0])
window = [
alt.WindowFieldDef(**{"as": "xsum", "field": "x", "op": "sum"}),
alt.WindowFieldDef(**{"as": "ymin", "field": "y", "op": "min"}),
]
# kwargs don't maintain order in Python < 3.6, so window list can
# be reversed
assert chart.transform == [
alt.WindowTransform(frame=[None, 0], window=window)
] or chart.transform == [alt.WindowTransform(frame=[None, 0], window=window[::-1])]
def test_filter_transform_selection_predicates():
selector1 = alt.selection_interval(name="s1")
selector2 = alt.selection_interval(name="s2")
base = alt.Chart("data.txt").mark_point()
chart = base.transform_filter(selector1)
assert chart.to_dict()["transform"] == [{"filter": {"selection": "s1"}}]
chart = base.transform_filter(~selector1)
assert chart.to_dict()["transform"] == [{"filter": {"selection": {"not": "s1"}}}]
chart = base.transform_filter(selector1 & selector2)
assert chart.to_dict()["transform"] == [
{"filter": {"selection": {"and": ["s1", "s2"]}}}
]
chart = base.transform_filter(selector1 | selector2)
assert chart.to_dict()["transform"] == [
{"filter": {"selection": {"or": ["s1", "s2"]}}}
]
chart = base.transform_filter(selector1 | ~selector2)
assert chart.to_dict()["transform"] == [
{"filter": {"selection": {"or": ["s1", {"not": "s2"}]}}}
]
chart = base.transform_filter(~selector1 | ~selector2)
assert chart.to_dict()["transform"] == [
{"filter": {"selection": {"or": [{"not": "s1"}, {"not": "s2"}]}}}
]
chart = base.transform_filter(~(selector1 & selector2))
assert chart.to_dict()["transform"] == [
{"filter": {"selection": {"not": {"and": ["s1", "s2"]}}}}
]
def test_resolve_methods():
chart = alt.LayerChart().resolve_axis(x="shared", y="independent")
assert chart.resolve == alt.Resolve(
axis=alt.AxisResolveMap(x="shared", y="independent")
)
chart = alt.LayerChart().resolve_legend(color="shared", fill="independent")
assert chart.resolve == alt.Resolve(
legend=alt.LegendResolveMap(color="shared", fill="independent")
)
chart = alt.LayerChart().resolve_scale(x="shared", y="independent")
assert chart.resolve == alt.Resolve(
scale=alt.ScaleResolveMap(x="shared", y="independent")
)
def test_layer_encodings():
chart = alt.LayerChart().encode(x="column:Q")
assert chart.encoding.x == alt.X(shorthand="column:Q")
def test_add_selection():
selections = [
alt.selection_interval(),
alt.selection_single(),
alt.selection_multi(),
]
chart = (
alt.Chart()
.mark_point()
.add_selection(selections[0])
.add_selection(selections[1], selections[2])
)
expected = {s.name: s.selection for s in selections}
assert chart.selection == expected
def test_repeat_add_selections():
base = alt.Chart("data.csv").mark_point()
selection = alt.selection_single()
chart1 = base.add_selection(selection).repeat(list("ABC"))
chart2 = base.repeat(list("ABC")).add_selection(selection)
assert chart1.to_dict() == chart2.to_dict()
def test_facet_add_selections():
base = alt.Chart("data.csv").mark_point()
selection = alt.selection_single()
chart1 = base.add_selection(selection).facet("val:Q")
chart2 = base.facet("val:Q").add_selection(selection)
assert chart1.to_dict() == chart2.to_dict()
def test_layer_add_selection():
base = alt.Chart("data.csv").mark_point()
selection = alt.selection_single()
chart1 = alt.layer(base.add_selection(selection), base)
chart2 = alt.layer(base, base).add_selection(selection)
assert chart1.to_dict() == chart2.to_dict()
@pytest.mark.parametrize("charttype", [alt.concat, alt.hconcat, alt.vconcat])
def test_compound_add_selections(charttype):
base = alt.Chart("data.csv").mark_point()
selection = alt.selection_single()
chart1 = charttype(base.add_selection(selection), base.add_selection(selection))
chart2 = charttype(base, base).add_selection(selection)
assert chart1.to_dict() == chart2.to_dict()
def test_selection_property():
sel = alt.selection_interval()
chart = alt.Chart("data.csv").mark_point().properties(selection=sel)
assert list(chart["selection"].keys()) == [sel.name]
def test_LookupData():
df = pd.DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})
lookup = alt.LookupData(data=df, key="x")
dct = lookup.to_dict()
assert dct["key"] == "x"
assert dct["data"] == {
"values": [{"x": 1, "y": 4}, {"x": 2, "y": 5}, {"x": 3, "y": 6}]
}
def test_themes():
chart = alt.Chart("foo.txt").mark_point()
with alt.themes.enable("default"):
assert chart.to_dict()["config"] == {
"view": {"continuousWidth": 400, "continuousHeight": 300}
}
with alt.themes.enable("opaque"):
assert chart.to_dict()["config"] == {
"background": "white",
"view": {"continuousWidth": 400, "continuousHeight": 300},
}
with alt.themes.enable("none"):
assert "config" not in chart.to_dict()
def test_chart_from_dict():
base = alt.Chart("data.csv").mark_point().encode(x="x:Q", y="y:Q")
charts = [
base,
base + base,
base | base,
base & base,
base.facet("c:N"),
(base + base).facet(row="c:N", data="data.csv"),
base.repeat(["c", "d"]),
(base + base).repeat(row=["c", "d"]),
]
for chart in charts:
chart_out = alt.Chart.from_dict(chart.to_dict())
assert type(chart_out) is type(chart)
# test that an invalid spec leads to a schema validation error
with pytest.raises(jsonschema.ValidationError):
alt.Chart.from_dict({"invalid": "spec"})
def test_consolidate_datasets(basic_chart):
subchart1 = basic_chart
subchart2 = basic_chart.copy()
subchart2.data = basic_chart.data.copy()
chart = subchart1 | subchart2
with alt.data_transformers.enable(consolidate_datasets=True):
dct_consolidated = chart.to_dict()
with alt.data_transformers.enable(consolidate_datasets=False):
dct_standard = chart.to_dict()
assert "datasets" in dct_consolidated
assert "datasets" not in dct_standard
datasets = dct_consolidated["datasets"]
# two dataset copies should be recognized as duplicates
assert len(datasets) == 1
# make sure data matches original & names are correct
name, data = datasets.popitem()
for spec in dct_standard["hconcat"]:
assert spec["data"]["values"] == data
for spec in dct_consolidated["hconcat"]:
assert spec["data"] == {"name": name}
def test_consolidate_InlineData():
data = alt.InlineData(
values=[{"a": 1, "b": 1}, {"a": 2, "b": 2}], format={"type": "csv"}
)
chart = alt.Chart(data).mark_point()
with alt.data_transformers.enable(consolidate_datasets=False):
dct = chart.to_dict()
assert dct["data"]["format"] == data.format
assert dct["data"]["values"] == data.values
with alt.data_transformers.enable(consolidate_datasets=True):
dct = chart.to_dict()
assert dct["data"]["format"] == data.format
assert list(dct["datasets"].values())[0] == data.values
data = alt.InlineData(values=[], name="runtime_data")
chart = alt.Chart(data).mark_point()
with alt.data_transformers.enable(consolidate_datasets=False):
dct = chart.to_dict()
assert dct["data"] == data.to_dict()
with alt.data_transformers.enable(consolidate_datasets=True):
dct = chart.to_dict()
assert dct["data"] == data.to_dict()
def test_repeat():
# wrapped repeat
chart1 = (
alt.Chart("data.csv")
.mark_point()
.encode(
x=alt.X(alt.repeat(), type="quantitative"),
y="y:Q",
)
.repeat(["A", "B", "C", "D"], columns=2)
)
dct1 = chart1.to_dict()
assert dct1["repeat"] == ["A", "B", "C", "D"]
assert dct1["columns"] == 2
assert dct1["spec"]["encoding"]["x"]["field"] == {"repeat": "repeat"}
# explicit row/col repeat
chart2 = (
alt.Chart("data.csv")
.mark_point()
.encode(
x=alt.X(alt.repeat("row"), type="quantitative"),
y=alt.Y(alt.repeat("column"), type="quantitative"),
)
.repeat(row=["A", "B", "C"], column=["C", "B", "A"])
)
dct2 = chart2.to_dict()
assert dct2["repeat"] == {"row": ["A", "B", "C"], "column": ["C", "B", "A"]}
assert "columns" not in dct2
assert dct2["spec"]["encoding"]["x"]["field"] == {"repeat": "row"}
assert dct2["spec"]["encoding"]["y"]["field"] == {"repeat": "column"}
def test_data_property():
data = pd.DataFrame({"x": [1, 2, 3], "y": list("ABC")})
chart1 = alt.Chart(data).mark_point()
chart2 = alt.Chart().mark_point().properties(data=data)
assert chart1.to_dict() == chart2.to_dict()
@pytest.mark.parametrize("method", ["layer", "hconcat", "vconcat", "concat"])
@pytest.mark.parametrize(
"data", ["data.json", pd.DataFrame({"x": range(3), "y": list("abc")})]
)
def test_subcharts_with_same_data(method, data):
func = getattr(alt, method)
point = alt.Chart(data).mark_point().encode(x="x:Q", y="y:Q")
line = point.mark_line()
text = point.mark_text()
chart1 = func(point, line, text)
assert chart1.data is not alt.Undefined
assert all(c.data is alt.Undefined for c in getattr(chart1, method))
if method != "concat":
op = OP_DICT[method]
chart2 = op(op(point, line), text)
assert chart2.data is not alt.Undefined
assert all(c.data is alt.Undefined for c in getattr(chart2, method))
@pytest.mark.parametrize("method", ["layer", "hconcat", "vconcat", "concat"])
@pytest.mark.parametrize(
"data", ["data.json", pd.DataFrame({"x": range(3), "y": list("abc")})]
)
def test_subcharts_different_data(method, data):
func = getattr(alt, method)
point = alt.Chart(data).mark_point().encode(x="x:Q", y="y:Q")
otherdata = alt.Chart("data.csv").mark_point().encode(x="x:Q", y="y:Q")
nodata = alt.Chart().mark_point().encode(x="x:Q", y="y:Q")
chart1 = func(point, otherdata)
assert chart1.data is alt.Undefined
assert getattr(chart1, method)[0].data is data
chart2 = func(point, nodata)
assert chart2.data is alt.Undefined
assert getattr(chart2, method)[0].data is data
def test_layer_facet(basic_chart):
chart = (basic_chart + basic_chart).facet(row="row:Q")
assert chart.data is not alt.Undefined
assert chart.spec.data is alt.Undefined
for layer in chart.spec.layer:
assert layer.data is alt.Undefined
dct = chart.to_dict()
assert "data" in dct
def test_layer_errors():
toplevel_chart = alt.Chart("data.txt").mark_point().configure_legend(columns=2)
facet_chart1 = alt.Chart("data.txt").mark_point().encode(facet="row:Q")
facet_chart2 = alt.Chart("data.txt").mark_point().facet("row:Q")
repeat_chart = alt.Chart("data.txt").mark_point().repeat(["A", "B", "C"])
simple_chart = alt.Chart("data.txt").mark_point()
with pytest.raises(ValueError) as err:
toplevel_chart + simple_chart
assert str(err.value).startswith(
'Objects with "config" attribute cannot be used within LayerChart.'
)
with pytest.raises(ValueError) as err:
repeat_chart + simple_chart
assert str(err.value) == "Repeat charts cannot be layered."
with pytest.raises(ValueError) as err:
facet_chart1 + simple_chart
assert str(err.value) == "Faceted charts cannot be layered."
with pytest.raises(ValueError) as err:
alt.layer(simple_chart) + facet_chart2
assert str(err.value) == "Faceted charts cannot be layered."
@pytest.mark.parametrize(
"chart_type",
["layer", "hconcat", "vconcat", "concat", "facet", "facet_encoding", "repeat"],
)
def test_resolve(chart_type):
chart = _make_chart_type(chart_type)
chart = (
chart.resolve_scale(
x="independent",
)
.resolve_legend(color="independent")
.resolve_axis(y="independent")
)
dct = chart.to_dict()
assert dct["resolve"] == {
"scale": {"x": "independent"},
"legend": {"color": "independent"},
"axis": {"y": "independent"},
}
# TODO: test vconcat, hconcat, concat, facet_encoding when schema allows them.
# This is blocked by https://github.com/vega/vega-lite/issues/5261
@pytest.mark.parametrize("chart_type", ["chart", "layer"])
@pytest.mark.parametrize("facet_arg", [None, "facet", "row", "column"])
def test_facet(chart_type, facet_arg):
chart = _make_chart_type(chart_type)
if facet_arg is None:
chart = chart.facet("color:N", columns=2)
else:
chart = chart.facet(**{facet_arg: "color:N", "columns": 2})
dct = chart.to_dict()
assert "spec" in dct
assert dct["columns"] == 2
expected = {"field": "color", "type": "nominal"}
if facet_arg is None or facet_arg == "facet":
assert dct["facet"] == expected
else:
assert dct["facet"][facet_arg] == expected
def test_sequence():
data = alt.sequence(100)
assert data.to_dict() == {"sequence": {"start": 0, "stop": 100}}
data = alt.sequence(5, 10)
assert data.to_dict() == {"sequence": {"start": 5, "stop": 10}}
data = alt.sequence(0, 1, 0.1, as_="x")
assert data.to_dict() == {
"sequence": {"start": 0, "stop": 1, "step": 0.1, "as": "x"}
}
def test_graticule():
data = alt.graticule()
assert data.to_dict() == {"graticule": True}
data = alt.graticule(step=[15, 15])
assert data.to_dict() == {"graticule": {"step": [15, 15]}}
def test_sphere():
data = alt.sphere()
assert data.to_dict() == {"sphere": True}
def test_validate_dataset():
d = {"data": {"values": [{}]}, "mark": {"type": "point"}}
chart = alt.Chart.from_dict(d)
jsn = chart.to_json()
assert jsn

View File

@ -0,0 +1,33 @@
import os
import pandas as pd
import pytest
from .. import data as alt
@pytest.fixture
def sample_data():
return pd.DataFrame({"x": range(10), "y": range(10)})
def test_disable_max_rows(sample_data):
with alt.data_transformers.enable("default", max_rows=5):
# Ensure max rows error is raised.
with pytest.raises(alt.MaxRowsError):
alt.data_transformers.get()(sample_data)
# Ensure that max rows error is properly disabled.
with alt.data_transformers.disable_max_rows():
alt.data_transformers.get()(sample_data)
try:
with alt.data_transformers.enable("json"):
# Ensure that there is no TypeError for non-max_rows transformers.
with alt.data_transformers.disable_max_rows():
jsonfile = alt.data_transformers.get()(sample_data)
except TypeError:
jsonfile = {}
finally:
if jsonfile:
os.remove(jsonfile["url"])

View File

@ -0,0 +1,69 @@
from contextlib import contextmanager
import pytest
import altair.vegalite.v4 as alt
@contextmanager
def check_render_options(**options):
"""
Context manager that will assert that alt.renderers.options are equivalent
to the given options in the IPython.display.display call
"""
import IPython.display
def check_options(obj):
assert alt.renderers.options == options
_display = IPython.display.display
IPython.display.display = check_options
try:
yield
finally:
IPython.display.display = _display
def test_check_renderer_options():
# this test should pass
with check_render_options():
from IPython.display import display
display(None)
# check that an error is appropriately raised if the test fails
with pytest.raises(AssertionError):
with check_render_options(foo="bar"):
from IPython.display import display
display(None)
def test_display_options():
chart = alt.Chart("data.csv").mark_point().encode(x="foo:Q")
# check that there are no options by default
with check_render_options():
chart.display()
# check that display options are passed
with check_render_options(embed_options={"tooltip": False, "renderer": "canvas"}):
chart.display("canvas", tooltip=False)
# check that above options do not persist
with check_render_options():
chart.display()
# check that display options augment rather than overwrite pre-set options
with alt.renderers.enable(embed_options={"tooltip": True, "renderer": "svg"}):
with check_render_options(embed_options={"tooltip": True, "renderer": "svg"}):
chart.display()
with check_render_options(
embed_options={"tooltip": True, "renderer": "canvas"}
):
chart.display("canvas")
# check that above options do not persist
with check_render_options():
chart.display()

View File

@ -0,0 +1,204 @@
import pytest
import altair.vegalite.v4 as alt
def geom_obj(geom):
class Geom(object):
pass
geom_obj = Geom()
setattr(geom_obj, "__geo_interface__", geom)
return geom_obj
# correct translation of Polygon geometry to Feature type
def test_geo_interface_polygon_feature():
geom = {
"coordinates": [[(0, 0), (0, 2), (2, 2), (2, 0), (0, 0)]],
"type": "Polygon",
}
feat = geom_obj(geom)
with alt.data_transformers.enable(consolidate_datasets=False):
spec = alt.Chart(feat).mark_geoshape().to_dict()
assert spec["data"]["values"]["type"] == "Feature"
# merge geometry with empty properties dictionary
def test_geo_interface_removal_empty_properties():
geom = {
"geometry": {
"coordinates": [
[[6.90, 53.48], [5.98, 51.85], [6.07, 53.51], [6.90, 53.48]]
],
"type": "Polygon",
},
"id": None,
"properties": {},
"type": "Feature",
}
feat = geom_obj(geom)
with alt.data_transformers.enable(consolidate_datasets=False):
spec = alt.Chart(feat).mark_geoshape().to_dict()
assert spec["data"]["values"]["type"] == "Feature"
# only register metadata in the properties member
def test_geo_interface_register_foreign_member():
geom = {
"geometry": {
"coordinates": [
[[6.90, 53.48], [5.98, 51.85], [6.07, 53.51], [6.90, 53.48]]
],
"type": "Polygon",
},
"id": 2,
"properties": {"foo": "bah"},
"type": "Feature",
}
feat = geom_obj(geom)
with alt.data_transformers.enable(consolidate_datasets=False):
spec = alt.Chart(feat).mark_geoshape().to_dict()
with pytest.raises(KeyError):
spec["data"]["values"]["id"]
assert spec["data"]["values"]["foo"] == "bah"
# correct serializing of arrays and nested tuples
def test_geo_interface_serializing_arrays_tuples():
import array as arr
geom = {
"bbox": arr.array("d", [1, 2, 3, 4]),
"geometry": {
"coordinates": [
tuple(
(
tuple((6.90, 53.48)),
tuple((5.98, 51.85)),
tuple((6.07, 53.51)),
tuple((6.90, 53.48)),
)
)
],
"type": "Polygon",
},
"id": 27,
"properties": {},
"type": "Feature",
}
feat = geom_obj(geom)
with alt.data_transformers.enable(consolidate_datasets=False):
spec = alt.Chart(feat).mark_geoshape().to_dict()
assert spec["data"]["values"]["geometry"]["coordinates"][0][0] == [6.9, 53.48]
# overwrite existing 'type' value in properties with `Feature`
def test_geo_interface_reserved_members():
geom = {
"geometry": {
"coordinates": [
[[6.90, 53.48], [5.98, 51.85], [6.07, 53.51], [6.90, 53.48]]
],
"type": "Polygon",
},
"id": 27,
"properties": {"type": "foo"},
"type": "Feature",
}
feat = geom_obj(geom)
with alt.data_transformers.enable(consolidate_datasets=False):
spec = alt.Chart(feat).mark_geoshape().to_dict()
assert spec["data"]["values"]["type"] == "Feature"
# an empty FeatureCollection is valid
def test_geo_interface_empty_feature_collection():
geom = {"type": "FeatureCollection", "features": []}
feat = geom_obj(geom)
with alt.data_transformers.enable(consolidate_datasets=False):
spec = alt.Chart(feat).mark_geoshape().to_dict()
assert spec["data"]["values"] == []
# Features in a FeatureCollection only keep properties and geometry
def test_geo_interface_feature_collection():
geom = {
"type": "FeatureCollection",
"features": [
{
"geometry": {
"coordinates": [
[[6.90, 53.48], [5.98, 51.85], [6.07, 53.51], [6.90, 53.48]]
],
"type": "Polygon",
},
"id": 27,
"properties": {"type": "foo", "id": 1, "geometry": 1},
"type": "Feature",
},
{
"geometry": {
"coordinates": [
[[8.90, 53.48], [7.98, 51.85], [8.07, 53.51], [8.90, 53.48]]
],
"type": "Polygon",
},
"id": 28,
"properties": {"type": "foo", "id": 2, "geometry": 1},
"type": "Feature",
},
],
}
feat = geom_obj(geom)
with alt.data_transformers.enable(consolidate_datasets=False):
spec = alt.Chart(feat).mark_geoshape().to_dict()
assert spec["data"]["values"][0]["id"] == 1
assert spec["data"]["values"][1]["id"] == 2
assert "coordinates" in spec["data"]["values"][0]["geometry"]
assert "coordinates" in spec["data"]["values"][1]["geometry"]
assert spec["data"]["values"][0]["type"] == "Feature"
assert spec["data"]["values"][1]["type"] == "Feature"
# typical output of a __geo_interface__ from geopandas GeoDataFrame
# notic that the index value is registerd as a commonly used identifier
# with the name "id" (in this case 49). Similar to serialization of a
# pandas DataFrame is the index not included in the output
def test_geo_interface_feature_collection_gdf():
geom = {
"bbox": (19.89, -26.82, 29.43, -17.66),
"features": [
{
"bbox": (19.89, -26.82, 29.43, -17.66),
"geometry": {
"coordinates": [
[[6.90, 53.48], [5.98, 51.85], [6.07, 53.51], [6.90, 53.48]]
],
"type": "Polygon",
},
"id": "49",
"properties": {
"continent": "Africa",
"gdp_md_est": 35900.0,
"id": "BWA",
"iso_a3": "BWA",
"name": "Botswana",
"pop_est": 2214858,
},
"type": "Feature",
}
],
"type": "FeatureCollection",
}
feat = geom_obj(geom)
with alt.data_transformers.enable(consolidate_datasets=False):
spec = alt.Chart(feat).mark_geoshape().to_dict()
assert spec["data"]["values"][0]["id"] == "BWA"

View File

@ -0,0 +1,65 @@
"""Tests of various renderers"""
import json
import pytest
import altair.vegalite.v4 as alt
@pytest.fixture
def chart():
return alt.Chart("data.csv").mark_point()
def test_html_renderer_embed_options(chart, renderer="html"):
"""Test that embed_options in renderer metadata are correctly manifest in html"""
# Short of parsing the javascript, it's difficult to parse out the
# actions. So we use string matching
def assert_has_options(chart, **opts):
html = chart._repr_mimebundle_(None, None)["text/html"]
for key, val in opts.items():
assert json.dumps({key: val})[1:-1] in html
with alt.renderers.enable(renderer):
assert_has_options(chart, mode="vega-lite")
with alt.renderers.enable(embed_options=dict(actions={"export": True})):
assert_has_options(chart, mode="vega-lite", actions={"export": True})
with alt.renderers.set_embed_options(actions=True):
assert_has_options(chart, mode="vega-lite", actions=True)
def test_mimetype_renderer_embed_options(chart, renderer="mimetype"):
# check that metadata is passed appropriately
mimetype = alt.display.VEGALITE_MIME_TYPE
spec = chart.to_dict()
with alt.renderers.enable(renderer):
# Sanity check: no metadata specified
bundle, metadata = chart._repr_mimebundle_(None, None)
assert bundle[mimetype] == spec
assert metadata == {}
with alt.renderers.set_embed_options(actions=False):
bundle, metadata = chart._repr_mimebundle_(None, None)
assert set(bundle.keys()) == {mimetype, "text/plain"}
assert bundle[mimetype] == spec
assert metadata == {mimetype: {"embed_options": {"actions": False}}}
def test_json_renderer_embed_options(chart, renderer="json"):
"""Test that embed_options in renderer metadata are correctly manifest in html"""
mimetype = "application/json"
spec = chart.to_dict()
with alt.renderers.enable(renderer):
# Sanity check: no options specified
bundle, metadata = chart._repr_mimebundle_(None, None)
assert bundle[mimetype] == spec
assert metadata == {}
with alt.renderers.enable(option="foo"):
bundle, metadata = chart._repr_mimebundle_(None, None)
assert set(bundle.keys()) == {mimetype, "text/plain"}
assert bundle[mimetype] == spec
assert metadata == {mimetype: {"option": "foo"}}

View File

@ -0,0 +1,19 @@
import pytest
import altair.vegalite.v4 as alt
from altair.vegalite.v4.theme import VEGA_THEMES
@pytest.fixture
def chart():
return alt.Chart("data.csv").mark_bar().encode(x="x:Q")
def test_vega_themes(chart):
for theme in VEGA_THEMES:
with alt.themes.enable(theme):
dct = chart.to_dict()
assert dct["usermeta"] == {"embedOptions": {"theme": theme}}
assert dct["config"] == {
"view": {"continuousWidth": 400, "continuousHeight": 300}
}

View File

@ -0,0 +1,56 @@
"""Tools for enabling and registering chart themes"""
from ...utils.theme import ThemeRegistry
VEGA_THEMES = [
"ggplot2",
"quartz",
"vox",
"fivethirtyeight",
"dark",
"latimes",
"urbaninstitute",
]
class VegaTheme(object):
"""Implementation of a builtin vega theme."""
def __init__(self, theme):
self.theme = theme
def __call__(self):
return {
"usermeta": {"embedOptions": {"theme": self.theme}},
"config": {"view": {"continuousWidth": 400, "continuousHeight": 300}},
}
def __repr__(self):
return "VegaTheme({!r})".format(self.theme)
# The entry point group that can be used by other packages to declare other
# renderers that will be auto-detected. Explicit registration is also
# allowed by the PluginRegistery API.
ENTRY_POINT_GROUP = "altair.vegalite.v4.theme" # type: str
themes = ThemeRegistry(entry_point_group=ENTRY_POINT_GROUP)
themes.register(
"default",
lambda: {"config": {"view": {"continuousWidth": 400, "continuousHeight": 300}}},
)
themes.register(
"opaque",
lambda: {
"config": {
"background": "white",
"view": {"continuousWidth": 400, "continuousHeight": 300},
}
},
)
themes.register("none", lambda: {})
for theme in VEGA_THEMES:
themes.register(theme, VegaTheme(theme))
themes.enable("default")