first commit

This commit is contained in:
Ayxan
2022-05-23 00:16:32 +04:00
commit d660f2a4ca
24786 changed files with 4428337 additions and 0 deletions

View File

@ -0,0 +1,26 @@
import os
ref_dir = os.path.join(os.path.dirname(__file__))
__all__ = sorted(f[:-3] for f in os.listdir(ref_dir) if f.endswith('.py') and
not f.startswith('__'))
for f in __all__:
__import__(__name__ + '.' + f)
del f, ref_dir
__doc__ = """\
Topical documentation
=====================
The following topics are available:
%s
You can view them by
>>> help(np.doc.TOPIC) #doctest: +SKIP
""" % '\n- '.join([''] + __all__)
__all__.extend(['__doc__'])

View File

@ -0,0 +1,412 @@
"""
=========
Constants
=========
.. currentmodule:: numpy
NumPy includes several constants:
%(constant_list)s
"""
#
# Note: the docstring is autogenerated.
#
import re
import textwrap
# Maintain same format as in numpy.add_newdocs
constants = []
def add_newdoc(module, name, doc):
constants.append((name, doc))
add_newdoc('numpy', 'pi',
"""
``pi = 3.1415926535897932384626433...``
References
----------
https://en.wikipedia.org/wiki/Pi
""")
add_newdoc('numpy', 'e',
"""
Euler's constant, base of natural logarithms, Napier's constant.
``e = 2.71828182845904523536028747135266249775724709369995...``
See Also
--------
exp : Exponential function
log : Natural logarithm
References
----------
https://en.wikipedia.org/wiki/E_%28mathematical_constant%29
""")
add_newdoc('numpy', 'euler_gamma',
"""
``γ = 0.5772156649015328606065120900824024310421...``
References
----------
https://en.wikipedia.org/wiki/Euler-Mascheroni_constant
""")
add_newdoc('numpy', 'inf',
"""
IEEE 754 floating point representation of (positive) infinity.
Returns
-------
y : float
A floating point representation of positive infinity.
See Also
--------
isinf : Shows which elements are positive or negative infinity
isposinf : Shows which elements are positive infinity
isneginf : Shows which elements are negative infinity
isnan : Shows which elements are Not a Number
isfinite : Shows which elements are finite (not one of Not a Number,
positive infinity and negative infinity)
Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Also that positive infinity is not equivalent to negative infinity. But
infinity is equivalent to positive infinity.
`Inf`, `Infinity`, `PINF` and `infty` are aliases for `inf`.
Examples
--------
>>> np.inf
inf
>>> np.array([1]) / 0.
array([ Inf])
""")
add_newdoc('numpy', 'nan',
"""
IEEE 754 floating point representation of Not a Number (NaN).
Returns
-------
y : A floating point representation of Not a Number.
See Also
--------
isnan : Shows which elements are Not a Number.
isfinite : Shows which elements are finite (not one of
Not a Number, positive infinity and negative infinity)
Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
`NaN` and `NAN` are aliases of `nan`.
Examples
--------
>>> np.nan
nan
>>> np.log(-1)
nan
>>> np.log([-1, 1, 2])
array([ NaN, 0. , 0.69314718])
""")
add_newdoc('numpy', 'newaxis',
"""
A convenient alias for None, useful for indexing arrays.
Examples
--------
>>> newaxis is None
True
>>> x = np.arange(3)
>>> x
array([0, 1, 2])
>>> x[:, newaxis]
array([[0],
[1],
[2]])
>>> x[:, newaxis, newaxis]
array([[[0]],
[[1]],
[[2]]])
>>> x[:, newaxis] * x
array([[0, 0, 0],
[0, 1, 2],
[0, 2, 4]])
Outer product, same as ``outer(x, y)``:
>>> y = np.arange(3, 6)
>>> x[:, newaxis] * y
array([[ 0, 0, 0],
[ 3, 4, 5],
[ 6, 8, 10]])
``x[newaxis, :]`` is equivalent to ``x[newaxis]`` and ``x[None]``:
>>> x[newaxis, :].shape
(1, 3)
>>> x[newaxis].shape
(1, 3)
>>> x[None].shape
(1, 3)
>>> x[:, newaxis].shape
(3, 1)
""")
add_newdoc('numpy', 'NZERO',
"""
IEEE 754 floating point representation of negative zero.
Returns
-------
y : float
A floating point representation of negative zero.
See Also
--------
PZERO : Defines positive zero.
isinf : Shows which elements are positive or negative infinity.
isposinf : Shows which elements are positive infinity.
isneginf : Shows which elements are negative infinity.
isnan : Shows which elements are Not a Number.
isfinite : Shows which elements are finite - not one of
Not a Number, positive infinity and negative infinity.
Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). Negative zero is considered to be a finite number.
Examples
--------
>>> np.NZERO
-0.0
>>> np.PZERO
0.0
>>> np.isfinite([np.NZERO])
array([ True])
>>> np.isnan([np.NZERO])
array([False])
>>> np.isinf([np.NZERO])
array([False])
""")
add_newdoc('numpy', 'PZERO',
"""
IEEE 754 floating point representation of positive zero.
Returns
-------
y : float
A floating point representation of positive zero.
See Also
--------
NZERO : Defines negative zero.
isinf : Shows which elements are positive or negative infinity.
isposinf : Shows which elements are positive infinity.
isneginf : Shows which elements are negative infinity.
isnan : Shows which elements are Not a Number.
isfinite : Shows which elements are finite - not one of
Not a Number, positive infinity and negative infinity.
Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). Positive zero is considered to be a finite number.
Examples
--------
>>> np.PZERO
0.0
>>> np.NZERO
-0.0
>>> np.isfinite([np.PZERO])
array([ True])
>>> np.isnan([np.PZERO])
array([False])
>>> np.isinf([np.PZERO])
array([False])
""")
add_newdoc('numpy', 'NAN',
"""
IEEE 754 floating point representation of Not a Number (NaN).
`NaN` and `NAN` are equivalent definitions of `nan`. Please use
`nan` instead of `NAN`.
See Also
--------
nan
""")
add_newdoc('numpy', 'NaN',
"""
IEEE 754 floating point representation of Not a Number (NaN).
`NaN` and `NAN` are equivalent definitions of `nan`. Please use
`nan` instead of `NaN`.
See Also
--------
nan
""")
add_newdoc('numpy', 'NINF',
"""
IEEE 754 floating point representation of negative infinity.
Returns
-------
y : float
A floating point representation of negative infinity.
See Also
--------
isinf : Shows which elements are positive or negative infinity
isposinf : Shows which elements are positive infinity
isneginf : Shows which elements are negative infinity
isnan : Shows which elements are Not a Number
isfinite : Shows which elements are finite (not one of Not a Number,
positive infinity and negative infinity)
Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Also that positive infinity is not equivalent to negative infinity. But
infinity is equivalent to positive infinity.
Examples
--------
>>> np.NINF
-inf
>>> np.log(0)
-inf
""")
add_newdoc('numpy', 'PINF',
"""
IEEE 754 floating point representation of (positive) infinity.
Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
`inf`. For more details, see `inf`.
See Also
--------
inf
""")
add_newdoc('numpy', 'infty',
"""
IEEE 754 floating point representation of (positive) infinity.
Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
`inf`. For more details, see `inf`.
See Also
--------
inf
""")
add_newdoc('numpy', 'Inf',
"""
IEEE 754 floating point representation of (positive) infinity.
Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
`inf`. For more details, see `inf`.
See Also
--------
inf
""")
add_newdoc('numpy', 'Infinity',
"""
IEEE 754 floating point representation of (positive) infinity.
Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
`inf`. For more details, see `inf`.
See Also
--------
inf
""")
if __doc__:
constants_str = []
constants.sort()
for name, doc in constants:
s = textwrap.dedent(doc).replace("\n", "\n ")
# Replace sections by rubrics
lines = s.split("\n")
new_lines = []
for line in lines:
m = re.match(r'^(\s+)[-=]+\s*$', line)
if m and new_lines:
prev = textwrap.dedent(new_lines.pop())
new_lines.append('%s.. rubric:: %s' % (m.group(1), prev))
new_lines.append('')
else:
new_lines.append(line)
s = "\n".join(new_lines)
# Done.
constants_str.append(""".. data:: %s\n %s""" % (name, s))
constants_str = "\n".join(constants_str)
__doc__ = __doc__ % dict(constant_list=constants_str)
del constants_str, name, doc
del line, lines, new_lines, m, s, prev
del constants, add_newdoc

View File

@ -0,0 +1,137 @@
"""
===================
Universal Functions
===================
Ufuncs are, generally speaking, mathematical functions or operations that are
applied element-by-element to the contents of an array. That is, the result
in each output array element only depends on the value in the corresponding
input array (or arrays) and on no other array elements. NumPy comes with a
large suite of ufuncs, and scipy extends that suite substantially. The simplest
example is the addition operator: ::
>>> np.array([0,2,3,4]) + np.array([1,1,-1,2])
array([1, 3, 2, 6])
The ufunc module lists all the available ufuncs in numpy. Documentation on
the specific ufuncs may be found in those modules. This documentation is
intended to address the more general aspects of ufuncs common to most of
them. All of the ufuncs that make use of Python operators (e.g., +, -, etc.)
have equivalent functions defined (e.g. add() for +)
Type coercion
=============
What happens when a binary operator (e.g., +,-,\\*,/, etc) deals with arrays of
two different types? What is the type of the result? Typically, the result is
the higher of the two types. For example: ::
float32 + float64 -> float64
int8 + int32 -> int32
int16 + float32 -> float32
float32 + complex64 -> complex64
There are some less obvious cases generally involving mixes of types
(e.g. uints, ints and floats) where equal bit sizes for each are not
capable of saving all the information in a different type of equivalent
bit size. Some examples are int32 vs float32 or uint32 vs int32.
Generally, the result is the higher type of larger size than both
(if available). So: ::
int32 + float32 -> float64
uint32 + int32 -> int64
Finally, the type coercion behavior when expressions involve Python
scalars is different than that seen for arrays. Since Python has a
limited number of types, combining a Python int with a dtype=np.int8
array does not coerce to the higher type but instead, the type of the
array prevails. So the rules for Python scalars combined with arrays is
that the result will be that of the array equivalent the Python scalar
if the Python scalar is of a higher 'kind' than the array (e.g., float
vs. int), otherwise the resultant type will be that of the array.
For example: ::
Python int + int8 -> int8
Python float + int8 -> float64
ufunc methods
=============
Binary ufuncs support 4 methods.
**.reduce(arr)** applies the binary operator to elements of the array in
sequence. For example: ::
>>> np.add.reduce(np.arange(10)) # adds all elements of array
45
For multidimensional arrays, the first dimension is reduced by default: ::
>>> np.add.reduce(np.arange(10).reshape(2,5))
array([ 5, 7, 9, 11, 13])
The axis keyword can be used to specify different axes to reduce: ::
>>> np.add.reduce(np.arange(10).reshape(2,5),axis=1)
array([10, 35])
**.accumulate(arr)** applies the binary operator and generates an an
equivalently shaped array that includes the accumulated amount for each
element of the array. A couple examples: ::
>>> np.add.accumulate(np.arange(10))
array([ 0, 1, 3, 6, 10, 15, 21, 28, 36, 45])
>>> np.multiply.accumulate(np.arange(1,9))
array([ 1, 2, 6, 24, 120, 720, 5040, 40320])
The behavior for multidimensional arrays is the same as for .reduce(),
as is the use of the axis keyword).
**.reduceat(arr,indices)** allows one to apply reduce to selected parts
of an array. It is a difficult method to understand. See the documentation
at:
**.outer(arr1,arr2)** generates an outer operation on the two arrays arr1 and
arr2. It will work on multidimensional arrays (the shape of the result is
the concatenation of the two input shapes.: ::
>>> np.multiply.outer(np.arange(3),np.arange(4))
array([[0, 0, 0, 0],
[0, 1, 2, 3],
[0, 2, 4, 6]])
Output arguments
================
All ufuncs accept an optional output array. The array must be of the expected
output shape. Beware that if the type of the output array is of a different
(and lower) type than the output result, the results may be silently truncated
or otherwise corrupted in the downcast to the lower type. This usage is useful
when one wants to avoid creating large temporary arrays and instead allows one
to reuse the same array memory repeatedly (at the expense of not being able to
use more convenient operator notation in expressions). Note that when the
output argument is used, the ufunc still returns a reference to the result.
>>> x = np.arange(2)
>>> np.add(np.arange(2),np.arange(2.),x)
array([0, 2])
>>> x
array([0, 2])
and & or as ufuncs
==================
Invariably people try to use the python 'and' and 'or' as logical operators
(and quite understandably). But these operators do not behave as normal
operators since Python treats these quite differently. They cannot be
overloaded with array equivalents. Thus using 'and' or 'or' with an array
results in an error. There are two alternatives:
1) use the ufunc functions logical_and() and logical_or().
2) use the bitwise operators & and \\|. The drawback of these is that if
the arguments to these operators are not boolean arrays, the result is
likely incorrect. On the other hand, most usages of logical_and and
logical_or are with boolean arrays. As long as one is careful, this is
a convenient way to apply these operators.
"""