mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-07-02 14:27:31 +00:00
first commit
This commit is contained in:
26
.venv/Lib/site-packages/numpy/doc/__init__.py
Normal file
26
.venv/Lib/site-packages/numpy/doc/__init__.py
Normal file
@ -0,0 +1,26 @@
|
||||
import os
|
||||
|
||||
ref_dir = os.path.join(os.path.dirname(__file__))
|
||||
|
||||
__all__ = sorted(f[:-3] for f in os.listdir(ref_dir) if f.endswith('.py') and
|
||||
not f.startswith('__'))
|
||||
|
||||
for f in __all__:
|
||||
__import__(__name__ + '.' + f)
|
||||
|
||||
del f, ref_dir
|
||||
|
||||
__doc__ = """\
|
||||
Topical documentation
|
||||
=====================
|
||||
|
||||
The following topics are available:
|
||||
%s
|
||||
|
||||
You can view them by
|
||||
|
||||
>>> help(np.doc.TOPIC) #doctest: +SKIP
|
||||
|
||||
""" % '\n- '.join([''] + __all__)
|
||||
|
||||
__all__.extend(['__doc__'])
|
412
.venv/Lib/site-packages/numpy/doc/constants.py
Normal file
412
.venv/Lib/site-packages/numpy/doc/constants.py
Normal file
@ -0,0 +1,412 @@
|
||||
"""
|
||||
=========
|
||||
Constants
|
||||
=========
|
||||
|
||||
.. currentmodule:: numpy
|
||||
|
||||
NumPy includes several constants:
|
||||
|
||||
%(constant_list)s
|
||||
"""
|
||||
#
|
||||
# Note: the docstring is autogenerated.
|
||||
#
|
||||
import re
|
||||
import textwrap
|
||||
|
||||
# Maintain same format as in numpy.add_newdocs
|
||||
constants = []
|
||||
def add_newdoc(module, name, doc):
|
||||
constants.append((name, doc))
|
||||
|
||||
add_newdoc('numpy', 'pi',
|
||||
"""
|
||||
``pi = 3.1415926535897932384626433...``
|
||||
|
||||
References
|
||||
----------
|
||||
https://en.wikipedia.org/wiki/Pi
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('numpy', 'e',
|
||||
"""
|
||||
Euler's constant, base of natural logarithms, Napier's constant.
|
||||
|
||||
``e = 2.71828182845904523536028747135266249775724709369995...``
|
||||
|
||||
See Also
|
||||
--------
|
||||
exp : Exponential function
|
||||
log : Natural logarithm
|
||||
|
||||
References
|
||||
----------
|
||||
https://en.wikipedia.org/wiki/E_%28mathematical_constant%29
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('numpy', 'euler_gamma',
|
||||
"""
|
||||
``γ = 0.5772156649015328606065120900824024310421...``
|
||||
|
||||
References
|
||||
----------
|
||||
https://en.wikipedia.org/wiki/Euler-Mascheroni_constant
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('numpy', 'inf',
|
||||
"""
|
||||
IEEE 754 floating point representation of (positive) infinity.
|
||||
|
||||
Returns
|
||||
-------
|
||||
y : float
|
||||
A floating point representation of positive infinity.
|
||||
|
||||
See Also
|
||||
--------
|
||||
isinf : Shows which elements are positive or negative infinity
|
||||
|
||||
isposinf : Shows which elements are positive infinity
|
||||
|
||||
isneginf : Shows which elements are negative infinity
|
||||
|
||||
isnan : Shows which elements are Not a Number
|
||||
|
||||
isfinite : Shows which elements are finite (not one of Not a Number,
|
||||
positive infinity and negative infinity)
|
||||
|
||||
Notes
|
||||
-----
|
||||
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
|
||||
(IEEE 754). This means that Not a Number is not equivalent to infinity.
|
||||
Also that positive infinity is not equivalent to negative infinity. But
|
||||
infinity is equivalent to positive infinity.
|
||||
|
||||
`Inf`, `Infinity`, `PINF` and `infty` are aliases for `inf`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.inf
|
||||
inf
|
||||
>>> np.array([1]) / 0.
|
||||
array([ Inf])
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('numpy', 'nan',
|
||||
"""
|
||||
IEEE 754 floating point representation of Not a Number (NaN).
|
||||
|
||||
Returns
|
||||
-------
|
||||
y : A floating point representation of Not a Number.
|
||||
|
||||
See Also
|
||||
--------
|
||||
isnan : Shows which elements are Not a Number.
|
||||
|
||||
isfinite : Shows which elements are finite (not one of
|
||||
Not a Number, positive infinity and negative infinity)
|
||||
|
||||
Notes
|
||||
-----
|
||||
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
|
||||
(IEEE 754). This means that Not a Number is not equivalent to infinity.
|
||||
|
||||
`NaN` and `NAN` are aliases of `nan`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.nan
|
||||
nan
|
||||
>>> np.log(-1)
|
||||
nan
|
||||
>>> np.log([-1, 1, 2])
|
||||
array([ NaN, 0. , 0.69314718])
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('numpy', 'newaxis',
|
||||
"""
|
||||
A convenient alias for None, useful for indexing arrays.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> newaxis is None
|
||||
True
|
||||
>>> x = np.arange(3)
|
||||
>>> x
|
||||
array([0, 1, 2])
|
||||
>>> x[:, newaxis]
|
||||
array([[0],
|
||||
[1],
|
||||
[2]])
|
||||
>>> x[:, newaxis, newaxis]
|
||||
array([[[0]],
|
||||
[[1]],
|
||||
[[2]]])
|
||||
>>> x[:, newaxis] * x
|
||||
array([[0, 0, 0],
|
||||
[0, 1, 2],
|
||||
[0, 2, 4]])
|
||||
|
||||
Outer product, same as ``outer(x, y)``:
|
||||
|
||||
>>> y = np.arange(3, 6)
|
||||
>>> x[:, newaxis] * y
|
||||
array([[ 0, 0, 0],
|
||||
[ 3, 4, 5],
|
||||
[ 6, 8, 10]])
|
||||
|
||||
``x[newaxis, :]`` is equivalent to ``x[newaxis]`` and ``x[None]``:
|
||||
|
||||
>>> x[newaxis, :].shape
|
||||
(1, 3)
|
||||
>>> x[newaxis].shape
|
||||
(1, 3)
|
||||
>>> x[None].shape
|
||||
(1, 3)
|
||||
>>> x[:, newaxis].shape
|
||||
(3, 1)
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('numpy', 'NZERO',
|
||||
"""
|
||||
IEEE 754 floating point representation of negative zero.
|
||||
|
||||
Returns
|
||||
-------
|
||||
y : float
|
||||
A floating point representation of negative zero.
|
||||
|
||||
See Also
|
||||
--------
|
||||
PZERO : Defines positive zero.
|
||||
|
||||
isinf : Shows which elements are positive or negative infinity.
|
||||
|
||||
isposinf : Shows which elements are positive infinity.
|
||||
|
||||
isneginf : Shows which elements are negative infinity.
|
||||
|
||||
isnan : Shows which elements are Not a Number.
|
||||
|
||||
isfinite : Shows which elements are finite - not one of
|
||||
Not a Number, positive infinity and negative infinity.
|
||||
|
||||
Notes
|
||||
-----
|
||||
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
|
||||
(IEEE 754). Negative zero is considered to be a finite number.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.NZERO
|
||||
-0.0
|
||||
>>> np.PZERO
|
||||
0.0
|
||||
|
||||
>>> np.isfinite([np.NZERO])
|
||||
array([ True])
|
||||
>>> np.isnan([np.NZERO])
|
||||
array([False])
|
||||
>>> np.isinf([np.NZERO])
|
||||
array([False])
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('numpy', 'PZERO',
|
||||
"""
|
||||
IEEE 754 floating point representation of positive zero.
|
||||
|
||||
Returns
|
||||
-------
|
||||
y : float
|
||||
A floating point representation of positive zero.
|
||||
|
||||
See Also
|
||||
--------
|
||||
NZERO : Defines negative zero.
|
||||
|
||||
isinf : Shows which elements are positive or negative infinity.
|
||||
|
||||
isposinf : Shows which elements are positive infinity.
|
||||
|
||||
isneginf : Shows which elements are negative infinity.
|
||||
|
||||
isnan : Shows which elements are Not a Number.
|
||||
|
||||
isfinite : Shows which elements are finite - not one of
|
||||
Not a Number, positive infinity and negative infinity.
|
||||
|
||||
Notes
|
||||
-----
|
||||
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
|
||||
(IEEE 754). Positive zero is considered to be a finite number.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.PZERO
|
||||
0.0
|
||||
>>> np.NZERO
|
||||
-0.0
|
||||
|
||||
>>> np.isfinite([np.PZERO])
|
||||
array([ True])
|
||||
>>> np.isnan([np.PZERO])
|
||||
array([False])
|
||||
>>> np.isinf([np.PZERO])
|
||||
array([False])
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('numpy', 'NAN',
|
||||
"""
|
||||
IEEE 754 floating point representation of Not a Number (NaN).
|
||||
|
||||
`NaN` and `NAN` are equivalent definitions of `nan`. Please use
|
||||
`nan` instead of `NAN`.
|
||||
|
||||
See Also
|
||||
--------
|
||||
nan
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('numpy', 'NaN',
|
||||
"""
|
||||
IEEE 754 floating point representation of Not a Number (NaN).
|
||||
|
||||
`NaN` and `NAN` are equivalent definitions of `nan`. Please use
|
||||
`nan` instead of `NaN`.
|
||||
|
||||
See Also
|
||||
--------
|
||||
nan
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('numpy', 'NINF',
|
||||
"""
|
||||
IEEE 754 floating point representation of negative infinity.
|
||||
|
||||
Returns
|
||||
-------
|
||||
y : float
|
||||
A floating point representation of negative infinity.
|
||||
|
||||
See Also
|
||||
--------
|
||||
isinf : Shows which elements are positive or negative infinity
|
||||
|
||||
isposinf : Shows which elements are positive infinity
|
||||
|
||||
isneginf : Shows which elements are negative infinity
|
||||
|
||||
isnan : Shows which elements are Not a Number
|
||||
|
||||
isfinite : Shows which elements are finite (not one of Not a Number,
|
||||
positive infinity and negative infinity)
|
||||
|
||||
Notes
|
||||
-----
|
||||
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
|
||||
(IEEE 754). This means that Not a Number is not equivalent to infinity.
|
||||
Also that positive infinity is not equivalent to negative infinity. But
|
||||
infinity is equivalent to positive infinity.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.NINF
|
||||
-inf
|
||||
>>> np.log(0)
|
||||
-inf
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('numpy', 'PINF',
|
||||
"""
|
||||
IEEE 754 floating point representation of (positive) infinity.
|
||||
|
||||
Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
|
||||
`inf`. For more details, see `inf`.
|
||||
|
||||
See Also
|
||||
--------
|
||||
inf
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('numpy', 'infty',
|
||||
"""
|
||||
IEEE 754 floating point representation of (positive) infinity.
|
||||
|
||||
Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
|
||||
`inf`. For more details, see `inf`.
|
||||
|
||||
See Also
|
||||
--------
|
||||
inf
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('numpy', 'Inf',
|
||||
"""
|
||||
IEEE 754 floating point representation of (positive) infinity.
|
||||
|
||||
Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
|
||||
`inf`. For more details, see `inf`.
|
||||
|
||||
See Also
|
||||
--------
|
||||
inf
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc('numpy', 'Infinity',
|
||||
"""
|
||||
IEEE 754 floating point representation of (positive) infinity.
|
||||
|
||||
Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
|
||||
`inf`. For more details, see `inf`.
|
||||
|
||||
See Also
|
||||
--------
|
||||
inf
|
||||
|
||||
""")
|
||||
|
||||
|
||||
if __doc__:
|
||||
constants_str = []
|
||||
constants.sort()
|
||||
for name, doc in constants:
|
||||
s = textwrap.dedent(doc).replace("\n", "\n ")
|
||||
|
||||
# Replace sections by rubrics
|
||||
lines = s.split("\n")
|
||||
new_lines = []
|
||||
for line in lines:
|
||||
m = re.match(r'^(\s+)[-=]+\s*$', line)
|
||||
if m and new_lines:
|
||||
prev = textwrap.dedent(new_lines.pop())
|
||||
new_lines.append('%s.. rubric:: %s' % (m.group(1), prev))
|
||||
new_lines.append('')
|
||||
else:
|
||||
new_lines.append(line)
|
||||
s = "\n".join(new_lines)
|
||||
|
||||
# Done.
|
||||
constants_str.append(""".. data:: %s\n %s""" % (name, s))
|
||||
constants_str = "\n".join(constants_str)
|
||||
|
||||
__doc__ = __doc__ % dict(constant_list=constants_str)
|
||||
del constants_str, name, doc
|
||||
del line, lines, new_lines, m, s, prev
|
||||
|
||||
del constants, add_newdoc
|
137
.venv/Lib/site-packages/numpy/doc/ufuncs.py
Normal file
137
.venv/Lib/site-packages/numpy/doc/ufuncs.py
Normal file
@ -0,0 +1,137 @@
|
||||
"""
|
||||
===================
|
||||
Universal Functions
|
||||
===================
|
||||
|
||||
Ufuncs are, generally speaking, mathematical functions or operations that are
|
||||
applied element-by-element to the contents of an array. That is, the result
|
||||
in each output array element only depends on the value in the corresponding
|
||||
input array (or arrays) and on no other array elements. NumPy comes with a
|
||||
large suite of ufuncs, and scipy extends that suite substantially. The simplest
|
||||
example is the addition operator: ::
|
||||
|
||||
>>> np.array([0,2,3,4]) + np.array([1,1,-1,2])
|
||||
array([1, 3, 2, 6])
|
||||
|
||||
The ufunc module lists all the available ufuncs in numpy. Documentation on
|
||||
the specific ufuncs may be found in those modules. This documentation is
|
||||
intended to address the more general aspects of ufuncs common to most of
|
||||
them. All of the ufuncs that make use of Python operators (e.g., +, -, etc.)
|
||||
have equivalent functions defined (e.g. add() for +)
|
||||
|
||||
Type coercion
|
||||
=============
|
||||
|
||||
What happens when a binary operator (e.g., +,-,\\*,/, etc) deals with arrays of
|
||||
two different types? What is the type of the result? Typically, the result is
|
||||
the higher of the two types. For example: ::
|
||||
|
||||
float32 + float64 -> float64
|
||||
int8 + int32 -> int32
|
||||
int16 + float32 -> float32
|
||||
float32 + complex64 -> complex64
|
||||
|
||||
There are some less obvious cases generally involving mixes of types
|
||||
(e.g. uints, ints and floats) where equal bit sizes for each are not
|
||||
capable of saving all the information in a different type of equivalent
|
||||
bit size. Some examples are int32 vs float32 or uint32 vs int32.
|
||||
Generally, the result is the higher type of larger size than both
|
||||
(if available). So: ::
|
||||
|
||||
int32 + float32 -> float64
|
||||
uint32 + int32 -> int64
|
||||
|
||||
Finally, the type coercion behavior when expressions involve Python
|
||||
scalars is different than that seen for arrays. Since Python has a
|
||||
limited number of types, combining a Python int with a dtype=np.int8
|
||||
array does not coerce to the higher type but instead, the type of the
|
||||
array prevails. So the rules for Python scalars combined with arrays is
|
||||
that the result will be that of the array equivalent the Python scalar
|
||||
if the Python scalar is of a higher 'kind' than the array (e.g., float
|
||||
vs. int), otherwise the resultant type will be that of the array.
|
||||
For example: ::
|
||||
|
||||
Python int + int8 -> int8
|
||||
Python float + int8 -> float64
|
||||
|
||||
ufunc methods
|
||||
=============
|
||||
|
||||
Binary ufuncs support 4 methods.
|
||||
|
||||
**.reduce(arr)** applies the binary operator to elements of the array in
|
||||
sequence. For example: ::
|
||||
|
||||
>>> np.add.reduce(np.arange(10)) # adds all elements of array
|
||||
45
|
||||
|
||||
For multidimensional arrays, the first dimension is reduced by default: ::
|
||||
|
||||
>>> np.add.reduce(np.arange(10).reshape(2,5))
|
||||
array([ 5, 7, 9, 11, 13])
|
||||
|
||||
The axis keyword can be used to specify different axes to reduce: ::
|
||||
|
||||
>>> np.add.reduce(np.arange(10).reshape(2,5),axis=1)
|
||||
array([10, 35])
|
||||
|
||||
**.accumulate(arr)** applies the binary operator and generates an an
|
||||
equivalently shaped array that includes the accumulated amount for each
|
||||
element of the array. A couple examples: ::
|
||||
|
||||
>>> np.add.accumulate(np.arange(10))
|
||||
array([ 0, 1, 3, 6, 10, 15, 21, 28, 36, 45])
|
||||
>>> np.multiply.accumulate(np.arange(1,9))
|
||||
array([ 1, 2, 6, 24, 120, 720, 5040, 40320])
|
||||
|
||||
The behavior for multidimensional arrays is the same as for .reduce(),
|
||||
as is the use of the axis keyword).
|
||||
|
||||
**.reduceat(arr,indices)** allows one to apply reduce to selected parts
|
||||
of an array. It is a difficult method to understand. See the documentation
|
||||
at:
|
||||
|
||||
**.outer(arr1,arr2)** generates an outer operation on the two arrays arr1 and
|
||||
arr2. It will work on multidimensional arrays (the shape of the result is
|
||||
the concatenation of the two input shapes.: ::
|
||||
|
||||
>>> np.multiply.outer(np.arange(3),np.arange(4))
|
||||
array([[0, 0, 0, 0],
|
||||
[0, 1, 2, 3],
|
||||
[0, 2, 4, 6]])
|
||||
|
||||
Output arguments
|
||||
================
|
||||
|
||||
All ufuncs accept an optional output array. The array must be of the expected
|
||||
output shape. Beware that if the type of the output array is of a different
|
||||
(and lower) type than the output result, the results may be silently truncated
|
||||
or otherwise corrupted in the downcast to the lower type. This usage is useful
|
||||
when one wants to avoid creating large temporary arrays and instead allows one
|
||||
to reuse the same array memory repeatedly (at the expense of not being able to
|
||||
use more convenient operator notation in expressions). Note that when the
|
||||
output argument is used, the ufunc still returns a reference to the result.
|
||||
|
||||
>>> x = np.arange(2)
|
||||
>>> np.add(np.arange(2),np.arange(2.),x)
|
||||
array([0, 2])
|
||||
>>> x
|
||||
array([0, 2])
|
||||
|
||||
and & or as ufuncs
|
||||
==================
|
||||
|
||||
Invariably people try to use the python 'and' and 'or' as logical operators
|
||||
(and quite understandably). But these operators do not behave as normal
|
||||
operators since Python treats these quite differently. They cannot be
|
||||
overloaded with array equivalents. Thus using 'and' or 'or' with an array
|
||||
results in an error. There are two alternatives:
|
||||
|
||||
1) use the ufunc functions logical_and() and logical_or().
|
||||
2) use the bitwise operators & and \\|. The drawback of these is that if
|
||||
the arguments to these operators are not boolean arrays, the result is
|
||||
likely incorrect. On the other hand, most usages of logical_and and
|
||||
logical_or are with boolean arrays. As long as one is careful, this is
|
||||
a convenient way to apply these operators.
|
||||
|
||||
"""
|
Reference in New Issue
Block a user