first commit

This commit is contained in:
Ayxan
2022-05-23 00:16:32 +04:00
commit d660f2a4ca
24786 changed files with 4428337 additions and 0 deletions

View File

@ -0,0 +1,4 @@
"""
It is unfortunately not well documented how stubs and annotations work in Jedi.
If somebody needs an introduction, please let me know.
"""

View File

@ -0,0 +1,470 @@
"""
PEP 0484 ( https://www.python.org/dev/peps/pep-0484/ ) describes type hints
through function annotations. There is a strong suggestion in this document
that only the type of type hinting defined in PEP0484 should be allowed
as annotations in future python versions.
"""
import re
from inspect import Parameter
from parso import ParserSyntaxError, parse
from jedi.inference.cache import inference_state_method_cache
from jedi.inference.base_value import ValueSet, NO_VALUES
from jedi.inference.gradual.base import DefineGenericBaseClass, GenericClass
from jedi.inference.gradual.generics import TupleGenericManager
from jedi.inference.gradual.type_var import TypeVar
from jedi.inference.helpers import is_string
from jedi.inference.compiled import builtin_from_name
from jedi.inference.param import get_executed_param_names
from jedi import debug
from jedi import parser_utils
def infer_annotation(context, annotation):
"""
Inferes an annotation node. This means that it inferes the part of
`int` here:
foo: int = 3
Also checks for forward references (strings)
"""
value_set = context.infer_node(annotation)
if len(value_set) != 1:
debug.warning("Inferred typing index %s should lead to 1 object, "
" not %s" % (annotation, value_set))
return value_set
inferred_value = list(value_set)[0]
if is_string(inferred_value):
result = _get_forward_reference_node(context, inferred_value.get_safe_value())
if result is not None:
return context.infer_node(result)
return value_set
def _infer_annotation_string(context, string, index=None):
node = _get_forward_reference_node(context, string)
if node is None:
return NO_VALUES
value_set = context.infer_node(node)
if index is not None:
value_set = value_set.filter(
lambda value: (
value.array_type == 'tuple'
and len(list(value.py__iter__())) >= index
)
).py__simple_getitem__(index)
return value_set
def _get_forward_reference_node(context, string):
try:
new_node = context.inference_state.grammar.parse(
string,
start_symbol='eval_input',
error_recovery=False
)
except ParserSyntaxError:
debug.warning('Annotation not parsed: %s' % string)
return None
else:
module = context.tree_node.get_root_node()
parser_utils.move(new_node, module.end_pos[0])
new_node.parent = context.tree_node
return new_node
def _split_comment_param_declaration(decl_text):
"""
Split decl_text on commas, but group generic expressions
together.
For example, given "foo, Bar[baz, biz]" we return
['foo', 'Bar[baz, biz]'].
"""
try:
node = parse(decl_text, error_recovery=False).children[0]
except ParserSyntaxError:
debug.warning('Comment annotation is not valid Python: %s' % decl_text)
return []
if node.type in ['name', 'atom_expr', 'power']:
return [node.get_code().strip()]
params = []
try:
children = node.children
except AttributeError:
return []
else:
for child in children:
if child.type in ['name', 'atom_expr', 'power']:
params.append(child.get_code().strip())
return params
@inference_state_method_cache()
def infer_param(function_value, param, ignore_stars=False):
values = _infer_param(function_value, param)
if ignore_stars or not values:
return values
inference_state = function_value.inference_state
if param.star_count == 1:
tuple_ = builtin_from_name(inference_state, 'tuple')
return ValueSet([GenericClass(
tuple_,
TupleGenericManager((values,)),
)])
elif param.star_count == 2:
dct = builtin_from_name(inference_state, 'dict')
generics = (
ValueSet([builtin_from_name(inference_state, 'str')]),
values
)
return ValueSet([GenericClass(
dct,
TupleGenericManager(generics),
)])
return values
def _infer_param(function_value, param):
"""
Infers the type of a function parameter, using type annotations.
"""
annotation = param.annotation
if annotation is None:
# If no Python 3-style annotation, look for a comment annotation.
# Identify parameters to function in the same sequence as they would
# appear in a type comment.
all_params = [child for child in param.parent.children
if child.type == 'param']
node = param.parent.parent
comment = parser_utils.get_following_comment_same_line(node)
if comment is None:
return NO_VALUES
match = re.match(r"^#\s*type:\s*\(([^#]*)\)\s*->", comment)
if not match:
return NO_VALUES
params_comments = _split_comment_param_declaration(match.group(1))
# Find the specific param being investigated
index = all_params.index(param)
# If the number of parameters doesn't match length of type comment,
# ignore first parameter (assume it's self).
if len(params_comments) != len(all_params):
debug.warning(
"Comments length != Params length %s %s",
params_comments, all_params
)
if function_value.is_bound_method():
if index == 0:
# Assume it's self, which is already handled
return NO_VALUES
index -= 1
if index >= len(params_comments):
return NO_VALUES
param_comment = params_comments[index]
return _infer_annotation_string(
function_value.get_default_param_context(),
param_comment
)
# Annotations are like default params and resolve in the same way.
context = function_value.get_default_param_context()
return infer_annotation(context, annotation)
def py__annotations__(funcdef):
dct = {}
for function_param in funcdef.get_params():
param_annotation = function_param.annotation
if param_annotation is not None:
dct[function_param.name.value] = param_annotation
return_annotation = funcdef.annotation
if return_annotation:
dct['return'] = return_annotation
return dct
def resolve_forward_references(context, all_annotations):
def resolve(node):
if node is None or node.type != 'string':
return node
node = _get_forward_reference_node(
context,
context.inference_state.compiled_subprocess.safe_literal_eval(
node.value,
),
)
if node is None:
# There was a string, but it's not a valid annotation
return None
# The forward reference tree has an additional root node ('eval_input')
# that we don't want. Extract the node we do want, that is equivalent to
# the nodes returned by `py__annotations__` for a non-quoted node.
node = node.children[0]
return node
return {name: resolve(node) for name, node in all_annotations.items()}
@inference_state_method_cache()
def infer_return_types(function, arguments):
"""
Infers the type of a function's return value,
according to type annotations.
"""
context = function.get_default_param_context()
all_annotations = resolve_forward_references(
context,
py__annotations__(function.tree_node),
)
annotation = all_annotations.get("return", None)
if annotation is None:
# If there is no Python 3-type annotation, look for an annotation
# comment.
node = function.tree_node
comment = parser_utils.get_following_comment_same_line(node)
if comment is None:
return NO_VALUES
match = re.match(r"^#\s*type:\s*\([^#]*\)\s*->\s*([^#]*)", comment)
if not match:
return NO_VALUES
return _infer_annotation_string(
context,
match.group(1).strip()
).execute_annotation()
unknown_type_vars = find_unknown_type_vars(context, annotation)
annotation_values = infer_annotation(context, annotation)
if not unknown_type_vars:
return annotation_values.execute_annotation()
type_var_dict = infer_type_vars_for_execution(function, arguments, all_annotations)
return ValueSet.from_sets(
ann.define_generics(type_var_dict)
if isinstance(ann, (DefineGenericBaseClass, TypeVar)) else ValueSet({ann})
for ann in annotation_values
).execute_annotation()
def infer_type_vars_for_execution(function, arguments, annotation_dict):
"""
Some functions use type vars that are not defined by the class, but rather
only defined in the function. See for example `iter`. In those cases we
want to:
1. Search for undefined type vars.
2. Infer type vars with the execution state we have.
3. Return the union of all type vars that have been found.
"""
context = function.get_default_param_context()
annotation_variable_results = {}
executed_param_names = get_executed_param_names(function, arguments)
for executed_param_name in executed_param_names:
try:
annotation_node = annotation_dict[executed_param_name.string_name]
except KeyError:
continue
annotation_variables = find_unknown_type_vars(context, annotation_node)
if annotation_variables:
# Infer unknown type var
annotation_value_set = context.infer_node(annotation_node)
kind = executed_param_name.get_kind()
actual_value_set = executed_param_name.infer()
if kind is Parameter.VAR_POSITIONAL:
actual_value_set = actual_value_set.merge_types_of_iterate()
elif kind is Parameter.VAR_KEYWORD:
# TODO _dict_values is not public.
actual_value_set = actual_value_set.try_merge('_dict_values')
merge_type_var_dicts(
annotation_variable_results,
annotation_value_set.infer_type_vars(actual_value_set),
)
return annotation_variable_results
def infer_return_for_callable(arguments, param_values, result_values):
all_type_vars = {}
for pv in param_values:
if pv.array_type == 'list':
type_var_dict = _infer_type_vars_for_callable(arguments, pv.py__iter__())
all_type_vars.update(type_var_dict)
return ValueSet.from_sets(
v.define_generics(all_type_vars)
if isinstance(v, (DefineGenericBaseClass, TypeVar))
else ValueSet({v})
for v in result_values
).execute_annotation()
def _infer_type_vars_for_callable(arguments, lazy_params):
"""
Infers type vars for the Calllable class:
def x() -> Callable[[Callable[..., _T]], _T]: ...
"""
annotation_variable_results = {}
for (_, lazy_value), lazy_callable_param in zip(arguments.unpack(), lazy_params):
callable_param_values = lazy_callable_param.infer()
# Infer unknown type var
actual_value_set = lazy_value.infer()
merge_type_var_dicts(
annotation_variable_results,
callable_param_values.infer_type_vars(actual_value_set),
)
return annotation_variable_results
def merge_type_var_dicts(base_dict, new_dict):
for type_var_name, values in new_dict.items():
if values:
try:
base_dict[type_var_name] |= values
except KeyError:
base_dict[type_var_name] = values
def merge_pairwise_generics(annotation_value, annotated_argument_class):
"""
Match up the generic parameters from the given argument class to the
target annotation.
This walks the generic parameters immediately within the annotation and
argument's type, in order to determine the concrete values of the
annotation's parameters for the current case.
For example, given the following code:
def values(mapping: Mapping[K, V]) -> List[V]: ...
for val in values({1: 'a'}):
val
Then this function should be given representations of `Mapping[K, V]`
and `Mapping[int, str]`, so that it can determine that `K` is `int and
`V` is `str`.
Note that it is responsibility of the caller to traverse the MRO of the
argument type as needed in order to find the type matching the
annotation (in this case finding `Mapping[int, str]` as a parent of
`Dict[int, str]`).
Parameters
----------
`annotation_value`: represents the annotation to infer the concrete
parameter types of.
`annotated_argument_class`: represents the annotated class of the
argument being passed to the object annotated by `annotation_value`.
"""
type_var_dict = {}
if not isinstance(annotated_argument_class, DefineGenericBaseClass):
return type_var_dict
annotation_generics = annotation_value.get_generics()
actual_generics = annotated_argument_class.get_generics()
for annotation_generics_set, actual_generic_set in zip(annotation_generics, actual_generics):
merge_type_var_dicts(
type_var_dict,
annotation_generics_set.infer_type_vars(actual_generic_set.execute_annotation()),
)
return type_var_dict
def find_type_from_comment_hint_for(context, node, name):
return _find_type_from_comment_hint(context, node, node.children[1], name)
def find_type_from_comment_hint_with(context, node, name):
assert len(node.children[1].children) == 3, \
"Can only be here when children[1] is 'foo() as f'"
varlist = node.children[1].children[2]
return _find_type_from_comment_hint(context, node, varlist, name)
def find_type_from_comment_hint_assign(context, node, name):
return _find_type_from_comment_hint(context, node, node.children[0], name)
def _find_type_from_comment_hint(context, node, varlist, name):
index = None
if varlist.type in ("testlist_star_expr", "exprlist", "testlist"):
# something like "a, b = 1, 2"
index = 0
for child in varlist.children:
if child == name:
break
if child.type == "operator":
continue
index += 1
else:
return []
comment = parser_utils.get_following_comment_same_line(node)
if comment is None:
return []
match = re.match(r"^#\s*type:\s*([^#]*)", comment)
if match is None:
return []
return _infer_annotation_string(
context, match.group(1).strip(), index
).execute_annotation()
def find_unknown_type_vars(context, node):
def check_node(node):
if node.type in ('atom_expr', 'power'):
trailer = node.children[-1]
if trailer.type == 'trailer' and trailer.children[0] == '[':
for subscript_node in _unpack_subscriptlist(trailer.children[1]):
check_node(subscript_node)
else:
found[:] = _filter_type_vars(context.infer_node(node), found)
found = [] # We're not using a set, because the order matters.
check_node(node)
return found
def _filter_type_vars(value_set, found=()):
new_found = list(found)
for type_var in value_set:
if isinstance(type_var, TypeVar) and type_var not in found:
new_found.append(type_var)
return new_found
def _unpack_subscriptlist(subscriptlist):
if subscriptlist.type == 'subscriptlist':
for subscript in subscriptlist.children[::2]:
if subscript.type != 'subscript':
yield subscript
else:
if subscriptlist.type != 'subscript':
yield subscriptlist

View File

@ -0,0 +1,434 @@
from jedi.inference.cache import inference_state_method_cache
from jedi.inference.base_value import ValueSet, NO_VALUES, Value, \
iterator_to_value_set, LazyValueWrapper, ValueWrapper
from jedi.inference.compiled import builtin_from_name
from jedi.inference.value.klass import ClassFilter
from jedi.inference.value.klass import ClassMixin
from jedi.inference.utils import to_list
from jedi.inference.names import AbstractNameDefinition, ValueName
from jedi.inference.context import ClassContext
from jedi.inference.gradual.generics import TupleGenericManager
class _BoundTypeVarName(AbstractNameDefinition):
"""
This type var was bound to a certain type, e.g. int.
"""
def __init__(self, type_var, value_set):
self._type_var = type_var
self.parent_context = type_var.parent_context
self._value_set = value_set
def infer(self):
def iter_():
for value in self._value_set:
# Replace any with the constraints if they are there.
from jedi.inference.gradual.typing import AnyClass
if isinstance(value, AnyClass):
yield from self._type_var.constraints
else:
yield value
return ValueSet(iter_())
def py__name__(self):
return self._type_var.py__name__()
def __repr__(self):
return '<%s %s -> %s>' % (self.__class__.__name__, self.py__name__(), self._value_set)
class _TypeVarFilter:
"""
A filter for all given variables in a class.
A = TypeVar('A')
B = TypeVar('B')
class Foo(Mapping[A, B]):
...
In this example we would have two type vars given: A and B
"""
def __init__(self, generics, type_vars):
self._generics = generics
self._type_vars = type_vars
def get(self, name):
for i, type_var in enumerate(self._type_vars):
if type_var.py__name__() == name:
try:
return [_BoundTypeVarName(type_var, self._generics[i])]
except IndexError:
return [type_var.name]
return []
def values(self):
# The values are not relevant. If it's not searched exactly, the type
# vars are just global and should be looked up as that.
return []
class _AnnotatedClassContext(ClassContext):
def get_filters(self, *args, **kwargs):
filters = super().get_filters(
*args, **kwargs
)
yield from filters
# The type vars can only be looked up if it's a global search and
# not a direct lookup on the class.
yield self._value.get_type_var_filter()
class DefineGenericBaseClass(LazyValueWrapper):
def __init__(self, generics_manager):
self._generics_manager = generics_manager
def _create_instance_with_generics(self, generics_manager):
raise NotImplementedError
@inference_state_method_cache()
def get_generics(self):
return self._generics_manager.to_tuple()
def define_generics(self, type_var_dict):
from jedi.inference.gradual.type_var import TypeVar
changed = False
new_generics = []
for generic_set in self.get_generics():
values = NO_VALUES
for generic in generic_set:
if isinstance(generic, (DefineGenericBaseClass, TypeVar)):
result = generic.define_generics(type_var_dict)
values |= result
if result != ValueSet({generic}):
changed = True
else:
values |= ValueSet([generic])
new_generics.append(values)
if not changed:
# There might not be any type vars that change. In that case just
# return itself, because it does not make sense to potentially lose
# cached results.
return ValueSet([self])
return ValueSet([self._create_instance_with_generics(
TupleGenericManager(tuple(new_generics))
)])
def is_same_class(self, other):
if not isinstance(other, DefineGenericBaseClass):
return False
if self.tree_node != other.tree_node:
# TODO not sure if this is nice.
return False
given_params1 = self.get_generics()
given_params2 = other.get_generics()
if len(given_params1) != len(given_params2):
# If the amount of type vars doesn't match, the class doesn't
# match.
return False
# Now compare generics
return all(
any(
# TODO why is this ordering the correct one?
cls2.is_same_class(cls1)
# TODO I'm still not sure gather_annotation_classes is a good
# idea. They are essentially here to avoid comparing Tuple <=>
# tuple and instead compare tuple <=> tuple, but at the moment
# the whole `is_same_class` and `is_sub_class` matching is just
# not in the best shape.
for cls1 in class_set1.gather_annotation_classes()
for cls2 in class_set2.gather_annotation_classes()
) for class_set1, class_set2 in zip(given_params1, given_params2)
)
def get_signatures(self):
return []
def __repr__(self):
return '<%s: %s%s>' % (
self.__class__.__name__,
self._wrapped_value,
list(self.get_generics()),
)
class GenericClass(DefineGenericBaseClass, ClassMixin):
"""
A class that is defined with generics, might be something simple like:
class Foo(Generic[T]): ...
my_foo_int_cls = Foo[int]
"""
def __init__(self, class_value, generics_manager):
super().__init__(generics_manager)
self._class_value = class_value
def _get_wrapped_value(self):
return self._class_value
def get_type_hint(self, add_class_info=True):
n = self.py__name__()
# Not sure if this is the best way to do this, but all of these types
# are a bit special in that they have type aliases and other ways to
# become lower case. It's probably better to make them upper case,
# because that's what you can use in annotations.
n = dict(list="List", dict="Dict", set="Set", tuple="Tuple").get(n, n)
s = n + self._generics_manager.get_type_hint()
if add_class_info:
return 'Type[%s]' % s
return s
def get_type_var_filter(self):
return _TypeVarFilter(self.get_generics(), self.list_type_vars())
def py__call__(self, arguments):
instance, = super().py__call__(arguments)
return ValueSet([_GenericInstanceWrapper(instance)])
def _as_context(self):
return _AnnotatedClassContext(self)
@to_list
def py__bases__(self):
for base in self._wrapped_value.py__bases__():
yield _LazyGenericBaseClass(self, base, self._generics_manager)
def _create_instance_with_generics(self, generics_manager):
return GenericClass(self._class_value, generics_manager)
def is_sub_class_of(self, class_value):
if super().is_sub_class_of(class_value):
return True
return self._class_value.is_sub_class_of(class_value)
def with_generics(self, generics_tuple):
return self._class_value.with_generics(generics_tuple)
def infer_type_vars(self, value_set):
# Circular
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
annotation_name = self.py__name__()
type_var_dict = {}
if annotation_name == 'Iterable':
annotation_generics = self.get_generics()
if annotation_generics:
return annotation_generics[0].infer_type_vars(
value_set.merge_types_of_iterate(),
)
else:
# Note: we need to handle the MRO _in order_, so we need to extract
# the elements from the set first, then handle them, even if we put
# them back in a set afterwards.
for py_class in value_set:
if py_class.is_instance() and not py_class.is_compiled():
py_class = py_class.get_annotated_class_object()
else:
continue
if py_class.api_type != 'class':
# Functions & modules don't have an MRO and we're not
# expecting a Callable (those are handled separately within
# TypingClassValueWithIndex).
continue
for parent_class in py_class.py__mro__():
class_name = parent_class.py__name__()
if annotation_name == class_name:
merge_type_var_dicts(
type_var_dict,
merge_pairwise_generics(self, parent_class),
)
break
return type_var_dict
class _LazyGenericBaseClass:
def __init__(self, class_value, lazy_base_class, generics_manager):
self._class_value = class_value
self._lazy_base_class = lazy_base_class
self._generics_manager = generics_manager
@iterator_to_value_set
def infer(self):
for base in self._lazy_base_class.infer():
if isinstance(base, GenericClass):
# Here we have to recalculate the given types.
yield GenericClass.create_cached(
base.inference_state,
base._wrapped_value,
TupleGenericManager(tuple(self._remap_type_vars(base))),
)
else:
if base.is_class_mixin():
# This case basically allows classes like `class Foo(List)`
# to be used like `Foo[int]`. The generics are not
# necessary and can be used later.
yield GenericClass.create_cached(
base.inference_state,
base,
self._generics_manager,
)
else:
yield base
def _remap_type_vars(self, base):
from jedi.inference.gradual.type_var import TypeVar
filter = self._class_value.get_type_var_filter()
for type_var_set in base.get_generics():
new = NO_VALUES
for type_var in type_var_set:
if isinstance(type_var, TypeVar):
names = filter.get(type_var.py__name__())
new |= ValueSet.from_sets(
name.infer() for name in names
)
else:
# Mostly will be type vars, except if in some cases
# a concrete type will already be there. In that
# case just add it to the value set.
new |= ValueSet([type_var])
yield new
def __repr__(self):
return '<%s: %s>' % (self.__class__.__name__, self._lazy_base_class)
class _GenericInstanceWrapper(ValueWrapper):
def py__stop_iteration_returns(self):
for cls in self._wrapped_value.class_value.py__mro__():
if cls.py__name__() == 'Generator':
generics = cls.get_generics()
try:
return generics[2].execute_annotation()
except IndexError:
pass
elif cls.py__name__() == 'Iterator':
return ValueSet([builtin_from_name(self.inference_state, 'None')])
return self._wrapped_value.py__stop_iteration_returns()
def get_type_hint(self, add_class_info=True):
return self._wrapped_value.class_value.get_type_hint(add_class_info=False)
class _PseudoTreeNameClass(Value):
"""
In typeshed, some classes are defined like this:
Tuple: _SpecialForm = ...
Now this is not a real class, therefore we have to do some workarounds like
this class. Essentially this class makes it possible to goto that `Tuple`
name, without affecting anything else negatively.
"""
api_type = 'class'
def __init__(self, parent_context, tree_name):
super().__init__(
parent_context.inference_state,
parent_context
)
self._tree_name = tree_name
@property
def tree_node(self):
return self._tree_name
def get_filters(self, *args, **kwargs):
# TODO this is obviously wrong. Is it though?
class EmptyFilter(ClassFilter):
def __init__(self):
pass
def get(self, name, **kwargs):
return []
def values(self, **kwargs):
return []
yield EmptyFilter()
def py__class__(self):
# This might not be 100% correct, but it is good enough. The details of
# the typing library are not really an issue for Jedi.
return builtin_from_name(self.inference_state, 'type')
@property
def name(self):
return ValueName(self, self._tree_name)
def get_qualified_names(self):
return (self._tree_name.value,)
def __repr__(self):
return '%s(%s)' % (self.__class__.__name__, self._tree_name.value)
class BaseTypingValue(LazyValueWrapper):
def __init__(self, parent_context, tree_name):
self.inference_state = parent_context.inference_state
self.parent_context = parent_context
self._tree_name = tree_name
@property
def name(self):
return ValueName(self, self._tree_name)
def _get_wrapped_value(self):
return _PseudoTreeNameClass(self.parent_context, self._tree_name)
def get_signatures(self):
return self._wrapped_value.get_signatures()
def __repr__(self):
return '%s(%s)' % (self.__class__.__name__, self._tree_name.value)
class BaseTypingClassWithGenerics(DefineGenericBaseClass):
def __init__(self, parent_context, tree_name, generics_manager):
super().__init__(generics_manager)
self.inference_state = parent_context.inference_state
self.parent_context = parent_context
self._tree_name = tree_name
def _get_wrapped_value(self):
return _PseudoTreeNameClass(self.parent_context, self._tree_name)
def __repr__(self):
return '%s(%s%s)' % (self.__class__.__name__, self._tree_name.value,
self._generics_manager)
class BaseTypingInstance(LazyValueWrapper):
def __init__(self, parent_context, class_value, tree_name, generics_manager):
self.inference_state = class_value.inference_state
self.parent_context = parent_context
self._class_value = class_value
self._tree_name = tree_name
self._generics_manager = generics_manager
def py__class__(self):
return self._class_value
def get_annotated_class_object(self):
return self._class_value
def get_qualified_names(self):
return (self.py__name__(),)
@property
def name(self):
return ValueName(self, self._tree_name)
def _get_wrapped_value(self):
object_, = builtin_from_name(self.inference_state, 'object').execute_annotation()
return object_
def __repr__(self):
return '<%s: %s>' % (self.__class__.__name__, self._generics_manager)

View File

@ -0,0 +1,209 @@
from jedi import debug
from jedi.inference.base_value import ValueSet, \
NO_VALUES
from jedi.inference.utils import to_list
from jedi.inference.gradual.stub_value import StubModuleValue
from jedi.inference.gradual.typeshed import try_to_load_stub_cached
from jedi.inference.value.decorator import Decoratee
def _stub_to_python_value_set(stub_value, ignore_compiled=False):
stub_module_context = stub_value.get_root_context()
if not stub_module_context.is_stub():
return ValueSet([stub_value])
decorates = None
if isinstance(stub_value, Decoratee):
decorates = stub_value._original_value
was_instance = stub_value.is_instance()
if was_instance:
arguments = getattr(stub_value, '_arguments', None)
stub_value = stub_value.py__class__()
qualified_names = stub_value.get_qualified_names()
if qualified_names is None:
return NO_VALUES
was_bound_method = stub_value.is_bound_method()
if was_bound_method:
# Infer the object first. We can infer the method later.
method_name = qualified_names[-1]
qualified_names = qualified_names[:-1]
was_instance = True
arguments = None
values = _infer_from_stub(stub_module_context, qualified_names, ignore_compiled)
if was_instance:
values = ValueSet.from_sets(
c.execute_with_values() if arguments is None else c.execute(arguments)
for c in values
if c.is_class()
)
if was_bound_method:
# Now that the instance has been properly created, we can simply get
# the method.
values = values.py__getattribute__(method_name)
if decorates is not None:
values = ValueSet(Decoratee(v, decorates) for v in values)
return values
def _infer_from_stub(stub_module_context, qualified_names, ignore_compiled):
from jedi.inference.compiled.mixed import MixedObject
stub_module = stub_module_context.get_value()
assert isinstance(stub_module, (StubModuleValue, MixedObject)), stub_module_context
non_stubs = stub_module.non_stub_value_set
if ignore_compiled:
non_stubs = non_stubs.filter(lambda c: not c.is_compiled())
for name in qualified_names:
non_stubs = non_stubs.py__getattribute__(name)
return non_stubs
@to_list
def _try_stub_to_python_names(names, prefer_stub_to_compiled=False):
for name in names:
module_context = name.get_root_context()
if not module_context.is_stub():
yield name
continue
if name.api_type == 'module':
values = convert_values(name.infer(), ignore_compiled=prefer_stub_to_compiled)
if values:
for v in values:
yield v.name
continue
else:
v = name.get_defining_qualified_value()
if v is not None:
converted = _stub_to_python_value_set(v, ignore_compiled=prefer_stub_to_compiled)
if converted:
converted_names = converted.goto(name.get_public_name())
if converted_names:
for n in converted_names:
if n.get_root_context().is_stub():
# If it's a stub again, it means we're going in
# a circle. Probably some imports make it a
# stub again.
yield name
else:
yield n
continue
yield name
def _load_stub_module(module):
if module.is_stub():
return module
return try_to_load_stub_cached(
module.inference_state,
import_names=module.string_names,
python_value_set=ValueSet([module]),
parent_module_value=None,
sys_path=module.inference_state.get_sys_path(),
)
@to_list
def _python_to_stub_names(names, fallback_to_python=False):
for name in names:
module_context = name.get_root_context()
if module_context.is_stub():
yield name
continue
if name.api_type == 'module':
found_name = False
for n in name.goto():
if n.api_type == 'module':
values = convert_values(n.infer(), only_stubs=True)
for v in values:
yield v.name
found_name = True
else:
for x in _python_to_stub_names([n], fallback_to_python=fallback_to_python):
yield x
found_name = True
if found_name:
continue
else:
v = name.get_defining_qualified_value()
if v is not None:
converted = to_stub(v)
if converted:
converted_names = converted.goto(name.get_public_name())
if converted_names:
yield from converted_names
continue
if fallback_to_python:
# This is the part where if we haven't found anything, just return
# the stub name.
yield name
def convert_names(names, only_stubs=False, prefer_stubs=False, prefer_stub_to_compiled=True):
if only_stubs and prefer_stubs:
raise ValueError("You cannot use both of only_stubs and prefer_stubs.")
with debug.increase_indent_cm('convert names'):
if only_stubs or prefer_stubs:
return _python_to_stub_names(names, fallback_to_python=prefer_stubs)
else:
return _try_stub_to_python_names(
names, prefer_stub_to_compiled=prefer_stub_to_compiled)
def convert_values(values, only_stubs=False, prefer_stubs=False, ignore_compiled=True):
assert not (only_stubs and prefer_stubs)
with debug.increase_indent_cm('convert values'):
if only_stubs or prefer_stubs:
return ValueSet.from_sets(
to_stub(value)
or (ValueSet({value}) if prefer_stubs else NO_VALUES)
for value in values
)
else:
return ValueSet.from_sets(
_stub_to_python_value_set(stub_value, ignore_compiled=ignore_compiled)
or ValueSet({stub_value})
for stub_value in values
)
def to_stub(value):
if value.is_stub():
return ValueSet([value])
was_instance = value.is_instance()
if was_instance:
value = value.py__class__()
qualified_names = value.get_qualified_names()
stub_module = _load_stub_module(value.get_root_context().get_value())
if stub_module is None or qualified_names is None:
return NO_VALUES
was_bound_method = value.is_bound_method()
if was_bound_method:
# Infer the object first. We can infer the method later.
method_name = qualified_names[-1]
qualified_names = qualified_names[:-1]
was_instance = True
stub_values = ValueSet([stub_module])
for name in qualified_names:
stub_values = stub_values.py__getattribute__(name)
if was_instance:
stub_values = ValueSet.from_sets(
c.execute_with_values()
for c in stub_values
if c.is_class()
)
if was_bound_method:
# Now that the instance has been properly created, we can simply get
# the method.
stub_values = stub_values.py__getattribute__(method_name)
return stub_values

View File

@ -0,0 +1,101 @@
"""
This module is about generics, like the `int` in `List[int]`. It's not about
the Generic class.
"""
from jedi import debug
from jedi.cache import memoize_method
from jedi.inference.utils import to_tuple
from jedi.inference.base_value import ValueSet, NO_VALUES
from jedi.inference.value.iterable import SequenceLiteralValue
from jedi.inference.helpers import is_string
def _resolve_forward_references(context, value_set):
for value in value_set:
if is_string(value):
from jedi.inference.gradual.annotation import _get_forward_reference_node
node = _get_forward_reference_node(context, value.get_safe_value())
if node is not None:
for c in context.infer_node(node):
yield c
else:
yield value
class _AbstractGenericManager:
def get_index_and_execute(self, index):
try:
return self[index].execute_annotation()
except IndexError:
debug.warning('No param #%s found for annotation %s', index, self)
return NO_VALUES
def get_type_hint(self):
return '[%s]' % ', '.join(t.get_type_hint(add_class_info=False) for t in self.to_tuple())
class LazyGenericManager(_AbstractGenericManager):
def __init__(self, context_of_index, index_value):
self._context_of_index = context_of_index
self._index_value = index_value
@memoize_method
def __getitem__(self, index):
return self._tuple()[index]()
def __len__(self):
return len(self._tuple())
@memoize_method
@to_tuple
def _tuple(self):
def lambda_scoping_in_for_loop_sucks(lazy_value):
return lambda: ValueSet(_resolve_forward_references(
self._context_of_index,
lazy_value.infer()
))
if isinstance(self._index_value, SequenceLiteralValue):
for lazy_value in self._index_value.py__iter__(contextualized_node=None):
yield lambda_scoping_in_for_loop_sucks(lazy_value)
else:
yield lambda: ValueSet(_resolve_forward_references(
self._context_of_index,
ValueSet([self._index_value])
))
@to_tuple
def to_tuple(self):
for callable_ in self._tuple():
yield callable_()
def is_homogenous_tuple(self):
if isinstance(self._index_value, SequenceLiteralValue):
entries = self._index_value.get_tree_entries()
if len(entries) == 2 and entries[1] == '...':
return True
return False
def __repr__(self):
return '<LazyG>[%s]' % (', '.join(repr(x) for x in self.to_tuple()))
class TupleGenericManager(_AbstractGenericManager):
def __init__(self, tup):
self._tuple = tup
def __getitem__(self, index):
return self._tuple[index]
def __len__(self):
return len(self._tuple)
def to_tuple(self):
return self._tuple
def is_homogenous_tuple(self):
return False
def __repr__(self):
return '<TupG>[%s]' % (', '.join(repr(x) for x in self.to_tuple()))

View File

@ -0,0 +1,100 @@
from jedi.inference.base_value import ValueWrapper
from jedi.inference.value.module import ModuleValue
from jedi.inference.filters import ParserTreeFilter
from jedi.inference.names import StubName, StubModuleName
from jedi.inference.gradual.typing import TypingModuleFilterWrapper
from jedi.inference.context import ModuleContext
class StubModuleValue(ModuleValue):
_module_name_class = StubModuleName
def __init__(self, non_stub_value_set, *args, **kwargs):
super().__init__(*args, **kwargs)
self.non_stub_value_set = non_stub_value_set
def is_stub(self):
return True
def sub_modules_dict(self):
"""
We have to overwrite this, because it's possible to have stubs that
don't have code for all the child modules. At the time of writing this
there are for example no stubs for `json.tool`.
"""
names = {}
for value in self.non_stub_value_set:
try:
method = value.sub_modules_dict
except AttributeError:
pass
else:
names.update(method())
names.update(super().sub_modules_dict())
return names
def _get_stub_filters(self, origin_scope):
return [StubFilter(
parent_context=self.as_context(),
origin_scope=origin_scope
)] + list(self.iter_star_filters())
def get_filters(self, origin_scope=None):
filters = super().get_filters(origin_scope)
next(filters, None) # Ignore the first filter and replace it with our own
stub_filters = self._get_stub_filters(origin_scope=origin_scope)
yield from stub_filters
yield from filters
def _as_context(self):
return StubModuleContext(self)
class StubModuleContext(ModuleContext):
def get_filters(self, until_position=None, origin_scope=None):
# Make sure to ignore the position, because positions are not relevant
# for stubs.
return super().get_filters(origin_scope=origin_scope)
class TypingModuleWrapper(StubModuleValue):
def get_filters(self, *args, **kwargs):
filters = super().get_filters(*args, **kwargs)
f = next(filters, None)
assert f is not None
yield TypingModuleFilterWrapper(f)
yield from filters
def _as_context(self):
return TypingModuleContext(self)
class TypingModuleContext(ModuleContext):
def get_filters(self, *args, **kwargs):
filters = super().get_filters(*args, **kwargs)
yield TypingModuleFilterWrapper(next(filters, None))
yield from filters
class StubFilter(ParserTreeFilter):
name_class = StubName
def _is_name_reachable(self, name):
if not super()._is_name_reachable(name):
return False
# Imports in stub files are only public if they have an "as"
# export.
definition = name.get_definition()
if definition.type in ('import_from', 'import_name'):
if name.parent.type not in ('import_as_name', 'dotted_as_name'):
return False
n = name.value
# TODO rewrite direct return
if n.startswith('_') and not (n.startswith('__') and n.endswith('__')):
return False
return True
class VersionInfo(ValueWrapper):
pass

View File

@ -0,0 +1,127 @@
from jedi import debug
from jedi.inference.base_value import ValueSet, NO_VALUES, ValueWrapper
from jedi.inference.gradual.base import BaseTypingValue
class TypeVarClass(ValueWrapper):
def py__call__(self, arguments):
unpacked = arguments.unpack()
key, lazy_value = next(unpacked, (None, None))
var_name = self._find_string_name(lazy_value)
# The name must be given, otherwise it's useless.
if var_name is None or key is not None:
debug.warning('Found a variable without a name %s', arguments)
return NO_VALUES
return ValueSet([TypeVar.create_cached(
self.inference_state,
self.parent_context,
tree_name=self.tree_node.name,
var_name=var_name,
unpacked_args=unpacked,
)])
def _find_string_name(self, lazy_value):
if lazy_value is None:
return None
value_set = lazy_value.infer()
if not value_set:
return None
if len(value_set) > 1:
debug.warning('Found multiple values for a type variable: %s', value_set)
name_value = next(iter(value_set))
try:
method = name_value.get_safe_value
except AttributeError:
return None
else:
safe_value = method(default=None)
if isinstance(safe_value, str):
return safe_value
return None
class TypeVar(BaseTypingValue):
def __init__(self, parent_context, tree_name, var_name, unpacked_args):
super().__init__(parent_context, tree_name)
self._var_name = var_name
self._constraints_lazy_values = []
self._bound_lazy_value = None
self._covariant_lazy_value = None
self._contravariant_lazy_value = None
for key, lazy_value in unpacked_args:
if key is None:
self._constraints_lazy_values.append(lazy_value)
else:
if key == 'bound':
self._bound_lazy_value = lazy_value
elif key == 'covariant':
self._covariant_lazy_value = lazy_value
elif key == 'contravariant':
self._contra_variant_lazy_value = lazy_value
else:
debug.warning('Invalid TypeVar param name %s', key)
def py__name__(self):
return self._var_name
def get_filters(self, *args, **kwargs):
return iter([])
def _get_classes(self):
if self._bound_lazy_value is not None:
return self._bound_lazy_value.infer()
if self._constraints_lazy_values:
return self.constraints
debug.warning('Tried to infer the TypeVar %s without a given type', self._var_name)
return NO_VALUES
def is_same_class(self, other):
# Everything can match an undefined type var.
return True
@property
def constraints(self):
return ValueSet.from_sets(
lazy.infer() for lazy in self._constraints_lazy_values
)
def define_generics(self, type_var_dict):
try:
found = type_var_dict[self.py__name__()]
except KeyError:
pass
else:
if found:
return found
return ValueSet({self})
def execute_annotation(self):
return self._get_classes().execute_annotation()
def infer_type_vars(self, value_set):
def iterate():
for v in value_set:
cls = v.py__class__()
if v.is_function() or v.is_class():
cls = TypeWrapper(cls, v)
yield cls
annotation_name = self.py__name__()
return {annotation_name: ValueSet(iterate())}
def __repr__(self):
return '<%s: %s>' % (self.__class__.__name__, self.py__name__())
class TypeWrapper(ValueWrapper):
def __init__(self, wrapped_value, original_value):
super().__init__(wrapped_value)
self._original_value = original_value
def execute_annotation(self):
return ValueSet({self._original_value})

View File

@ -0,0 +1,310 @@
import os
import re
from functools import wraps
from collections import namedtuple
from typing import Dict, Mapping, Tuple
from pathlib import Path
from jedi import settings
from jedi.file_io import FileIO
from jedi.parser_utils import get_cached_code_lines
from jedi.inference.base_value import ValueSet, NO_VALUES
from jedi.inference.gradual.stub_value import TypingModuleWrapper, StubModuleValue
from jedi.inference.value import ModuleValue
_jedi_path = Path(__file__).parent.parent.parent
TYPESHED_PATH = _jedi_path.joinpath('third_party', 'typeshed')
DJANGO_INIT_PATH = _jedi_path.joinpath('third_party', 'django-stubs',
'django-stubs', '__init__.pyi')
_IMPORT_MAP = dict(
_collections='collections',
_socket='socket',
)
PathInfo = namedtuple('PathInfo', 'path is_third_party')
def _merge_create_stub_map(path_infos):
map_ = {}
for directory_path_info in path_infos:
map_.update(_create_stub_map(directory_path_info))
return map_
def _create_stub_map(directory_path_info):
"""
Create a mapping of an importable name in Python to a stub file.
"""
def generate():
try:
listed = os.listdir(directory_path_info.path)
except (FileNotFoundError, NotADirectoryError):
return
for entry in listed:
path = os.path.join(directory_path_info.path, entry)
if os.path.isdir(path):
init = os.path.join(path, '__init__.pyi')
if os.path.isfile(init):
yield entry, PathInfo(init, directory_path_info.is_third_party)
elif entry.endswith('.pyi') and os.path.isfile(path):
name = entry[:-4]
if name != '__init__':
yield name, PathInfo(path, directory_path_info.is_third_party)
# Create a dictionary from the tuple generator.
return dict(generate())
def _get_typeshed_directories(version_info):
check_version_list = ['2and3', '3']
for base in ['stdlib', 'third_party']:
base_path = TYPESHED_PATH.joinpath(base)
base_list = os.listdir(base_path)
for base_list_entry in base_list:
match = re.match(r'(\d+)\.(\d+)$', base_list_entry)
if match is not None:
if match.group(1) == '3' and int(match.group(2)) <= version_info.minor:
check_version_list.append(base_list_entry)
for check_version in check_version_list:
is_third_party = base != 'stdlib'
yield PathInfo(str(base_path.joinpath(check_version)), is_third_party)
_version_cache: Dict[Tuple[int, int], Mapping[str, PathInfo]] = {}
def _cache_stub_file_map(version_info):
"""
Returns a map of an importable name in Python to a stub file.
"""
# TODO this caches the stub files indefinitely, maybe use a time cache
# for that?
version = version_info[:2]
try:
return _version_cache[version]
except KeyError:
pass
_version_cache[version] = file_set = \
_merge_create_stub_map(_get_typeshed_directories(version_info))
return file_set
def import_module_decorator(func):
@wraps(func)
def wrapper(inference_state, import_names, parent_module_value, sys_path, prefer_stubs):
python_value_set = inference_state.module_cache.get(import_names)
if python_value_set is None:
if parent_module_value is not None and parent_module_value.is_stub():
parent_module_values = parent_module_value.non_stub_value_set
else:
parent_module_values = [parent_module_value]
if import_names == ('os', 'path'):
# This is a huge exception, we follow a nested import
# ``os.path``, because it's a very important one in Python
# that is being achieved by messing with ``sys.modules`` in
# ``os``.
python_value_set = ValueSet.from_sets(
func(inference_state, (n,), None, sys_path,)
for n in ['posixpath', 'ntpath', 'macpath', 'os2emxpath']
)
else:
python_value_set = ValueSet.from_sets(
func(inference_state, import_names, p, sys_path,)
for p in parent_module_values
)
inference_state.module_cache.add(import_names, python_value_set)
if not prefer_stubs or import_names[0] in settings.auto_import_modules:
return python_value_set
stub = try_to_load_stub_cached(inference_state, import_names, python_value_set,
parent_module_value, sys_path)
if stub is not None:
return ValueSet([stub])
return python_value_set
return wrapper
def try_to_load_stub_cached(inference_state, import_names, *args, **kwargs):
if import_names is None:
return None
try:
return inference_state.stub_module_cache[import_names]
except KeyError:
pass
# TODO is this needed? where are the exceptions coming from that make this
# necessary? Just remove this line.
inference_state.stub_module_cache[import_names] = None
inference_state.stub_module_cache[import_names] = result = \
_try_to_load_stub(inference_state, import_names, *args, **kwargs)
return result
def _try_to_load_stub(inference_state, import_names, python_value_set,
parent_module_value, sys_path):
"""
Trying to load a stub for a set of import_names.
This is modelled to work like "PEP 561 -- Distributing and Packaging Type
Information", see https://www.python.org/dev/peps/pep-0561.
"""
if parent_module_value is None and len(import_names) > 1:
try:
parent_module_value = try_to_load_stub_cached(
inference_state, import_names[:-1], NO_VALUES,
parent_module_value=None, sys_path=sys_path)
except KeyError:
pass
# 1. Try to load foo-stubs folders on path for import name foo.
if len(import_names) == 1:
# foo-stubs
for p in sys_path:
init = os.path.join(p, *import_names) + '-stubs' + os.path.sep + '__init__.pyi'
m = _try_to_load_stub_from_file(
inference_state,
python_value_set,
file_io=FileIO(init),
import_names=import_names,
)
if m is not None:
return m
if import_names[0] == 'django' and python_value_set:
return _try_to_load_stub_from_file(
inference_state,
python_value_set,
file_io=FileIO(str(DJANGO_INIT_PATH)),
import_names=import_names,
)
# 2. Try to load pyi files next to py files.
for c in python_value_set:
try:
method = c.py__file__
except AttributeError:
pass
else:
file_path = method()
file_paths = []
if c.is_namespace():
file_paths = [os.path.join(p, '__init__.pyi') for p in c.py__path__()]
elif file_path is not None and file_path.suffix == '.py':
file_paths = [str(file_path) + 'i']
for file_path in file_paths:
m = _try_to_load_stub_from_file(
inference_state,
python_value_set,
# The file path should end with .pyi
file_io=FileIO(file_path),
import_names=import_names,
)
if m is not None:
return m
# 3. Try to load typeshed
m = _load_from_typeshed(inference_state, python_value_set, parent_module_value, import_names)
if m is not None:
return m
# 4. Try to load pyi file somewhere if python_value_set was not defined.
if not python_value_set:
if parent_module_value is not None:
check_path = parent_module_value.py__path__() or []
# In case import_names
names_for_path = (import_names[-1],)
else:
check_path = sys_path
names_for_path = import_names
for p in check_path:
m = _try_to_load_stub_from_file(
inference_state,
python_value_set,
file_io=FileIO(os.path.join(p, *names_for_path) + '.pyi'),
import_names=import_names,
)
if m is not None:
return m
# If no stub is found, that's fine, the calling function has to deal with
# it.
return None
def _load_from_typeshed(inference_state, python_value_set, parent_module_value, import_names):
import_name = import_names[-1]
map_ = None
if len(import_names) == 1:
map_ = _cache_stub_file_map(inference_state.grammar.version_info)
import_name = _IMPORT_MAP.get(import_name, import_name)
elif isinstance(parent_module_value, ModuleValue):
if not parent_module_value.is_package():
# Only if it's a package (= a folder) something can be
# imported.
return None
paths = parent_module_value.py__path__()
# Once the initial package has been loaded, the sub packages will
# always be loaded, regardless if they are there or not. This makes
# sense, IMO, because stubs take preference, even if the original
# library doesn't provide a module (it could be dynamic). ~dave
map_ = _merge_create_stub_map([PathInfo(p, is_third_party=False) for p in paths])
if map_ is not None:
path_info = map_.get(import_name)
if path_info is not None and (not path_info.is_third_party or python_value_set):
return _try_to_load_stub_from_file(
inference_state,
python_value_set,
file_io=FileIO(path_info.path),
import_names=import_names,
)
def _try_to_load_stub_from_file(inference_state, python_value_set, file_io, import_names):
try:
stub_module_node = parse_stub_module(inference_state, file_io)
except OSError:
# The file that you're looking for doesn't exist (anymore).
return None
else:
return create_stub_module(
inference_state, inference_state.latest_grammar, python_value_set,
stub_module_node, file_io, import_names
)
def parse_stub_module(inference_state, file_io):
return inference_state.parse(
file_io=file_io,
cache=True,
diff_cache=settings.fast_parser,
cache_path=settings.cache_directory,
use_latest_grammar=True
)
def create_stub_module(inference_state, grammar, python_value_set,
stub_module_node, file_io, import_names):
if import_names == ('typing',):
module_cls = TypingModuleWrapper
else:
module_cls = StubModuleValue
file_name = os.path.basename(file_io.path)
stub_module_value = module_cls(
python_value_set, inference_state, stub_module_node,
file_io=file_io,
string_names=import_names,
# The code was loaded with latest_grammar, so use
# that.
code_lines=get_cached_code_lines(grammar, file_io.path),
is_package=file_name == '__init__.pyi',
)
return stub_module_value

View File

@ -0,0 +1,485 @@
"""
We need to somehow work with the typing objects. Since the typing objects are
pretty bare we need to add all the Jedi customizations to make them work as
values.
This file deals with all the typing.py cases.
"""
import itertools
from jedi import debug
from jedi.inference.compiled import builtin_from_name, create_simple_object
from jedi.inference.base_value import ValueSet, NO_VALUES, Value, \
LazyValueWrapper, ValueWrapper
from jedi.inference.lazy_value import LazyKnownValues
from jedi.inference.arguments import repack_with_argument_clinic
from jedi.inference.filters import FilterWrapper
from jedi.inference.names import NameWrapper, ValueName
from jedi.inference.value.klass import ClassMixin
from jedi.inference.gradual.base import BaseTypingValue, \
BaseTypingClassWithGenerics, BaseTypingInstance
from jedi.inference.gradual.type_var import TypeVarClass
from jedi.inference.gradual.generics import LazyGenericManager, TupleGenericManager
_PROXY_CLASS_TYPES = 'Tuple Generic Protocol Callable Type'.split()
_TYPE_ALIAS_TYPES = {
'List': 'builtins.list',
'Dict': 'builtins.dict',
'Set': 'builtins.set',
'FrozenSet': 'builtins.frozenset',
'ChainMap': 'collections.ChainMap',
'Counter': 'collections.Counter',
'DefaultDict': 'collections.defaultdict',
'Deque': 'collections.deque',
}
_PROXY_TYPES = 'Optional Union ClassVar'.split()
class TypingModuleName(NameWrapper):
def infer(self):
return ValueSet(self._remap())
def _remap(self):
name = self.string_name
inference_state = self.parent_context.inference_state
try:
actual = _TYPE_ALIAS_TYPES[name]
except KeyError:
pass
else:
yield TypeAlias.create_cached(
inference_state, self.parent_context, self.tree_name, actual)
return
if name in _PROXY_CLASS_TYPES:
yield ProxyTypingClassValue.create_cached(
inference_state, self.parent_context, self.tree_name)
elif name in _PROXY_TYPES:
yield ProxyTypingValue.create_cached(
inference_state, self.parent_context, self.tree_name)
elif name == 'runtime':
# We don't want anything here, not sure what this function is
# supposed to do, since it just appears in the stubs and shouldn't
# have any effects there (because it's never executed).
return
elif name == 'TypeVar':
cls, = self._wrapped_name.infer()
yield TypeVarClass.create_cached(inference_state, cls)
elif name == 'Any':
yield AnyClass.create_cached(
inference_state, self.parent_context, self.tree_name)
elif name == 'TYPE_CHECKING':
# This is needed for e.g. imports that are only available for type
# checking or are in cycles. The user can then check this variable.
yield builtin_from_name(inference_state, 'True')
elif name == 'overload':
yield OverloadFunction.create_cached(
inference_state, self.parent_context, self.tree_name)
elif name == 'NewType':
v, = self._wrapped_name.infer()
yield NewTypeFunction.create_cached(inference_state, v)
elif name == 'cast':
cast_fn, = self._wrapped_name.infer()
yield CastFunction.create_cached(inference_state, cast_fn)
elif name == 'TypedDict':
# TODO doesn't even exist in typeshed/typing.py, yet. But will be
# added soon.
yield TypedDictClass.create_cached(
inference_state, self.parent_context, self.tree_name)
else:
# Not necessary, as long as we are not doing type checking:
# no_type_check & no_type_check_decorator
# Everything else shouldn't be relevant...
yield from self._wrapped_name.infer()
class TypingModuleFilterWrapper(FilterWrapper):
name_wrapper_class = TypingModuleName
class ProxyWithGenerics(BaseTypingClassWithGenerics):
def execute_annotation(self):
string_name = self._tree_name.value
if string_name == 'Union':
# This is kind of a special case, because we have Unions (in Jedi
# ValueSets).
return self.gather_annotation_classes().execute_annotation()
elif string_name == 'Optional':
# Optional is basically just saying it's either None or the actual
# type.
return self.gather_annotation_classes().execute_annotation() \
| ValueSet([builtin_from_name(self.inference_state, 'None')])
elif string_name == 'Type':
# The type is actually already given in the index_value
return self._generics_manager[0]
elif string_name == 'ClassVar':
# For now don't do anything here, ClassVars are always used.
return self._generics_manager[0].execute_annotation()
mapped = {
'Tuple': Tuple,
'Generic': Generic,
'Protocol': Protocol,
'Callable': Callable,
}
cls = mapped[string_name]
return ValueSet([cls(
self.parent_context,
self,
self._tree_name,
generics_manager=self._generics_manager,
)])
def gather_annotation_classes(self):
return ValueSet.from_sets(self._generics_manager.to_tuple())
def _create_instance_with_generics(self, generics_manager):
return ProxyWithGenerics(
self.parent_context,
self._tree_name,
generics_manager
)
def infer_type_vars(self, value_set):
annotation_generics = self.get_generics()
if not annotation_generics:
return {}
annotation_name = self.py__name__()
if annotation_name == 'Optional':
# Optional[T] is equivalent to Union[T, None]. In Jedi unions
# are represented by members within a ValueSet, so we extract
# the T from the Optional[T] by removing the None value.
none = builtin_from_name(self.inference_state, 'None')
return annotation_generics[0].infer_type_vars(
value_set.filter(lambda x: x != none),
)
return {}
class ProxyTypingValue(BaseTypingValue):
index_class = ProxyWithGenerics
def with_generics(self, generics_tuple):
return self.index_class.create_cached(
self.inference_state,
self.parent_context,
self._tree_name,
generics_manager=TupleGenericManager(generics_tuple)
)
def py__getitem__(self, index_value_set, contextualized_node):
return ValueSet(
self.index_class.create_cached(
self.inference_state,
self.parent_context,
self._tree_name,
generics_manager=LazyGenericManager(
context_of_index=contextualized_node.context,
index_value=index_value,
)
) for index_value in index_value_set
)
class _TypingClassMixin(ClassMixin):
def py__bases__(self):
return [LazyKnownValues(
self.inference_state.builtins_module.py__getattribute__('object')
)]
def get_metaclasses(self):
return []
@property
def name(self):
return ValueName(self, self._tree_name)
class TypingClassWithGenerics(ProxyWithGenerics, _TypingClassMixin):
def infer_type_vars(self, value_set):
type_var_dict = {}
annotation_generics = self.get_generics()
if not annotation_generics:
return type_var_dict
annotation_name = self.py__name__()
if annotation_name == 'Type':
return annotation_generics[0].infer_type_vars(
# This is basically a trick to avoid extra code: We execute the
# incoming classes to be able to use the normal code for type
# var inference.
value_set.execute_annotation(),
)
elif annotation_name == 'Callable':
if len(annotation_generics) == 2:
return annotation_generics[1].infer_type_vars(
value_set.execute_annotation(),
)
elif annotation_name == 'Tuple':
tuple_annotation, = self.execute_annotation()
return tuple_annotation.infer_type_vars(value_set)
return type_var_dict
def _create_instance_with_generics(self, generics_manager):
return TypingClassWithGenerics(
self.parent_context,
self._tree_name,
generics_manager
)
class ProxyTypingClassValue(ProxyTypingValue, _TypingClassMixin):
index_class = TypingClassWithGenerics
class TypeAlias(LazyValueWrapper):
def __init__(self, parent_context, origin_tree_name, actual):
self.inference_state = parent_context.inference_state
self.parent_context = parent_context
self._origin_tree_name = origin_tree_name
self._actual = actual # e.g. builtins.list
@property
def name(self):
return ValueName(self, self._origin_tree_name)
def py__name__(self):
return self.name.string_name
def __repr__(self):
return '<%s: %s>' % (self.__class__.__name__, self._actual)
def _get_wrapped_value(self):
module_name, class_name = self._actual.split('.')
# TODO use inference_state.import_module?
from jedi.inference.imports import Importer
module, = Importer(
self.inference_state, [module_name], self.inference_state.builtins_module
).follow()
classes = module.py__getattribute__(class_name)
# There should only be one, because it's code that we control.
assert len(classes) == 1, classes
cls = next(iter(classes))
return cls
def gather_annotation_classes(self):
return ValueSet([self._get_wrapped_value()])
def get_signatures(self):
return []
class Callable(BaseTypingInstance):
def py__call__(self, arguments):
"""
def x() -> Callable[[Callable[..., _T]], _T]: ...
"""
# The 0th index are the arguments.
try:
param_values = self._generics_manager[0]
result_values = self._generics_manager[1]
except IndexError:
debug.warning('Callable[...] defined without two arguments')
return NO_VALUES
else:
from jedi.inference.gradual.annotation import infer_return_for_callable
return infer_return_for_callable(arguments, param_values, result_values)
class Tuple(BaseTypingInstance):
def _is_homogenous(self):
# To specify a variable-length tuple of homogeneous type, Tuple[T, ...]
# is used.
return self._generics_manager.is_homogenous_tuple()
def py__simple_getitem__(self, index):
if self._is_homogenous():
return self._generics_manager.get_index_and_execute(0)
else:
if isinstance(index, int):
return self._generics_manager.get_index_and_execute(index)
debug.dbg('The getitem type on Tuple was %s' % index)
return NO_VALUES
def py__iter__(self, contextualized_node=None):
if self._is_homogenous():
yield LazyKnownValues(self._generics_manager.get_index_and_execute(0))
else:
for v in self._generics_manager.to_tuple():
yield LazyKnownValues(v.execute_annotation())
def py__getitem__(self, index_value_set, contextualized_node):
if self._is_homogenous():
return self._generics_manager.get_index_and_execute(0)
return ValueSet.from_sets(
self._generics_manager.to_tuple()
).execute_annotation()
def _get_wrapped_value(self):
tuple_, = self.inference_state.builtins_module \
.py__getattribute__('tuple').execute_annotation()
return tuple_
@property
def name(self):
return self._wrapped_value.name
def infer_type_vars(self, value_set):
# Circular
from jedi.inference.gradual.annotation import merge_pairwise_generics, merge_type_var_dicts
value_set = value_set.filter(
lambda x: x.py__name__().lower() == 'tuple',
)
if self._is_homogenous():
# The parameter annotation is of the form `Tuple[T, ...]`,
# so we treat the incoming tuple like a iterable sequence
# rather than a positional container of elements.
return self._class_value.get_generics()[0].infer_type_vars(
value_set.merge_types_of_iterate(),
)
else:
# The parameter annotation has only explicit type parameters
# (e.g: `Tuple[T]`, `Tuple[T, U]`, `Tuple[T, U, V]`, etc.) so we
# treat the incoming values as needing to match the annotation
# exactly, just as we would for non-tuple annotations.
type_var_dict = {}
for element in value_set:
try:
method = element.get_annotated_class_object
except AttributeError:
# This might still happen, because the tuple name matching
# above is not 100% correct, so just catch the remaining
# cases here.
continue
py_class = method()
merge_type_var_dicts(
type_var_dict,
merge_pairwise_generics(self._class_value, py_class),
)
return type_var_dict
class Generic(BaseTypingInstance):
pass
class Protocol(BaseTypingInstance):
pass
class AnyClass(BaseTypingValue):
def execute_annotation(self):
debug.warning('Used Any - returned no results')
return NO_VALUES
class OverloadFunction(BaseTypingValue):
@repack_with_argument_clinic('func, /')
def py__call__(self, func_value_set):
# Just pass arguments through.
return func_value_set
class NewTypeFunction(ValueWrapper):
def py__call__(self, arguments):
ordered_args = arguments.unpack()
next(ordered_args, (None, None))
_, second_arg = next(ordered_args, (None, None))
if second_arg is None:
return NO_VALUES
return ValueSet(
NewType(
self.inference_state,
contextualized_node.context,
contextualized_node.node,
second_arg.infer(),
) for contextualized_node in arguments.get_calling_nodes())
class NewType(Value):
def __init__(self, inference_state, parent_context, tree_node, type_value_set):
super().__init__(inference_state, parent_context)
self._type_value_set = type_value_set
self.tree_node = tree_node
def py__class__(self):
c, = self._type_value_set.py__class__()
return c
def py__call__(self, arguments):
return self._type_value_set.execute_annotation()
@property
def name(self):
from jedi.inference.compiled.value import CompiledValueName
return CompiledValueName(self, 'NewType')
def __repr__(self) -> str:
return '<NewType: %s>%s' % (self.tree_node, self._type_value_set)
class CastFunction(ValueWrapper):
@repack_with_argument_clinic('type, object, /')
def py__call__(self, type_value_set, object_value_set):
return type_value_set.execute_annotation()
class TypedDictClass(BaseTypingValue):
"""
This class has no responsibilities and is just here to make sure that typed
dicts can be identified.
"""
class TypedDict(LazyValueWrapper):
"""Represents the instance version of ``TypedDictClass``."""
def __init__(self, definition_class):
self.inference_state = definition_class.inference_state
self.parent_context = definition_class.parent_context
self.tree_node = definition_class.tree_node
self._definition_class = definition_class
@property
def name(self):
return ValueName(self, self.tree_node.name)
def py__simple_getitem__(self, index):
if isinstance(index, str):
return ValueSet.from_sets(
name.infer()
for filter in self._definition_class.get_filters(is_instance=True)
for name in filter.get(index)
)
return NO_VALUES
def get_key_values(self):
filtered_values = itertools.chain.from_iterable((
f.values()
for f in self._definition_class.get_filters(is_instance=True)
))
return ValueSet({
create_simple_object(self.inference_state, v.string_name)
for v in filtered_values
})
def _get_wrapped_value(self):
d, = self.inference_state.builtins_module.py__getattribute__('dict')
result, = d.execute_with_values()
return result

View File

@ -0,0 +1,35 @@
from pathlib import Path
from jedi.inference.gradual.typeshed import TYPESHED_PATH, create_stub_module
def load_proper_stub_module(inference_state, grammar, file_io, import_names, module_node):
"""
This function is given a random .pyi file and should return the proper
module.
"""
path = file_io.path
path = Path(path)
assert path.suffix == '.pyi'
try:
relative_path = path.relative_to(TYPESHED_PATH)
except ValueError:
pass
else:
# /[...]/stdlib/3/os/__init__.pyi -> stdlib/3/os/__init__
rest = relative_path.with_suffix('')
# Remove the stdlib/3 or third_party/3.6 part
import_names = rest.parts[2:]
if rest.name == '__init__':
import_names = import_names[:-1]
if import_names is not None:
actual_value_set = inference_state.import_module(import_names, prefer_stubs=False)
stub = create_stub_module(
inference_state, grammar, actual_value_set,
module_node, file_io, import_names
)
inference_state.stub_module_cache[import_names] = stub
return stub
return None