first commit

This commit is contained in:
Ayxan
2022-05-23 00:16:32 +04:00
commit d660f2a4ca
24786 changed files with 4428337 additions and 0 deletions

View File

@@ -0,0 +1,399 @@
"""
============================
Typing (:mod:`numpy.typing`)
============================
.. versionadded:: 1.20
Large parts of the NumPy API have PEP-484-style type annotations. In
addition a number of type aliases are available to users, most prominently
the two below:
- `ArrayLike`: objects that can be converted to arrays
- `DTypeLike`: objects that can be converted to dtypes
.. _typing-extensions: https://pypi.org/project/typing-extensions/
Mypy plugin
-----------
.. versionadded:: 1.21
.. automodule:: numpy.typing.mypy_plugin
.. currentmodule:: numpy.typing
Differences from the runtime NumPy API
--------------------------------------
NumPy is very flexible. Trying to describe the full range of
possibilities statically would result in types that are not very
helpful. For that reason, the typed NumPy API is often stricter than
the runtime NumPy API. This section describes some notable
differences.
ArrayLike
~~~~~~~~~
The `ArrayLike` type tries to avoid creating object arrays. For
example,
.. code-block:: python
>>> np.array(x**2 for x in range(10))
array(<generator object <genexpr> at ...>, dtype=object)
is valid NumPy code which will create a 0-dimensional object
array. Type checkers will complain about the above example when using
the NumPy types however. If you really intended to do the above, then
you can either use a ``# type: ignore`` comment:
.. code-block:: python
>>> np.array(x**2 for x in range(10)) # type: ignore
or explicitly type the array like object as `~typing.Any`:
.. code-block:: python
>>> from typing import Any
>>> array_like: Any = (x**2 for x in range(10))
>>> np.array(array_like)
array(<generator object <genexpr> at ...>, dtype=object)
ndarray
~~~~~~~
It's possible to mutate the dtype of an array at runtime. For example,
the following code is valid:
.. code-block:: python
>>> x = np.array([1, 2])
>>> x.dtype = np.bool_
This sort of mutation is not allowed by the types. Users who want to
write statically typed code should instead use the `numpy.ndarray.view`
method to create a view of the array with a different dtype.
DTypeLike
~~~~~~~~~
The `DTypeLike` type tries to avoid creation of dtype objects using
dictionary of fields like below:
.. code-block:: python
>>> x = np.dtype({"field1": (float, 1), "field2": (int, 3)})
Although this is valid NumPy code, the type checker will complain about it,
since its usage is discouraged.
Please see : :ref:`Data type objects <arrays.dtypes>`
Number precision
~~~~~~~~~~~~~~~~
The precision of `numpy.number` subclasses is treated as a covariant generic
parameter (see :class:`~NBitBase`), simplifying the annotating of processes
involving precision-based casting.
.. code-block:: python
>>> from typing import TypeVar
>>> import numpy as np
>>> import numpy.typing as npt
>>> T = TypeVar("T", bound=npt.NBitBase)
>>> def func(a: "np.floating[T]", b: "np.floating[T]") -> "np.floating[T]":
... ...
Consequently, the likes of `~numpy.float16`, `~numpy.float32` and
`~numpy.float64` are still sub-types of `~numpy.floating`, but, contrary to
runtime, they're not necessarily considered as sub-classes.
Timedelta64
~~~~~~~~~~~
The `~numpy.timedelta64` class is not considered a subclass of
`~numpy.signedinteger`, the former only inheriting from `~numpy.generic`
while static type checking.
0D arrays
~~~~~~~~~
During runtime numpy aggressively casts any passed 0D arrays into their
corresponding `~numpy.generic` instance. Until the introduction of shape
typing (see :pep:`646`) it is unfortunately not possible to make the
necessary distinction between 0D and >0D arrays. While thus not strictly
correct, all operations are that can potentially perform a 0D-array -> scalar
cast are currently annotated as exclusively returning an `ndarray`.
If it is known in advance that an operation _will_ perform a
0D-array -> scalar cast, then one can consider manually remedying the
situation with either `typing.cast` or a ``# type: ignore`` comment.
Record array dtypes
~~~~~~~~~~~~~~~~~~~
The dtype of `numpy.recarray`, and the `numpy.rec` functions in general,
can be specified in one of two ways:
* Directly via the ``dtype`` argument.
* With up to five helper arguments that operate via `numpy.format_parser`:
``formats``, ``names``, ``titles``, ``aligned`` and ``byteorder``.
These two approaches are currently typed as being mutually exclusive,
*i.e.* if ``dtype`` is specified than one may not specify ``formats``.
While this mutual exclusivity is not (strictly) enforced during runtime,
combining both dtype specifiers can lead to unexpected or even downright
buggy behavior.
API
---
"""
# NOTE: The API section will be appended with additional entries
# further down in this file
from __future__ import annotations
from numpy import ufunc
from typing import TYPE_CHECKING, final
if not TYPE_CHECKING:
__all__ = ["ArrayLike", "DTypeLike", "NBitBase", "NDArray"]
else:
# Ensure that all objects within this module are accessible while
# static type checking. This includes private ones, as we need them
# for internal use.
#
# Declare to mypy that `__all__` is a list of strings without assigning
# an explicit value
__all__: list[str]
__path__: list[str]
@final # Disallow the creation of arbitrary `NBitBase` subclasses
class NBitBase:
"""
A type representing `numpy.number` precision during static type checking.
Used exclusively for the purpose static type checking, `NBitBase`
represents the base of a hierarchical set of subclasses.
Each subsequent subclass is herein used for representing a lower level
of precision, *e.g.* ``64Bit > 32Bit > 16Bit``.
.. versionadded:: 1.20
Examples
--------
Below is a typical usage example: `NBitBase` is herein used for annotating
a function that takes a float and integer of arbitrary precision
as arguments and returns a new float of whichever precision is largest
(*e.g.* ``np.float16 + np.int64 -> np.float64``).
.. code-block:: python
>>> from __future__ import annotations
>>> from typing import TypeVar, TYPE_CHECKING
>>> import numpy as np
>>> import numpy.typing as npt
>>> T1 = TypeVar("T1", bound=npt.NBitBase)
>>> T2 = TypeVar("T2", bound=npt.NBitBase)
>>> def add(a: np.floating[T1], b: np.integer[T2]) -> np.floating[T1 | T2]:
... return a + b
>>> a = np.float16()
>>> b = np.int64()
>>> out = add(a, b)
>>> if TYPE_CHECKING:
... reveal_locals()
... # note: Revealed local types are:
... # note: a: numpy.floating[numpy.typing._16Bit*]
... # note: b: numpy.signedinteger[numpy.typing._64Bit*]
... # note: out: numpy.floating[numpy.typing._64Bit*]
"""
def __init_subclass__(cls) -> None:
allowed_names = {
"NBitBase", "_256Bit", "_128Bit", "_96Bit", "_80Bit",
"_64Bit", "_32Bit", "_16Bit", "_8Bit",
}
if cls.__name__ not in allowed_names:
raise TypeError('cannot inherit from final class "NBitBase"')
super().__init_subclass__()
# Silence errors about subclassing a `@final`-decorated class
class _256Bit(NBitBase): # type: ignore[misc]
pass
class _128Bit(_256Bit): # type: ignore[misc]
pass
class _96Bit(_128Bit): # type: ignore[misc]
pass
class _80Bit(_96Bit): # type: ignore[misc]
pass
class _64Bit(_80Bit): # type: ignore[misc]
pass
class _32Bit(_64Bit): # type: ignore[misc]
pass
class _16Bit(_32Bit): # type: ignore[misc]
pass
class _8Bit(_16Bit): # type: ignore[misc]
pass
from ._nested_sequence import (
_NestedSequence as _NestedSequence,
)
from ._nbit import (
_NBitByte as _NBitByte,
_NBitShort as _NBitShort,
_NBitIntC as _NBitIntC,
_NBitIntP as _NBitIntP,
_NBitInt as _NBitInt,
_NBitLongLong as _NBitLongLong,
_NBitHalf as _NBitHalf,
_NBitSingle as _NBitSingle,
_NBitDouble as _NBitDouble,
_NBitLongDouble as _NBitLongDouble,
)
from ._char_codes import (
_BoolCodes as _BoolCodes,
_UInt8Codes as _UInt8Codes,
_UInt16Codes as _UInt16Codes,
_UInt32Codes as _UInt32Codes,
_UInt64Codes as _UInt64Codes,
_Int8Codes as _Int8Codes,
_Int16Codes as _Int16Codes,
_Int32Codes as _Int32Codes,
_Int64Codes as _Int64Codes,
_Float16Codes as _Float16Codes,
_Float32Codes as _Float32Codes,
_Float64Codes as _Float64Codes,
_Complex64Codes as _Complex64Codes,
_Complex128Codes as _Complex128Codes,
_ByteCodes as _ByteCodes,
_ShortCodes as _ShortCodes,
_IntCCodes as _IntCCodes,
_IntPCodes as _IntPCodes,
_IntCodes as _IntCodes,
_LongLongCodes as _LongLongCodes,
_UByteCodes as _UByteCodes,
_UShortCodes as _UShortCodes,
_UIntCCodes as _UIntCCodes,
_UIntPCodes as _UIntPCodes,
_UIntCodes as _UIntCodes,
_ULongLongCodes as _ULongLongCodes,
_HalfCodes as _HalfCodes,
_SingleCodes as _SingleCodes,
_DoubleCodes as _DoubleCodes,
_LongDoubleCodes as _LongDoubleCodes,
_CSingleCodes as _CSingleCodes,
_CDoubleCodes as _CDoubleCodes,
_CLongDoubleCodes as _CLongDoubleCodes,
_DT64Codes as _DT64Codes,
_TD64Codes as _TD64Codes,
_StrCodes as _StrCodes,
_BytesCodes as _BytesCodes,
_VoidCodes as _VoidCodes,
_ObjectCodes as _ObjectCodes,
)
from ._scalars import (
_CharLike_co as _CharLike_co,
_BoolLike_co as _BoolLike_co,
_UIntLike_co as _UIntLike_co,
_IntLike_co as _IntLike_co,
_FloatLike_co as _FloatLike_co,
_ComplexLike_co as _ComplexLike_co,
_TD64Like_co as _TD64Like_co,
_NumberLike_co as _NumberLike_co,
_ScalarLike_co as _ScalarLike_co,
_VoidLike_co as _VoidLike_co,
)
from ._shape import (
_Shape as _Shape,
_ShapeLike as _ShapeLike,
)
from ._dtype_like import (
DTypeLike as DTypeLike,
_SupportsDType as _SupportsDType,
_VoidDTypeLike as _VoidDTypeLike,
_DTypeLikeBool as _DTypeLikeBool,
_DTypeLikeUInt as _DTypeLikeUInt,
_DTypeLikeInt as _DTypeLikeInt,
_DTypeLikeFloat as _DTypeLikeFloat,
_DTypeLikeComplex as _DTypeLikeComplex,
_DTypeLikeTD64 as _DTypeLikeTD64,
_DTypeLikeDT64 as _DTypeLikeDT64,
_DTypeLikeObject as _DTypeLikeObject,
_DTypeLikeVoid as _DTypeLikeVoid,
_DTypeLikeStr as _DTypeLikeStr,
_DTypeLikeBytes as _DTypeLikeBytes,
_DTypeLikeComplex_co as _DTypeLikeComplex_co,
)
from ._array_like import (
ArrayLike as ArrayLike,
_ArrayLike as _ArrayLike,
_FiniteNestedSequence as _FiniteNestedSequence,
_SupportsArray as _SupportsArray,
_ArrayLikeInt as _ArrayLikeInt,
_ArrayLikeBool_co as _ArrayLikeBool_co,
_ArrayLikeUInt_co as _ArrayLikeUInt_co,
_ArrayLikeInt_co as _ArrayLikeInt_co,
_ArrayLikeFloat_co as _ArrayLikeFloat_co,
_ArrayLikeComplex_co as _ArrayLikeComplex_co,
_ArrayLikeNumber_co as _ArrayLikeNumber_co,
_ArrayLikeTD64_co as _ArrayLikeTD64_co,
_ArrayLikeDT64_co as _ArrayLikeDT64_co,
_ArrayLikeObject_co as _ArrayLikeObject_co,
_ArrayLikeVoid_co as _ArrayLikeVoid_co,
_ArrayLikeStr_co as _ArrayLikeStr_co,
_ArrayLikeBytes_co as _ArrayLikeBytes_co,
)
from ._generic_alias import (
NDArray as NDArray,
_DType as _DType,
_GenericAlias as _GenericAlias,
)
if TYPE_CHECKING:
from ._ufunc import (
_UFunc_Nin1_Nout1 as _UFunc_Nin1_Nout1,
_UFunc_Nin2_Nout1 as _UFunc_Nin2_Nout1,
_UFunc_Nin1_Nout2 as _UFunc_Nin1_Nout2,
_UFunc_Nin2_Nout2 as _UFunc_Nin2_Nout2,
_GUFunc_Nin2_Nout1 as _GUFunc_Nin2_Nout1,
)
else:
# Declare the (type-check-only) ufunc subclasses as ufunc aliases during
# runtime; this helps autocompletion tools such as Jedi (numpy/numpy#19834)
_UFunc_Nin1_Nout1 = ufunc
_UFunc_Nin2_Nout1 = ufunc
_UFunc_Nin1_Nout2 = ufunc
_UFunc_Nin2_Nout2 = ufunc
_GUFunc_Nin2_Nout1 = ufunc
# Clean up the namespace
del TYPE_CHECKING, final, ufunc
if __doc__ is not None:
from ._add_docstring import _docstrings
__doc__ += _docstrings
__doc__ += '\n.. autoclass:: numpy.typing.NBitBase\n'
del _docstrings
from numpy._pytesttester import PytestTester
test = PytestTester(__name__)
del PytestTester

View File

@@ -0,0 +1,152 @@
"""A module for creating docstrings for sphinx ``data`` domains."""
import re
import textwrap
from ._generic_alias import NDArray
_docstrings_list = []
def add_newdoc(name: str, value: str, doc: str) -> None:
"""Append ``_docstrings_list`` with a docstring for `name`.
Parameters
----------
name : str
The name of the object.
value : str
A string-representation of the object.
doc : str
The docstring of the object.
"""
_docstrings_list.append((name, value, doc))
def _parse_docstrings() -> str:
"""Convert all docstrings in ``_docstrings_list`` into a single
sphinx-legible text block.
"""
type_list_ret = []
for name, value, doc in _docstrings_list:
s = textwrap.dedent(doc).replace("\n", "\n ")
# Replace sections by rubrics
lines = s.split("\n")
new_lines = []
indent = ""
for line in lines:
m = re.match(r'^(\s+)[-=]+\s*$', line)
if m and new_lines:
prev = textwrap.dedent(new_lines.pop())
if prev == "Examples":
indent = ""
new_lines.append(f'{m.group(1)}.. rubric:: {prev}')
else:
indent = 4 * " "
new_lines.append(f'{m.group(1)}.. admonition:: {prev}')
new_lines.append("")
else:
new_lines.append(f"{indent}{line}")
s = "\n".join(new_lines)
s_block = f""".. data:: {name}\n :value: {value}\n {s}"""
type_list_ret.append(s_block)
return "\n".join(type_list_ret)
add_newdoc('ArrayLike', 'typing.Union[...]',
"""
A `~typing.Union` representing objects that can be coerced
into an `~numpy.ndarray`.
Among others this includes the likes of:
* Scalars.
* (Nested) sequences.
* Objects implementing the `~class.__array__` protocol.
.. versionadded:: 1.20
See Also
--------
:term:`array_like`:
Any scalar or sequence that can be interpreted as an ndarray.
Examples
--------
.. code-block:: python
>>> import numpy as np
>>> import numpy.typing as npt
>>> def as_array(a: npt.ArrayLike) -> np.ndarray:
... return np.array(a)
""")
add_newdoc('DTypeLike', 'typing.Union[...]',
"""
A `~typing.Union` representing objects that can be coerced
into a `~numpy.dtype`.
Among others this includes the likes of:
* :class:`type` objects.
* Character codes or the names of :class:`type` objects.
* Objects with the ``.dtype`` attribute.
.. versionadded:: 1.20
See Also
--------
:ref:`Specifying and constructing data types <arrays.dtypes.constructing>`
A comprehensive overview of all objects that can be coerced
into data types.
Examples
--------
.. code-block:: python
>>> import numpy as np
>>> import numpy.typing as npt
>>> def as_dtype(d: npt.DTypeLike) -> np.dtype:
... return np.dtype(d)
""")
add_newdoc('NDArray', repr(NDArray),
"""
A :term:`generic <generic type>` version of
`np.ndarray[Any, np.dtype[+ScalarType]] <numpy.ndarray>`.
Can be used during runtime for typing arrays with a given dtype
and unspecified shape.
.. versionadded:: 1.21
Examples
--------
.. code-block:: python
>>> import numpy as np
>>> import numpy.typing as npt
>>> print(npt.NDArray)
numpy.ndarray[typing.Any, numpy.dtype[+ScalarType]]
>>> print(npt.NDArray[np.float64])
numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]
>>> NDArrayInt = npt.NDArray[np.int_]
>>> a: NDArrayInt = np.arange(10)
>>> def func(a: npt.ArrayLike) -> npt.NDArray[Any]:
... return np.array(a)
""")
_docstrings = _parse_docstrings()

View File

@@ -0,0 +1,123 @@
from __future__ import annotations
from typing import Any, Sequence, Protocol, Union, TypeVar
from numpy import (
ndarray,
dtype,
generic,
bool_,
unsignedinteger,
integer,
floating,
complexfloating,
number,
timedelta64,
datetime64,
object_,
void,
str_,
bytes_,
)
from ._nested_sequence import _NestedSequence
_T = TypeVar("_T")
_ScalarType = TypeVar("_ScalarType", bound=generic)
_DType = TypeVar("_DType", bound="dtype[Any]")
_DType_co = TypeVar("_DType_co", covariant=True, bound="dtype[Any]")
# The `_SupportsArray` protocol only cares about the default dtype
# (i.e. `dtype=None` or no `dtype` parameter at all) of the to-be returned
# array.
# Concrete implementations of the protocol are responsible for adding
# any and all remaining overloads
class _SupportsArray(Protocol[_DType_co]):
def __array__(self) -> ndarray[Any, _DType_co]: ...
# TODO: Wait until mypy supports recursive objects in combination with typevars
_FiniteNestedSequence = Union[
_T,
Sequence[_T],
Sequence[Sequence[_T]],
Sequence[Sequence[Sequence[_T]]],
Sequence[Sequence[Sequence[Sequence[_T]]]],
]
# A union representing array-like objects; consists of two typevars:
# One representing types that can be parametrized w.r.t. `np.dtype`
# and another one for the rest
_ArrayLike = Union[
_SupportsArray[_DType],
_NestedSequence[_SupportsArray[_DType]],
_T,
_NestedSequence[_T],
]
# TODO: support buffer protocols once
#
# https://bugs.python.org/issue27501
#
# is resolved. See also the mypy issue:
#
# https://github.com/python/typing/issues/593
ArrayLike = _ArrayLike[
dtype,
Union[bool, int, float, complex, str, bytes],
]
# `ArrayLike<X>_co`: array-like objects that can be coerced into `X`
# given the casting rules `same_kind`
_ArrayLikeBool_co = _ArrayLike[
"dtype[bool_]",
bool,
]
_ArrayLikeUInt_co = _ArrayLike[
"dtype[Union[bool_, unsignedinteger[Any]]]",
bool,
]
_ArrayLikeInt_co = _ArrayLike[
"dtype[Union[bool_, integer[Any]]]",
Union[bool, int],
]
_ArrayLikeFloat_co = _ArrayLike[
"dtype[Union[bool_, integer[Any], floating[Any]]]",
Union[bool, int, float],
]
_ArrayLikeComplex_co = _ArrayLike[
"dtype[Union[bool_, integer[Any], floating[Any], complexfloating[Any, Any]]]",
Union[bool, int, float, complex],
]
_ArrayLikeNumber_co = _ArrayLike[
"dtype[Union[bool_, number[Any]]]",
Union[bool, int, float, complex],
]
_ArrayLikeTD64_co = _ArrayLike[
"dtype[Union[bool_, integer[Any], timedelta64]]",
Union[bool, int],
]
_ArrayLikeDT64_co = Union[
_SupportsArray["dtype[datetime64]"],
_NestedSequence[_SupportsArray["dtype[datetime64]"]],
]
_ArrayLikeObject_co = Union[
_SupportsArray["dtype[object_]"],
_NestedSequence[_SupportsArray["dtype[object_]"]],
]
_ArrayLikeVoid_co = Union[
_SupportsArray["dtype[void]"],
_NestedSequence[_SupportsArray["dtype[void]"]],
]
_ArrayLikeStr_co = _ArrayLike[
"dtype[str_]",
str,
]
_ArrayLikeBytes_co = _ArrayLike[
"dtype[bytes_]",
bytes,
]
_ArrayLikeInt = _ArrayLike[
"dtype[integer[Any]]",
int,
]

View File

@@ -0,0 +1,327 @@
"""
A module with various ``typing.Protocol`` subclasses that implement
the ``__call__`` magic method.
See the `Mypy documentation`_ on protocols for more details.
.. _`Mypy documentation`: https://mypy.readthedocs.io/en/stable/protocols.html#callback-protocols
"""
from __future__ import annotations
from typing import (
Union,
TypeVar,
overload,
Any,
Tuple,
NoReturn,
Protocol,
)
from numpy import (
ndarray,
dtype,
generic,
bool_,
timedelta64,
number,
integer,
unsignedinteger,
signedinteger,
int8,
int_,
floating,
float64,
complexfloating,
complex128,
)
from ._nbit import _NBitInt, _NBitDouble
from ._scalars import (
_BoolLike_co,
_IntLike_co,
_FloatLike_co,
_NumberLike_co,
)
from . import NBitBase
from ._generic_alias import NDArray
_T1 = TypeVar("_T1")
_T2 = TypeVar("_T2")
_T1_contra = TypeVar("_T1_contra", contravariant=True)
_T2_contra = TypeVar("_T2_contra", contravariant=True)
_2Tuple = Tuple[_T1, _T1]
_NBit1 = TypeVar("_NBit1", bound=NBitBase)
_NBit2 = TypeVar("_NBit2", bound=NBitBase)
_IntType = TypeVar("_IntType", bound=integer)
_FloatType = TypeVar("_FloatType", bound=floating)
_NumberType = TypeVar("_NumberType", bound=number)
_NumberType_co = TypeVar("_NumberType_co", covariant=True, bound=number)
_GenericType_co = TypeVar("_GenericType_co", covariant=True, bound=generic)
class _BoolOp(Protocol[_GenericType_co]):
@overload
def __call__(self, other: _BoolLike_co, /) -> _GenericType_co: ...
@overload # platform dependent
def __call__(self, other: int, /) -> int_: ...
@overload
def __call__(self, other: float, /) -> float64: ...
@overload
def __call__(self, other: complex, /) -> complex128: ...
@overload
def __call__(self, other: _NumberType, /) -> _NumberType: ...
class _BoolBitOp(Protocol[_GenericType_co]):
@overload
def __call__(self, other: _BoolLike_co, /) -> _GenericType_co: ...
@overload # platform dependent
def __call__(self, other: int, /) -> int_: ...
@overload
def __call__(self, other: _IntType, /) -> _IntType: ...
class _BoolSub(Protocol):
# Note that `other: bool_` is absent here
@overload
def __call__(self, other: bool, /) -> NoReturn: ...
@overload # platform dependent
def __call__(self, other: int, /) -> int_: ...
@overload
def __call__(self, other: float, /) -> float64: ...
@overload
def __call__(self, other: complex, /) -> complex128: ...
@overload
def __call__(self, other: _NumberType, /) -> _NumberType: ...
class _BoolTrueDiv(Protocol):
@overload
def __call__(self, other: float | _IntLike_co, /) -> float64: ...
@overload
def __call__(self, other: complex, /) -> complex128: ...
@overload
def __call__(self, other: _NumberType, /) -> _NumberType: ...
class _BoolMod(Protocol):
@overload
def __call__(self, other: _BoolLike_co, /) -> int8: ...
@overload # platform dependent
def __call__(self, other: int, /) -> int_: ...
@overload
def __call__(self, other: float, /) -> float64: ...
@overload
def __call__(self, other: _IntType, /) -> _IntType: ...
@overload
def __call__(self, other: _FloatType, /) -> _FloatType: ...
class _BoolDivMod(Protocol):
@overload
def __call__(self, other: _BoolLike_co, /) -> _2Tuple[int8]: ...
@overload # platform dependent
def __call__(self, other: int, /) -> _2Tuple[int_]: ...
@overload
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
@overload
def __call__(self, other: _IntType, /) -> _2Tuple[_IntType]: ...
@overload
def __call__(self, other: _FloatType, /) -> _2Tuple[_FloatType]: ...
class _TD64Div(Protocol[_NumberType_co]):
@overload
def __call__(self, other: timedelta64, /) -> _NumberType_co: ...
@overload
def __call__(self, other: _BoolLike_co, /) -> NoReturn: ...
@overload
def __call__(self, other: _FloatLike_co, /) -> timedelta64: ...
class _IntTrueDiv(Protocol[_NBit1]):
@overload
def __call__(self, other: bool, /) -> floating[_NBit1]: ...
@overload
def __call__(self, other: int, /) -> floating[_NBit1 | _NBitInt]: ...
@overload
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
@overload
def __call__(
self, other: complex, /,
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
@overload
def __call__(self, other: integer[_NBit2], /) -> floating[_NBit1 | _NBit2]: ...
class _UnsignedIntOp(Protocol[_NBit1]):
# NOTE: `uint64 + signedinteger -> float64`
@overload
def __call__(self, other: bool, /) -> unsignedinteger[_NBit1]: ...
@overload
def __call__(
self, other: int | signedinteger[Any], /
) -> Any: ...
@overload
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
@overload
def __call__(
self, other: complex, /,
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
@overload
def __call__(
self, other: unsignedinteger[_NBit2], /
) -> unsignedinteger[_NBit1 | _NBit2]: ...
class _UnsignedIntBitOp(Protocol[_NBit1]):
@overload
def __call__(self, other: bool, /) -> unsignedinteger[_NBit1]: ...
@overload
def __call__(self, other: int, /) -> signedinteger[Any]: ...
@overload
def __call__(self, other: signedinteger[Any], /) -> signedinteger[Any]: ...
@overload
def __call__(
self, other: unsignedinteger[_NBit2], /
) -> unsignedinteger[_NBit1 | _NBit2]: ...
class _UnsignedIntMod(Protocol[_NBit1]):
@overload
def __call__(self, other: bool, /) -> unsignedinteger[_NBit1]: ...
@overload
def __call__(
self, other: int | signedinteger[Any], /
) -> Any: ...
@overload
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
@overload
def __call__(
self, other: unsignedinteger[_NBit2], /
) -> unsignedinteger[_NBit1 | _NBit2]: ...
class _UnsignedIntDivMod(Protocol[_NBit1]):
@overload
def __call__(self, other: bool, /) -> _2Tuple[signedinteger[_NBit1]]: ...
@overload
def __call__(
self, other: int | signedinteger[Any], /
) -> _2Tuple[Any]: ...
@overload
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
@overload
def __call__(
self, other: unsignedinteger[_NBit2], /
) -> _2Tuple[unsignedinteger[_NBit1 | _NBit2]]: ...
class _SignedIntOp(Protocol[_NBit1]):
@overload
def __call__(self, other: bool, /) -> signedinteger[_NBit1]: ...
@overload
def __call__(self, other: int, /) -> signedinteger[_NBit1 | _NBitInt]: ...
@overload
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
@overload
def __call__(
self, other: complex, /,
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
@overload
def __call__(
self, other: signedinteger[_NBit2], /,
) -> signedinteger[_NBit1 | _NBit2]: ...
class _SignedIntBitOp(Protocol[_NBit1]):
@overload
def __call__(self, other: bool, /) -> signedinteger[_NBit1]: ...
@overload
def __call__(self, other: int, /) -> signedinteger[_NBit1 | _NBitInt]: ...
@overload
def __call__(
self, other: signedinteger[_NBit2], /,
) -> signedinteger[_NBit1 | _NBit2]: ...
class _SignedIntMod(Protocol[_NBit1]):
@overload
def __call__(self, other: bool, /) -> signedinteger[_NBit1]: ...
@overload
def __call__(self, other: int, /) -> signedinteger[_NBit1 | _NBitInt]: ...
@overload
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
@overload
def __call__(
self, other: signedinteger[_NBit2], /,
) -> signedinteger[_NBit1 | _NBit2]: ...
class _SignedIntDivMod(Protocol[_NBit1]):
@overload
def __call__(self, other: bool, /) -> _2Tuple[signedinteger[_NBit1]]: ...
@overload
def __call__(self, other: int, /) -> _2Tuple[signedinteger[_NBit1 | _NBitInt]]: ...
@overload
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
@overload
def __call__(
self, other: signedinteger[_NBit2], /,
) -> _2Tuple[signedinteger[_NBit1 | _NBit2]]: ...
class _FloatOp(Protocol[_NBit1]):
@overload
def __call__(self, other: bool, /) -> floating[_NBit1]: ...
@overload
def __call__(self, other: int, /) -> floating[_NBit1 | _NBitInt]: ...
@overload
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
@overload
def __call__(
self, other: complex, /,
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
@overload
def __call__(
self, other: integer[_NBit2] | floating[_NBit2], /
) -> floating[_NBit1 | _NBit2]: ...
class _FloatMod(Protocol[_NBit1]):
@overload
def __call__(self, other: bool, /) -> floating[_NBit1]: ...
@overload
def __call__(self, other: int, /) -> floating[_NBit1 | _NBitInt]: ...
@overload
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
@overload
def __call__(
self, other: integer[_NBit2] | floating[_NBit2], /
) -> floating[_NBit1 | _NBit2]: ...
class _FloatDivMod(Protocol[_NBit1]):
@overload
def __call__(self, other: bool, /) -> _2Tuple[floating[_NBit1]]: ...
@overload
def __call__(self, other: int, /) -> _2Tuple[floating[_NBit1 | _NBitInt]]: ...
@overload
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
@overload
def __call__(
self, other: integer[_NBit2] | floating[_NBit2], /
) -> _2Tuple[floating[_NBit1 | _NBit2]]: ...
class _ComplexOp(Protocol[_NBit1]):
@overload
def __call__(self, other: bool, /) -> complexfloating[_NBit1, _NBit1]: ...
@overload
def __call__(self, other: int, /) -> complexfloating[_NBit1 | _NBitInt, _NBit1 | _NBitInt]: ...
@overload
def __call__(
self, other: complex, /,
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
@overload
def __call__(
self,
other: Union[
integer[_NBit2],
floating[_NBit2],
complexfloating[_NBit2, _NBit2],
], /,
) -> complexfloating[_NBit1 | _NBit2, _NBit1 | _NBit2]: ...
class _NumberOp(Protocol):
def __call__(self, other: _NumberLike_co, /) -> Any: ...
class _ComparisonOp(Protocol[_T1_contra, _T2_contra]):
@overload
def __call__(self, other: _T1_contra, /) -> bool_: ...
@overload
def __call__(self, other: _T2_contra, /) -> NDArray[bool_]: ...

View File

@@ -0,0 +1,111 @@
from typing import Literal
_BoolCodes = Literal["?", "=?", "<?", ">?", "bool", "bool_", "bool8"]
_UInt8Codes = Literal["uint8", "u1", "=u1", "<u1", ">u1"]
_UInt16Codes = Literal["uint16", "u2", "=u2", "<u2", ">u2"]
_UInt32Codes = Literal["uint32", "u4", "=u4", "<u4", ">u4"]
_UInt64Codes = Literal["uint64", "u8", "=u8", "<u8", ">u8"]
_Int8Codes = Literal["int8", "i1", "=i1", "<i1", ">i1"]
_Int16Codes = Literal["int16", "i2", "=i2", "<i2", ">i2"]
_Int32Codes = Literal["int32", "i4", "=i4", "<i4", ">i4"]
_Int64Codes = Literal["int64", "i8", "=i8", "<i8", ">i8"]
_Float16Codes = Literal["float16", "f2", "=f2", "<f2", ">f2"]
_Float32Codes = Literal["float32", "f4", "=f4", "<f4", ">f4"]
_Float64Codes = Literal["float64", "f8", "=f8", "<f8", ">f8"]
_Complex64Codes = Literal["complex64", "c8", "=c8", "<c8", ">c8"]
_Complex128Codes = Literal["complex128", "c16", "=c16", "<c16", ">c16"]
_ByteCodes = Literal["byte", "b", "=b", "<b", ">b"]
_ShortCodes = Literal["short", "h", "=h", "<h", ">h"]
_IntCCodes = Literal["intc", "i", "=i", "<i", ">i"]
_IntPCodes = Literal["intp", "int0", "p", "=p", "<p", ">p"]
_IntCodes = Literal["long", "int", "int_", "l", "=l", "<l", ">l"]
_LongLongCodes = Literal["longlong", "q", "=q", "<q", ">q"]
_UByteCodes = Literal["ubyte", "B", "=B", "<B", ">B"]
_UShortCodes = Literal["ushort", "H", "=H", "<H", ">H"]
_UIntCCodes = Literal["uintc", "I", "=I", "<I", ">I"]
_UIntPCodes = Literal["uintp", "uint0", "P", "=P", "<P", ">P"]
_UIntCodes = Literal["uint", "L", "=L", "<L", ">L"]
_ULongLongCodes = Literal["ulonglong", "Q", "=Q", "<Q", ">Q"]
_HalfCodes = Literal["half", "e", "=e", "<e", ">e"]
_SingleCodes = Literal["single", "f", "=f", "<f", ">f"]
_DoubleCodes = Literal["double", "float", "float_", "d", "=d", "<d", ">d"]
_LongDoubleCodes = Literal["longdouble", "longfloat", "g", "=g", "<g", ">g"]
_CSingleCodes = Literal["csingle", "singlecomplex", "F", "=F", "<F", ">F"]
_CDoubleCodes = Literal["cdouble", "complex", "complex_", "cfloat", "D", "=D", "<D", ">D"]
_CLongDoubleCodes = Literal["clongdouble", "clongfloat", "longcomplex", "G", "=G", "<G", ">G"]
_StrCodes = Literal["str", "str_", "str0", "unicode", "unicode_", "U", "=U", "<U", ">U"]
_BytesCodes = Literal["bytes", "bytes_", "bytes0", "S", "=S", "<S", ">S"]
_VoidCodes = Literal["void", "void0", "V", "=V", "<V", ">V"]
_ObjectCodes = Literal["object", "object_", "O", "=O", "<O", ">O"]
_DT64Codes = Literal[
"datetime64", "=datetime64", "<datetime64", ">datetime64",
"datetime64[Y]", "=datetime64[Y]", "<datetime64[Y]", ">datetime64[Y]",
"datetime64[M]", "=datetime64[M]", "<datetime64[M]", ">datetime64[M]",
"datetime64[W]", "=datetime64[W]", "<datetime64[W]", ">datetime64[W]",
"datetime64[D]", "=datetime64[D]", "<datetime64[D]", ">datetime64[D]",
"datetime64[h]", "=datetime64[h]", "<datetime64[h]", ">datetime64[h]",
"datetime64[m]", "=datetime64[m]", "<datetime64[m]", ">datetime64[m]",
"datetime64[s]", "=datetime64[s]", "<datetime64[s]", ">datetime64[s]",
"datetime64[ms]", "=datetime64[ms]", "<datetime64[ms]", ">datetime64[ms]",
"datetime64[us]", "=datetime64[us]", "<datetime64[us]", ">datetime64[us]",
"datetime64[ns]", "=datetime64[ns]", "<datetime64[ns]", ">datetime64[ns]",
"datetime64[ps]", "=datetime64[ps]", "<datetime64[ps]", ">datetime64[ps]",
"datetime64[fs]", "=datetime64[fs]", "<datetime64[fs]", ">datetime64[fs]",
"datetime64[as]", "=datetime64[as]", "<datetime64[as]", ">datetime64[as]",
"M", "=M", "<M", ">M",
"M8", "=M8", "<M8", ">M8",
"M8[Y]", "=M8[Y]", "<M8[Y]", ">M8[Y]",
"M8[M]", "=M8[M]", "<M8[M]", ">M8[M]",
"M8[W]", "=M8[W]", "<M8[W]", ">M8[W]",
"M8[D]", "=M8[D]", "<M8[D]", ">M8[D]",
"M8[h]", "=M8[h]", "<M8[h]", ">M8[h]",
"M8[m]", "=M8[m]", "<M8[m]", ">M8[m]",
"M8[s]", "=M8[s]", "<M8[s]", ">M8[s]",
"M8[ms]", "=M8[ms]", "<M8[ms]", ">M8[ms]",
"M8[us]", "=M8[us]", "<M8[us]", ">M8[us]",
"M8[ns]", "=M8[ns]", "<M8[ns]", ">M8[ns]",
"M8[ps]", "=M8[ps]", "<M8[ps]", ">M8[ps]",
"M8[fs]", "=M8[fs]", "<M8[fs]", ">M8[fs]",
"M8[as]", "=M8[as]", "<M8[as]", ">M8[as]",
]
_TD64Codes = Literal[
"timedelta64", "=timedelta64", "<timedelta64", ">timedelta64",
"timedelta64[Y]", "=timedelta64[Y]", "<timedelta64[Y]", ">timedelta64[Y]",
"timedelta64[M]", "=timedelta64[M]", "<timedelta64[M]", ">timedelta64[M]",
"timedelta64[W]", "=timedelta64[W]", "<timedelta64[W]", ">timedelta64[W]",
"timedelta64[D]", "=timedelta64[D]", "<timedelta64[D]", ">timedelta64[D]",
"timedelta64[h]", "=timedelta64[h]", "<timedelta64[h]", ">timedelta64[h]",
"timedelta64[m]", "=timedelta64[m]", "<timedelta64[m]", ">timedelta64[m]",
"timedelta64[s]", "=timedelta64[s]", "<timedelta64[s]", ">timedelta64[s]",
"timedelta64[ms]", "=timedelta64[ms]", "<timedelta64[ms]", ">timedelta64[ms]",
"timedelta64[us]", "=timedelta64[us]", "<timedelta64[us]", ">timedelta64[us]",
"timedelta64[ns]", "=timedelta64[ns]", "<timedelta64[ns]", ">timedelta64[ns]",
"timedelta64[ps]", "=timedelta64[ps]", "<timedelta64[ps]", ">timedelta64[ps]",
"timedelta64[fs]", "=timedelta64[fs]", "<timedelta64[fs]", ">timedelta64[fs]",
"timedelta64[as]", "=timedelta64[as]", "<timedelta64[as]", ">timedelta64[as]",
"m", "=m", "<m", ">m",
"m8", "=m8", "<m8", ">m8",
"m8[Y]", "=m8[Y]", "<m8[Y]", ">m8[Y]",
"m8[M]", "=m8[M]", "<m8[M]", ">m8[M]",
"m8[W]", "=m8[W]", "<m8[W]", ">m8[W]",
"m8[D]", "=m8[D]", "<m8[D]", ">m8[D]",
"m8[h]", "=m8[h]", "<m8[h]", ">m8[h]",
"m8[m]", "=m8[m]", "<m8[m]", ">m8[m]",
"m8[s]", "=m8[s]", "<m8[s]", ">m8[s]",
"m8[ms]", "=m8[ms]", "<m8[ms]", ">m8[ms]",
"m8[us]", "=m8[us]", "<m8[us]", ">m8[us]",
"m8[ns]", "=m8[ns]", "<m8[ns]", ">m8[ns]",
"m8[ps]", "=m8[ps]", "<m8[ps]", ">m8[ps]",
"m8[fs]", "=m8[fs]", "<m8[fs]", ">m8[fs]",
"m8[as]", "=m8[as]", "<m8[as]", ">m8[as]",
]

View File

@@ -0,0 +1,236 @@
from typing import (
Any,
List,
Sequence,
Tuple,
Union,
Type,
TypeVar,
Protocol,
TypedDict,
)
import numpy as np
from ._shape import _ShapeLike
from ._generic_alias import _DType as DType
from ._char_codes import (
_BoolCodes,
_UInt8Codes,
_UInt16Codes,
_UInt32Codes,
_UInt64Codes,
_Int8Codes,
_Int16Codes,
_Int32Codes,
_Int64Codes,
_Float16Codes,
_Float32Codes,
_Float64Codes,
_Complex64Codes,
_Complex128Codes,
_ByteCodes,
_ShortCodes,
_IntCCodes,
_IntPCodes,
_IntCodes,
_LongLongCodes,
_UByteCodes,
_UShortCodes,
_UIntCCodes,
_UIntPCodes,
_UIntCodes,
_ULongLongCodes,
_HalfCodes,
_SingleCodes,
_DoubleCodes,
_LongDoubleCodes,
_CSingleCodes,
_CDoubleCodes,
_CLongDoubleCodes,
_DT64Codes,
_TD64Codes,
_StrCodes,
_BytesCodes,
_VoidCodes,
_ObjectCodes,
)
_DTypeLikeNested = Any # TODO: wait for support for recursive types
_DType_co = TypeVar("_DType_co", covariant=True, bound=DType[Any])
# Mandatory keys
class _DTypeDictBase(TypedDict):
names: Sequence[str]
formats: Sequence[_DTypeLikeNested]
# Mandatory + optional keys
class _DTypeDict(_DTypeDictBase, total=False):
# Only `str` elements are usable as indexing aliases,
# but `titles` can in principle accept any object
offsets: Sequence[int]
titles: Sequence[Any]
itemsize: int
aligned: bool
# A protocol for anything with the dtype attribute
class _SupportsDType(Protocol[_DType_co]):
@property
def dtype(self) -> _DType_co: ...
# Would create a dtype[np.void]
_VoidDTypeLike = Union[
# (flexible_dtype, itemsize)
Tuple[_DTypeLikeNested, int],
# (fixed_dtype, shape)
Tuple[_DTypeLikeNested, _ShapeLike],
# [(field_name, field_dtype, field_shape), ...]
#
# The type here is quite broad because NumPy accepts quite a wide
# range of inputs inside the list; see the tests for some
# examples.
List[Any],
# {'names': ..., 'formats': ..., 'offsets': ..., 'titles': ...,
# 'itemsize': ...}
_DTypeDict,
# (base_dtype, new_dtype)
Tuple[_DTypeLikeNested, _DTypeLikeNested],
]
# Anything that can be coerced into numpy.dtype.
# Reference: https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
DTypeLike = Union[
DType[Any],
# default data type (float64)
None,
# array-scalar types and generic types
Type[Any], # NOTE: We're stuck with `Type[Any]` due to object dtypes
# anything with a dtype attribute
_SupportsDType[DType[Any]],
# character codes, type strings or comma-separated fields, e.g., 'float64'
str,
_VoidDTypeLike,
]
# NOTE: while it is possible to provide the dtype as a dict of
# dtype-like objects (e.g. `{'field1': ..., 'field2': ..., ...}`),
# this syntax is officially discourged and
# therefore not included in the Union defining `DTypeLike`.
#
# See https://github.com/numpy/numpy/issues/16891 for more details.
# Aliases for commonly used dtype-like objects.
# Note that the precision of `np.number` subclasses is ignored herein.
_DTypeLikeBool = Union[
Type[bool],
Type[np.bool_],
DType[np.bool_],
_SupportsDType[DType[np.bool_]],
_BoolCodes,
]
_DTypeLikeUInt = Union[
Type[np.unsignedinteger],
DType[np.unsignedinteger],
_SupportsDType[DType[np.unsignedinteger]],
_UInt8Codes,
_UInt16Codes,
_UInt32Codes,
_UInt64Codes,
_UByteCodes,
_UShortCodes,
_UIntCCodes,
_UIntPCodes,
_UIntCodes,
_ULongLongCodes,
]
_DTypeLikeInt = Union[
Type[int],
Type[np.signedinteger],
DType[np.signedinteger],
_SupportsDType[DType[np.signedinteger]],
_Int8Codes,
_Int16Codes,
_Int32Codes,
_Int64Codes,
_ByteCodes,
_ShortCodes,
_IntCCodes,
_IntPCodes,
_IntCodes,
_LongLongCodes,
]
_DTypeLikeFloat = Union[
Type[float],
Type[np.floating],
DType[np.floating],
_SupportsDType[DType[np.floating]],
_Float16Codes,
_Float32Codes,
_Float64Codes,
_HalfCodes,
_SingleCodes,
_DoubleCodes,
_LongDoubleCodes,
]
_DTypeLikeComplex = Union[
Type[complex],
Type[np.complexfloating],
DType[np.complexfloating],
_SupportsDType[DType[np.complexfloating]],
_Complex64Codes,
_Complex128Codes,
_CSingleCodes,
_CDoubleCodes,
_CLongDoubleCodes,
]
_DTypeLikeDT64 = Union[
Type[np.timedelta64],
DType[np.timedelta64],
_SupportsDType[DType[np.timedelta64]],
_TD64Codes,
]
_DTypeLikeTD64 = Union[
Type[np.datetime64],
DType[np.datetime64],
_SupportsDType[DType[np.datetime64]],
_DT64Codes,
]
_DTypeLikeStr = Union[
Type[str],
Type[np.str_],
DType[np.str_],
_SupportsDType[DType[np.str_]],
_StrCodes,
]
_DTypeLikeBytes = Union[
Type[bytes],
Type[np.bytes_],
DType[np.bytes_],
_SupportsDType[DType[np.bytes_]],
_BytesCodes,
]
_DTypeLikeVoid = Union[
Type[np.void],
DType[np.void],
_SupportsDType[DType[np.void]],
_VoidCodes,
_VoidDTypeLike,
]
_DTypeLikeObject = Union[
type,
DType[np.object_],
_SupportsDType[DType[np.object_]],
_ObjectCodes,
]
_DTypeLikeComplex_co = Union[
_DTypeLikeBool,
_DTypeLikeUInt,
_DTypeLikeInt,
_DTypeLikeFloat,
_DTypeLikeComplex,
]

View File

@@ -0,0 +1,43 @@
"""A module with platform-specific extended precision
`numpy.number` subclasses.
The subclasses are defined here (instead of ``__init__.pyi``) such
that they can be imported conditionally via the numpy's mypy plugin.
"""
from typing import TYPE_CHECKING
import numpy as np
from . import (
_80Bit,
_96Bit,
_128Bit,
_256Bit,
)
if TYPE_CHECKING:
uint128 = np.unsignedinteger[_128Bit]
uint256 = np.unsignedinteger[_256Bit]
int128 = np.signedinteger[_128Bit]
int256 = np.signedinteger[_256Bit]
float80 = np.floating[_80Bit]
float96 = np.floating[_96Bit]
float128 = np.floating[_128Bit]
float256 = np.floating[_256Bit]
complex160 = np.complexfloating[_80Bit, _80Bit]
complex192 = np.complexfloating[_96Bit, _96Bit]
complex256 = np.complexfloating[_128Bit, _128Bit]
complex512 = np.complexfloating[_256Bit, _256Bit]
else:
uint128 = Any
uint256 = Any
int128 = Any
int256 = Any
float80 = Any
float96 = Any
float128 = Any
float256 = Any
complex160 = Any
complex192 = Any
complex256 = Any
complex512 = Any

View File

@@ -0,0 +1,215 @@
from __future__ import annotations
import sys
import types
from typing import (
Any,
ClassVar,
FrozenSet,
Generator,
Iterable,
Iterator,
List,
NoReturn,
Tuple,
Type,
TypeVar,
TYPE_CHECKING,
)
import numpy as np
__all__ = ["_GenericAlias", "NDArray"]
_T = TypeVar("_T", bound="_GenericAlias")
def _to_str(obj: object) -> str:
"""Helper function for `_GenericAlias.__repr__`."""
if obj is Ellipsis:
return '...'
elif isinstance(obj, type) and not isinstance(obj, _GENERIC_ALIAS_TYPE):
if obj.__module__ == 'builtins':
return obj.__qualname__
else:
return f'{obj.__module__}.{obj.__qualname__}'
else:
return repr(obj)
def _parse_parameters(args: Iterable[Any]) -> Generator[TypeVar, None, None]:
"""Search for all typevars and typevar-containing objects in `args`.
Helper function for `_GenericAlias.__init__`.
"""
for i in args:
if hasattr(i, "__parameters__"):
yield from i.__parameters__
elif isinstance(i, TypeVar):
yield i
def _reconstruct_alias(alias: _T, parameters: Iterator[TypeVar]) -> _T:
"""Recursively replace all typevars with those from `parameters`.
Helper function for `_GenericAlias.__getitem__`.
"""
args = []
for i in alias.__args__:
if isinstance(i, TypeVar):
value: Any = next(parameters)
elif isinstance(i, _GenericAlias):
value = _reconstruct_alias(i, parameters)
elif hasattr(i, "__parameters__"):
prm_tup = tuple(next(parameters) for _ in i.__parameters__)
value = i[prm_tup]
else:
value = i
args.append(value)
cls = type(alias)
return cls(alias.__origin__, tuple(args))
class _GenericAlias:
"""A python-based backport of the `types.GenericAlias` class.
E.g. for ``t = list[int]``, ``t.__origin__`` is ``list`` and
``t.__args__`` is ``(int,)``.
See Also
--------
:pep:`585`
The PEP responsible for introducing `types.GenericAlias`.
"""
__slots__ = ("__weakref__", "_origin", "_args", "_parameters", "_hash")
@property
def __origin__(self) -> type:
return super().__getattribute__("_origin")
@property
def __args__(self) -> Tuple[object, ...]:
return super().__getattribute__("_args")
@property
def __parameters__(self) -> Tuple[TypeVar, ...]:
"""Type variables in the ``GenericAlias``."""
return super().__getattribute__("_parameters")
def __init__(
self,
origin: type,
args: object | Tuple[object, ...],
) -> None:
self._origin = origin
self._args = args if isinstance(args, tuple) else (args,)
self._parameters = tuple(_parse_parameters(self.__args__))
@property
def __call__(self) -> type:
return self.__origin__
def __reduce__(self: _T) -> Tuple[
Type[_T],
Tuple[type, Tuple[object, ...]],
]:
cls = type(self)
return cls, (self.__origin__, self.__args__)
def __mro_entries__(self, bases: Iterable[object]) -> Tuple[type]:
return (self.__origin__,)
def __dir__(self) -> List[str]:
"""Implement ``dir(self)``."""
cls = type(self)
dir_origin = set(dir(self.__origin__))
return sorted(cls._ATTR_EXCEPTIONS | dir_origin)
def __hash__(self) -> int:
"""Return ``hash(self)``."""
# Attempt to use the cached hash
try:
return super().__getattribute__("_hash")
except AttributeError:
self._hash: int = hash(self.__origin__) ^ hash(self.__args__)
return super().__getattribute__("_hash")
def __instancecheck__(self, obj: object) -> NoReturn:
"""Check if an `obj` is an instance."""
raise TypeError("isinstance() argument 2 cannot be a "
"parameterized generic")
def __subclasscheck__(self, cls: type) -> NoReturn:
"""Check if a `cls` is a subclass."""
raise TypeError("issubclass() argument 2 cannot be a "
"parameterized generic")
def __repr__(self) -> str:
"""Return ``repr(self)``."""
args = ", ".join(_to_str(i) for i in self.__args__)
origin = _to_str(self.__origin__)
return f"{origin}[{args}]"
def __getitem__(self: _T, key: object | Tuple[object, ...]) -> _T:
"""Return ``self[key]``."""
key_tup = key if isinstance(key, tuple) else (key,)
if len(self.__parameters__) == 0:
raise TypeError(f"There are no type variables left in {self}")
elif len(key_tup) > len(self.__parameters__):
raise TypeError(f"Too many arguments for {self}")
elif len(key_tup) < len(self.__parameters__):
raise TypeError(f"Too few arguments for {self}")
key_iter = iter(key_tup)
return _reconstruct_alias(self, key_iter)
def __eq__(self, value: object) -> bool:
"""Return ``self == value``."""
if not isinstance(value, _GENERIC_ALIAS_TYPE):
return NotImplemented
return (
self.__origin__ == value.__origin__ and
self.__args__ == value.__args__
)
_ATTR_EXCEPTIONS: ClassVar[FrozenSet[str]] = frozenset({
"__origin__",
"__args__",
"__parameters__",
"__mro_entries__",
"__reduce__",
"__reduce_ex__",
"__copy__",
"__deepcopy__",
})
def __getattribute__(self, name: str) -> Any:
"""Return ``getattr(self, name)``."""
# Pull the attribute from `__origin__` unless its
# name is in `_ATTR_EXCEPTIONS`
cls = type(self)
if name in cls._ATTR_EXCEPTIONS:
return super().__getattribute__(name)
return getattr(self.__origin__, name)
# See `_GenericAlias.__eq__`
if sys.version_info >= (3, 9):
_GENERIC_ALIAS_TYPE = (_GenericAlias, types.GenericAlias)
else:
_GENERIC_ALIAS_TYPE = (_GenericAlias,)
ScalarType = TypeVar("ScalarType", bound=np.generic, covariant=True)
if TYPE_CHECKING or sys.version_info >= (3, 9):
_DType = np.dtype[ScalarType]
NDArray = np.ndarray[Any, np.dtype[ScalarType]]
else:
_DType = _GenericAlias(np.dtype, (ScalarType,))
NDArray = _GenericAlias(np.ndarray, (Any, _DType))

View File

@@ -0,0 +1,16 @@
"""A module with the precisions of platform-specific `~numpy.number`s."""
from typing import Any
# To-be replaced with a `npt.NBitBase` subclass by numpy's mypy plugin
_NBitByte = Any
_NBitShort = Any
_NBitIntC = Any
_NBitIntP = Any
_NBitInt = Any
_NBitLongLong = Any
_NBitHalf = Any
_NBitSingle = Any
_NBitDouble = Any
_NBitLongDouble = Any

View File

@@ -0,0 +1,90 @@
"""A module containing the `_NestedSequence` protocol."""
from __future__ import annotations
from typing import (
Any,
Iterator,
overload,
TypeVar,
Protocol,
)
__all__ = ["_NestedSequence"]
_T_co = TypeVar("_T_co", covariant=True)
class _NestedSequence(Protocol[_T_co]):
"""A protocol for representing nested sequences.
Warning
-------
`_NestedSequence` currently does not work in combination with typevars,
*e.g.* ``def func(a: _NestedSequnce[T]) -> T: ...``.
See Also
--------
`collections.abc.Sequence`
ABCs for read-only and mutable :term:`sequences`.
Examples
--------
.. code-block:: python
>>> from __future__ import annotations
>>> from typing import TYPE_CHECKING
>>> import numpy as np
>>> from numpy.typing import _NestedSequnce
>>> def get_dtype(seq: _NestedSequnce[float]) -> np.dtype[np.float64]:
... return np.asarray(seq).dtype
>>> a = get_dtype([1.0])
>>> b = get_dtype([[1.0]])
>>> c = get_dtype([[[1.0]]])
>>> d = get_dtype([[[[1.0]]]])
>>> if TYPE_CHECKING:
... reveal_locals()
... # note: Revealed local types are:
... # note: a: numpy.dtype[numpy.floating[numpy.typing._64Bit]]
... # note: b: numpy.dtype[numpy.floating[numpy.typing._64Bit]]
... # note: c: numpy.dtype[numpy.floating[numpy.typing._64Bit]]
... # note: d: numpy.dtype[numpy.floating[numpy.typing._64Bit]]
"""
def __len__(self, /) -> int:
"""Implement ``len(self)``."""
raise NotImplementedError
@overload
def __getitem__(self, index: int, /) -> _T_co | _NestedSequence[_T_co]: ...
@overload
def __getitem__(self, index: slice, /) -> _NestedSequence[_T_co]: ...
def __getitem__(self, index, /):
"""Implement ``self[x]``."""
raise NotImplementedError
def __contains__(self, x: object, /) -> bool:
"""Implement ``x in self``."""
raise NotImplementedError
def __iter__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]:
"""Implement ``iter(self)``."""
raise NotImplementedError
def __reversed__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]:
"""Implement ``reversed(self)``."""
raise NotImplementedError
def count(self, value: Any, /) -> int:
"""Return the number of occurrences of `value`."""
raise NotImplementedError
def index(self, value: Any, /) -> int:
"""Return the first index of `value`."""
raise NotImplementedError

View File

@@ -0,0 +1,30 @@
from typing import Union, Tuple, Any
import numpy as np
# NOTE: `_StrLike_co` and `_BytesLike_co` are pointless, as `np.str_` and
# `np.bytes_` are already subclasses of their builtin counterpart
_CharLike_co = Union[str, bytes]
# The 6 `<X>Like_co` type-aliases below represent all scalars that can be
# coerced into `<X>` (with the casting rule `same_kind`)
_BoolLike_co = Union[bool, np.bool_]
_UIntLike_co = Union[_BoolLike_co, np.unsignedinteger]
_IntLike_co = Union[_BoolLike_co, int, np.integer]
_FloatLike_co = Union[_IntLike_co, float, np.floating]
_ComplexLike_co = Union[_FloatLike_co, complex, np.complexfloating]
_TD64Like_co = Union[_IntLike_co, np.timedelta64]
_NumberLike_co = Union[int, float, complex, np.number, np.bool_]
_ScalarLike_co = Union[
int,
float,
complex,
str,
bytes,
np.generic,
]
# `_VoidLike_co` is technically not a scalar, but it's close enough
_VoidLike_co = Union[Tuple[Any, ...], np.void]

View File

@@ -0,0 +1,6 @@
from typing import Sequence, Tuple, Union, SupportsIndex
_Shape = Tuple[int, ...]
# Anything that can be coerced to a shape tuple
_ShapeLike = Union[SupportsIndex, Sequence[SupportsIndex]]

View File

@@ -0,0 +1,405 @@
"""A module with private type-check-only `numpy.ufunc` subclasses.
The signatures of the ufuncs are too varied to reasonably type
with a single class. So instead, `ufunc` has been expanded into
four private subclasses, one for each combination of
`~ufunc.nin` and `~ufunc.nout`.
"""
from typing import (
Any,
Generic,
List,
overload,
Tuple,
TypeVar,
Literal,
SupportsIndex,
)
from numpy import ufunc, _CastingKind, _OrderKACF
from numpy.typing import NDArray
from ._shape import _ShapeLike
from ._scalars import _ScalarLike_co
from ._array_like import ArrayLike, _ArrayLikeBool_co, _ArrayLikeInt_co
from ._dtype_like import DTypeLike
_T = TypeVar("_T")
_2Tuple = Tuple[_T, _T]
_3Tuple = Tuple[_T, _T, _T]
_4Tuple = Tuple[_T, _T, _T, _T]
_NTypes = TypeVar("_NTypes", bound=int)
_IDType = TypeVar("_IDType", bound=Any)
_NameType = TypeVar("_NameType", bound=str)
# NOTE: In reality `extobj` should be a length of list 3 containing an
# int, an int, and a callable, but there's no way to properly express
# non-homogenous lists.
# Use `Any` over `Union` to avoid issues related to lists invariance.
# NOTE: `reduce`, `accumulate`, `reduceat` and `outer` raise a ValueError for
# ufuncs that don't accept two input arguments and return one output argument.
# In such cases the respective methods are simply typed as `None`.
# NOTE: Similarly, `at` won't be defined for ufuncs that return
# multiple outputs; in such cases `at` is typed as `None`
# NOTE: If 2 output types are returned then `out` must be a
# 2-tuple of arrays. Otherwise `None` or a plain array are also acceptable
class _UFunc_Nin1_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]):
@property
def __name__(self) -> _NameType: ...
@property
def ntypes(self) -> _NTypes: ...
@property
def identity(self) -> _IDType: ...
@property
def nin(self) -> Literal[1]: ...
@property
def nout(self) -> Literal[1]: ...
@property
def nargs(self) -> Literal[2]: ...
@property
def signature(self) -> None: ...
@property
def reduce(self) -> None: ...
@property
def accumulate(self) -> None: ...
@property
def reduceat(self) -> None: ...
@property
def outer(self) -> None: ...
@overload
def __call__(
self,
__x1: _ScalarLike_co,
out: None = ...,
*,
where: None | _ArrayLikeBool_co = ...,
casting: _CastingKind = ...,
order: _OrderKACF = ...,
dtype: DTypeLike = ...,
subok: bool = ...,
signature: str | _2Tuple[None | str] = ...,
extobj: List[Any] = ...,
) -> Any: ...
@overload
def __call__(
self,
__x1: ArrayLike,
out: None | NDArray[Any] | Tuple[NDArray[Any]] = ...,
*,
where: None | _ArrayLikeBool_co = ...,
casting: _CastingKind = ...,
order: _OrderKACF = ...,
dtype: DTypeLike = ...,
subok: bool = ...,
signature: str | _2Tuple[None | str] = ...,
extobj: List[Any] = ...,
) -> NDArray[Any]: ...
def at(
self,
a: NDArray[Any],
indices: _ArrayLikeInt_co,
/,
) -> None: ...
class _UFunc_Nin2_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]):
@property
def __name__(self) -> _NameType: ...
@property
def ntypes(self) -> _NTypes: ...
@property
def identity(self) -> _IDType: ...
@property
def nin(self) -> Literal[2]: ...
@property
def nout(self) -> Literal[1]: ...
@property
def nargs(self) -> Literal[3]: ...
@property
def signature(self) -> None: ...
@overload
def __call__(
self,
__x1: _ScalarLike_co,
__x2: _ScalarLike_co,
out: None = ...,
*,
where: None | _ArrayLikeBool_co = ...,
casting: _CastingKind = ...,
order: _OrderKACF = ...,
dtype: DTypeLike = ...,
subok: bool = ...,
signature: str | _3Tuple[None | str] = ...,
extobj: List[Any] = ...,
) -> Any: ...
@overload
def __call__(
self,
__x1: ArrayLike,
__x2: ArrayLike,
out: None | NDArray[Any] | Tuple[NDArray[Any]] = ...,
*,
where: None | _ArrayLikeBool_co = ...,
casting: _CastingKind = ...,
order: _OrderKACF = ...,
dtype: DTypeLike = ...,
subok: bool = ...,
signature: str | _3Tuple[None | str] = ...,
extobj: List[Any] = ...,
) -> NDArray[Any]: ...
def at(
self,
a: NDArray[Any],
indices: _ArrayLikeInt_co,
b: ArrayLike,
/,
) -> None: ...
def reduce(
self,
array: ArrayLike,
axis: None | _ShapeLike = ...,
dtype: DTypeLike = ...,
out: None | NDArray[Any] = ...,
keepdims: bool = ...,
initial: Any = ...,
where: _ArrayLikeBool_co = ...,
) -> Any: ...
def accumulate(
self,
array: ArrayLike,
axis: SupportsIndex = ...,
dtype: DTypeLike = ...,
out: None | NDArray[Any] = ...,
) -> NDArray[Any]: ...
def reduceat(
self,
array: ArrayLike,
indices: _ArrayLikeInt_co,
axis: SupportsIndex = ...,
dtype: DTypeLike = ...,
out: None | NDArray[Any] = ...,
) -> NDArray[Any]: ...
# Expand `**kwargs` into explicit keyword-only arguments
@overload
def outer(
self,
A: _ScalarLike_co,
B: _ScalarLike_co,
/, *,
out: None = ...,
where: None | _ArrayLikeBool_co = ...,
casting: _CastingKind = ...,
order: _OrderKACF = ...,
dtype: DTypeLike = ...,
subok: bool = ...,
signature: str | _3Tuple[None | str] = ...,
extobj: List[Any] = ...,
) -> Any: ...
@overload
def outer( # type: ignore[misc]
self,
A: ArrayLike,
B: ArrayLike,
/, *,
out: None | NDArray[Any] | Tuple[NDArray[Any]] = ...,
where: None | _ArrayLikeBool_co = ...,
casting: _CastingKind = ...,
order: _OrderKACF = ...,
dtype: DTypeLike = ...,
subok: bool = ...,
signature: str | _3Tuple[None | str] = ...,
extobj: List[Any] = ...,
) -> NDArray[Any]: ...
class _UFunc_Nin1_Nout2(ufunc, Generic[_NameType, _NTypes, _IDType]):
@property
def __name__(self) -> _NameType: ...
@property
def ntypes(self) -> _NTypes: ...
@property
def identity(self) -> _IDType: ...
@property
def nin(self) -> Literal[1]: ...
@property
def nout(self) -> Literal[2]: ...
@property
def nargs(self) -> Literal[3]: ...
@property
def signature(self) -> None: ...
@property
def at(self) -> None: ...
@property
def reduce(self) -> None: ...
@property
def accumulate(self) -> None: ...
@property
def reduceat(self) -> None: ...
@property
def outer(self) -> None: ...
@overload
def __call__(
self,
__x1: _ScalarLike_co,
__out1: None = ...,
__out2: None = ...,
*,
where: None | _ArrayLikeBool_co = ...,
casting: _CastingKind = ...,
order: _OrderKACF = ...,
dtype: DTypeLike = ...,
subok: bool = ...,
signature: str | _3Tuple[None | str] = ...,
extobj: List[Any] = ...,
) -> _2Tuple[Any]: ...
@overload
def __call__(
self,
__x1: ArrayLike,
__out1: None | NDArray[Any] = ...,
__out2: None | NDArray[Any] = ...,
*,
out: _2Tuple[NDArray[Any]] = ...,
where: None | _ArrayLikeBool_co = ...,
casting: _CastingKind = ...,
order: _OrderKACF = ...,
dtype: DTypeLike = ...,
subok: bool = ...,
signature: str | _3Tuple[None | str] = ...,
extobj: List[Any] = ...,
) -> _2Tuple[NDArray[Any]]: ...
class _UFunc_Nin2_Nout2(ufunc, Generic[_NameType, _NTypes, _IDType]):
@property
def __name__(self) -> _NameType: ...
@property
def ntypes(self) -> _NTypes: ...
@property
def identity(self) -> _IDType: ...
@property
def nin(self) -> Literal[2]: ...
@property
def nout(self) -> Literal[2]: ...
@property
def nargs(self) -> Literal[4]: ...
@property
def signature(self) -> None: ...
@property
def at(self) -> None: ...
@property
def reduce(self) -> None: ...
@property
def accumulate(self) -> None: ...
@property
def reduceat(self) -> None: ...
@property
def outer(self) -> None: ...
@overload
def __call__(
self,
__x1: _ScalarLike_co,
__x2: _ScalarLike_co,
__out1: None = ...,
__out2: None = ...,
*,
where: None | _ArrayLikeBool_co = ...,
casting: _CastingKind = ...,
order: _OrderKACF = ...,
dtype: DTypeLike = ...,
subok: bool = ...,
signature: str | _4Tuple[None | str] = ...,
extobj: List[Any] = ...,
) -> _2Tuple[Any]: ...
@overload
def __call__(
self,
__x1: ArrayLike,
__x2: ArrayLike,
__out1: None | NDArray[Any] = ...,
__out2: None | NDArray[Any] = ...,
*,
out: _2Tuple[NDArray[Any]] = ...,
where: None | _ArrayLikeBool_co = ...,
casting: _CastingKind = ...,
order: _OrderKACF = ...,
dtype: DTypeLike = ...,
subok: bool = ...,
signature: str | _4Tuple[None | str] = ...,
extobj: List[Any] = ...,
) -> _2Tuple[NDArray[Any]]: ...
class _GUFunc_Nin2_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]):
@property
def __name__(self) -> _NameType: ...
@property
def ntypes(self) -> _NTypes: ...
@property
def identity(self) -> _IDType: ...
@property
def nin(self) -> Literal[2]: ...
@property
def nout(self) -> Literal[1]: ...
@property
def nargs(self) -> Literal[3]: ...
# NOTE: In practice the only gufunc in the main name is `matmul`,
# so we can use its signature here
@property
def signature(self) -> Literal["(n?,k),(k,m?)->(n?,m?)"]: ...
@property
def reduce(self) -> None: ...
@property
def accumulate(self) -> None: ...
@property
def reduceat(self) -> None: ...
@property
def outer(self) -> None: ...
@property
def at(self) -> None: ...
# Scalar for 1D array-likes; ndarray otherwise
@overload
def __call__(
self,
__x1: ArrayLike,
__x2: ArrayLike,
out: None = ...,
*,
casting: _CastingKind = ...,
order: _OrderKACF = ...,
dtype: DTypeLike = ...,
subok: bool = ...,
signature: str | _3Tuple[None | str] = ...,
extobj: List[Any] = ...,
axes: List[_2Tuple[SupportsIndex]] = ...,
) -> Any: ...
@overload
def __call__(
self,
__x1: ArrayLike,
__x2: ArrayLike,
out: NDArray[Any] | Tuple[NDArray[Any]],
*,
casting: _CastingKind = ...,
order: _OrderKACF = ...,
dtype: DTypeLike = ...,
subok: bool = ...,
signature: str | _3Tuple[None | str] = ...,
extobj: List[Any] = ...,
axes: List[_2Tuple[SupportsIndex]] = ...,
) -> NDArray[Any]: ...

View File

@@ -0,0 +1,197 @@
"""A mypy_ plugin for managing a number of platform-specific annotations.
Its functionality can be split into three distinct parts:
* Assigning the (platform-dependent) precisions of certain `~numpy.number`
subclasses, including the likes of `~numpy.int_`, `~numpy.intp` and
`~numpy.longlong`. See the documentation on
:ref:`scalar types <arrays.scalars.built-in>` for a comprehensive overview
of the affected classes. Without the plugin the precision of all relevant
classes will be inferred as `~typing.Any`.
* Removing all extended-precision `~numpy.number` subclasses that are
unavailable for the platform in question. Most notably this includes the
likes of `~numpy.float128` and `~numpy.complex256`. Without the plugin *all*
extended-precision types will, as far as mypy is concerned, be available
to all platforms.
* Assigning the (platform-dependent) precision of `~numpy.ctypeslib.c_intp`.
Without the plugin the type will default to `ctypes.c_int64`.
.. versionadded:: 1.22
Examples
--------
To enable the plugin, one must add it to their mypy `configuration file`_:
.. code-block:: ini
[mypy]
plugins = numpy.typing.mypy_plugin
.. _mypy: http://mypy-lang.org/
.. _configuration file: https://mypy.readthedocs.io/en/stable/config_file.html
"""
from __future__ import annotations
from collections.abc import Iterable
from typing import Final, TYPE_CHECKING, Callable
import numpy as np
try:
import mypy.types
from mypy.types import Type
from mypy.plugin import Plugin, AnalyzeTypeContext
from mypy.nodes import MypyFile, ImportFrom, Statement
from mypy.build import PRI_MED
_HookFunc = Callable[[AnalyzeTypeContext], Type]
MYPY_EX: None | ModuleNotFoundError = None
except ModuleNotFoundError as ex:
MYPY_EX = ex
__all__: list[str] = []
def _get_precision_dict() -> dict[str, str]:
names = [
("_NBitByte", np.byte),
("_NBitShort", np.short),
("_NBitIntC", np.intc),
("_NBitIntP", np.intp),
("_NBitInt", np.int_),
("_NBitLongLong", np.longlong),
("_NBitHalf", np.half),
("_NBitSingle", np.single),
("_NBitDouble", np.double),
("_NBitLongDouble", np.longdouble),
]
ret = {}
for name, typ in names:
n: int = 8 * typ().dtype.itemsize
ret[f'numpy.typing._nbit.{name}'] = f"numpy._{n}Bit"
return ret
def _get_extended_precision_list() -> list[str]:
extended_types = [np.ulonglong, np.longlong, np.longdouble, np.clongdouble]
extended_names = {
"uint128",
"uint256",
"int128",
"int256",
"float80",
"float96",
"float128",
"float256",
"complex160",
"complex192",
"complex256",
"complex512",
}
return [i.__name__ for i in extended_types if i.__name__ in extended_names]
def _get_c_intp_name() -> str:
# Adapted from `np.core._internal._getintp_ctype`
char = np.dtype('p').char
if char == 'i':
return "c_int"
elif char == 'l':
return "c_long"
elif char == 'q':
return "c_longlong"
else:
return "c_long"
#: A dictionary mapping type-aliases in `numpy.typing._nbit` to
#: concrete `numpy.typing.NBitBase` subclasses.
_PRECISION_DICT: Final = _get_precision_dict()
#: A list with the names of all extended precision `np.number` subclasses.
_EXTENDED_PRECISION_LIST: Final = _get_extended_precision_list()
#: The name of the ctypes quivalent of `np.intp`
_C_INTP: Final = _get_c_intp_name()
def _hook(ctx: AnalyzeTypeContext) -> Type:
"""Replace a type-alias with a concrete ``NBitBase`` subclass."""
typ, _, api = ctx
name = typ.name.split(".")[-1]
name_new = _PRECISION_DICT[f"numpy.typing._nbit.{name}"]
return api.named_type(name_new)
if TYPE_CHECKING or MYPY_EX is None:
def _index(iterable: Iterable[Statement], id: str) -> int:
"""Identify the first ``ImportFrom`` instance the specified `id`."""
for i, value in enumerate(iterable):
if getattr(value, "id", None) == id:
return i
raise ValueError("Failed to identify a `ImportFrom` instance "
f"with the following id: {id!r}")
def _override_imports(
file: MypyFile,
module: str,
imports: list[tuple[str, None | str]],
) -> None:
"""Override the first `module`-based import with new `imports`."""
# Construct a new `from module import y` statement
import_obj = ImportFrom(module, 0, names=imports)
import_obj.is_top_level = True
# Replace the first `module`-based import statement with `import_obj`
for lst in [file.defs, file.imports]: # type: list[Statement]
i = _index(lst, module)
lst[i] = import_obj
class _NumpyPlugin(Plugin):
"""A mypy plugin for handling versus numpy-specific typing tasks."""
def get_type_analyze_hook(self, fullname: str) -> None | _HookFunc:
"""Set the precision of platform-specific `numpy.number`
subclasses.
For example: `numpy.int_`, `numpy.longlong` and `numpy.longdouble`.
"""
if fullname in _PRECISION_DICT:
return _hook
return None
def get_additional_deps(
self, file: MypyFile
) -> list[tuple[int, str, int]]:
"""Handle all import-based overrides.
* Import platform-specific extended-precision `numpy.number`
subclasses (*e.g.* `numpy.float96`, `numpy.float128` and
`numpy.complex256`).
* Import the appropriate `ctypes` equivalent to `numpy.intp`.
"""
ret = [(PRI_MED, file.fullname, -1)]
if file.fullname == "numpy":
_override_imports(
file, "numpy.typing._extended_precision",
imports=[(v, v) for v in _EXTENDED_PRECISION_LIST],
)
elif file.fullname == "numpy.ctypeslib":
_override_imports(
file, "ctypes",
imports=[(_C_INTP, "_c_intp")],
)
return ret
def plugin(version: str) -> type[_NumpyPlugin]:
"""An entry-point for mypy."""
return _NumpyPlugin
else:
def plugin(version: str) -> type[_NumpyPlugin]:
"""An entry-point for mypy."""
raise MYPY_EX

View File

@@ -0,0 +1,12 @@
def configuration(parent_package='', top_path=None):
from numpy.distutils.misc_util import Configuration
config = Configuration('typing', parent_package, top_path)
config.add_subpackage('tests')
config.add_data_dir('tests/data')
config.add_data_files('*.pyi')
return config
if __name__ == '__main__':
from numpy.distutils.core import setup
setup(configuration=configuration)

View File

@@ -0,0 +1,121 @@
from typing import List, Any
import numpy as np
b_ = np.bool_()
dt = np.datetime64(0, "D")
td = np.timedelta64(0, "D")
AR_b: np.ndarray[Any, np.dtype[np.bool_]]
AR_u: np.ndarray[Any, np.dtype[np.uint32]]
AR_i: np.ndarray[Any, np.dtype[np.int64]]
AR_f: np.ndarray[Any, np.dtype[np.float64]]
AR_c: np.ndarray[Any, np.dtype[np.complex128]]
AR_m: np.ndarray[Any, np.dtype[np.timedelta64]]
AR_M: np.ndarray[Any, np.dtype[np.datetime64]]
ANY: Any
AR_LIKE_b: List[bool]
AR_LIKE_u: List[np.uint32]
AR_LIKE_i: List[int]
AR_LIKE_f: List[float]
AR_LIKE_c: List[complex]
AR_LIKE_m: List[np.timedelta64]
AR_LIKE_M: List[np.datetime64]
# Array subtraction
# NOTE: mypys `NoReturn` errors are, unfortunately, not that great
_1 = AR_b - AR_LIKE_b # E: Need type annotation
_2 = AR_LIKE_b - AR_b # E: Need type annotation
AR_i - bytes() # E: No overload variant
AR_f - AR_LIKE_m # E: Unsupported operand types
AR_f - AR_LIKE_M # E: Unsupported operand types
AR_c - AR_LIKE_m # E: Unsupported operand types
AR_c - AR_LIKE_M # E: Unsupported operand types
AR_m - AR_LIKE_f # E: Unsupported operand types
AR_M - AR_LIKE_f # E: Unsupported operand types
AR_m - AR_LIKE_c # E: Unsupported operand types
AR_M - AR_LIKE_c # E: Unsupported operand types
AR_m - AR_LIKE_M # E: Unsupported operand types
AR_LIKE_m - AR_M # E: Unsupported operand types
# array floor division
AR_M // AR_LIKE_b # E: Unsupported operand types
AR_M // AR_LIKE_u # E: Unsupported operand types
AR_M // AR_LIKE_i # E: Unsupported operand types
AR_M // AR_LIKE_f # E: Unsupported operand types
AR_M // AR_LIKE_c # E: Unsupported operand types
AR_M // AR_LIKE_m # E: Unsupported operand types
AR_M // AR_LIKE_M # E: Unsupported operand types
AR_b // AR_LIKE_M # E: Unsupported operand types
AR_u // AR_LIKE_M # E: Unsupported operand types
AR_i // AR_LIKE_M # E: Unsupported operand types
AR_f // AR_LIKE_M # E: Unsupported operand types
AR_c // AR_LIKE_M # E: Unsupported operand types
AR_m // AR_LIKE_M # E: Unsupported operand types
AR_M // AR_LIKE_M # E: Unsupported operand types
_3 = AR_m // AR_LIKE_b # E: Need type annotation
AR_m // AR_LIKE_c # E: Unsupported operand types
AR_b // AR_LIKE_m # E: Unsupported operand types
AR_u // AR_LIKE_m # E: Unsupported operand types
AR_i // AR_LIKE_m # E: Unsupported operand types
AR_f // AR_LIKE_m # E: Unsupported operand types
AR_c // AR_LIKE_m # E: Unsupported operand types
# Array multiplication
AR_b *= AR_LIKE_u # E: incompatible type
AR_b *= AR_LIKE_i # E: incompatible type
AR_b *= AR_LIKE_f # E: incompatible type
AR_b *= AR_LIKE_c # E: incompatible type
AR_b *= AR_LIKE_m # E: incompatible type
AR_u *= AR_LIKE_i # E: incompatible type
AR_u *= AR_LIKE_f # E: incompatible type
AR_u *= AR_LIKE_c # E: incompatible type
AR_u *= AR_LIKE_m # E: incompatible type
AR_i *= AR_LIKE_f # E: incompatible type
AR_i *= AR_LIKE_c # E: incompatible type
AR_i *= AR_LIKE_m # E: incompatible type
AR_f *= AR_LIKE_c # E: incompatible type
AR_f *= AR_LIKE_m # E: incompatible type
# Array power
AR_b **= AR_LIKE_b # E: Invalid self argument
AR_b **= AR_LIKE_u # E: Invalid self argument
AR_b **= AR_LIKE_i # E: Invalid self argument
AR_b **= AR_LIKE_f # E: Invalid self argument
AR_b **= AR_LIKE_c # E: Invalid self argument
AR_u **= AR_LIKE_i # E: incompatible type
AR_u **= AR_LIKE_f # E: incompatible type
AR_u **= AR_LIKE_c # E: incompatible type
AR_i **= AR_LIKE_f # E: incompatible type
AR_i **= AR_LIKE_c # E: incompatible type
AR_f **= AR_LIKE_c # E: incompatible type
# Scalars
b_ - b_ # E: No overload variant
dt + dt # E: Unsupported operand types
td - dt # E: Unsupported operand types
td % 1 # E: Unsupported operand types
td / dt # E: No overload
td % dt # E: Unsupported operand types
-b_ # E: Unsupported operand type
+b_ # E: Unsupported operand type

View File

@@ -0,0 +1,31 @@
import numpy as np
a: np.ndarray
generator = (i for i in range(10))
np.require(a, requirements=1) # E: No overload variant
np.require(a, requirements="TEST") # E: incompatible type
np.zeros("test") # E: incompatible type
np.zeros() # E: require at least one argument
np.ones("test") # E: incompatible type
np.ones() # E: require at least one argument
np.array(0, float, True) # E: No overload variant
np.linspace(None, 'bob') # E: No overload variant
np.linspace(0, 2, num=10.0) # E: No overload variant
np.linspace(0, 2, endpoint='True') # E: No overload variant
np.linspace(0, 2, retstep=b'False') # E: No overload variant
np.linspace(0, 2, dtype=0) # E: No overload variant
np.linspace(0, 2, axis=None) # E: No overload variant
np.logspace(None, 'bob') # E: Argument 1
np.logspace(0, 2, base=None) # E: Argument "base"
np.geomspace(None, 'bob') # E: Argument 1
np.stack(generator) # E: No overload variant
np.hstack({1, 2}) # E: No overload variant
np.vstack(1) # E: No overload variant

View File

@@ -0,0 +1,16 @@
import numpy as np
from numpy.typing import ArrayLike
class A:
pass
x1: ArrayLike = (i for i in range(10)) # E: Incompatible types in assignment
x2: ArrayLike = A() # E: Incompatible types in assignment
x3: ArrayLike = {1: "foo", 2: "bar"} # E: Incompatible types in assignment
scalar = np.int64(1)
scalar.__array__(dtype=np.float64) # E: No overload variant
array = np.array([1])
array.__array__(dtype=np.float64) # E: No overload variant

View File

@@ -0,0 +1,6 @@
import numpy as np
import numpy.typing as npt
AR_i8: npt.NDArray[np.int64]
np.pad(AR_i8, 2, mode="bob") # E: No overload variant

View File

@@ -0,0 +1,13 @@
from typing import Callable, Any
import numpy as np
AR: np.ndarray
func1: Callable[[Any], str]
func2: Callable[[np.integer[Any]], str]
np.array2string(AR, style=None) # E: Unexpected keyword argument
np.array2string(AR, legacy="1.14") # E: incompatible type
np.array2string(AR, sign="*") # E: incompatible type
np.array2string(AR, floatmode="default") # E: incompatible type
np.array2string(AR, formatter={"A": func1}) # E: incompatible type
np.array2string(AR, formatter={"float": func2}) # E: Incompatible types

View File

@@ -0,0 +1,14 @@
from typing import Any
import numpy as np
AR_i8: np.ndarray[Any, np.dtype[np.int64]]
ar_iter = np.lib.Arrayterator(AR_i8)
np.lib.Arrayterator(np.int64()) # E: incompatible type
ar_iter.shape = (10, 5) # E: is read-only
ar_iter[None] # E: Invalid index type
ar_iter[None, 1] # E: Invalid index type
ar_iter[np.intp()] # E: Invalid index type
ar_iter[np.intp(), ...] # E: Invalid index type
ar_iter[AR_i8] # E: Invalid index type
ar_iter[AR_i8, :] # E: Invalid index type

View File

@@ -0,0 +1,20 @@
import numpy as np
i8 = np.int64()
i4 = np.int32()
u8 = np.uint64()
b_ = np.bool_()
i = int()
f8 = np.float64()
b_ >> f8 # E: No overload variant
i8 << f8 # E: No overload variant
i | f8 # E: Unsupported operand types
i8 ^ f8 # E: No overload variant
u8 & f8 # E: No overload variant
~f8 # E: Unsupported operand type
# mypys' error message for `NoReturn` is unfortunately pretty bad
# TODO: Re-enable this once we add support for numerical precision for `number`s
# a = u8 | 0 # E: Need type annotation

View File

@@ -0,0 +1,66 @@
import numpy as np
import numpy.typing as npt
AR_U: npt.NDArray[np.str_]
AR_S: npt.NDArray[np.bytes_]
np.char.equal(AR_U, AR_S) # E: incompatible type
np.char.not_equal(AR_U, AR_S) # E: incompatible type
np.char.greater_equal(AR_U, AR_S) # E: incompatible type
np.char.less_equal(AR_U, AR_S) # E: incompatible type
np.char.greater(AR_U, AR_S) # E: incompatible type
np.char.less(AR_U, AR_S) # E: incompatible type
np.char.encode(AR_S) # E: incompatible type
np.char.decode(AR_U) # E: incompatible type
np.char.join(AR_U, b"_") # E: incompatible type
np.char.join(AR_S, "_") # E: incompatible type
np.char.ljust(AR_U, 5, fillchar=b"a") # E: incompatible type
np.char.ljust(AR_S, 5, fillchar="a") # E: incompatible type
np.char.rjust(AR_U, 5, fillchar=b"a") # E: incompatible type
np.char.rjust(AR_S, 5, fillchar="a") # E: incompatible type
np.char.lstrip(AR_U, chars=b"a") # E: incompatible type
np.char.lstrip(AR_S, chars="a") # E: incompatible type
np.char.strip(AR_U, chars=b"a") # E: incompatible type
np.char.strip(AR_S, chars="a") # E: incompatible type
np.char.rstrip(AR_U, chars=b"a") # E: incompatible type
np.char.rstrip(AR_S, chars="a") # E: incompatible type
np.char.partition(AR_U, b"a") # E: incompatible type
np.char.partition(AR_S, "a") # E: incompatible type
np.char.rpartition(AR_U, b"a") # E: incompatible type
np.char.rpartition(AR_S, "a") # E: incompatible type
np.char.replace(AR_U, b"_", b"-") # E: incompatible type
np.char.replace(AR_S, "_", "-") # E: incompatible type
np.char.split(AR_U, b"_") # E: incompatible type
np.char.split(AR_S, "_") # E: incompatible type
np.char.rsplit(AR_U, b"_") # E: incompatible type
np.char.rsplit(AR_S, "_") # E: incompatible type
np.char.count(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type
np.char.count(AR_S, "a", end=9) # E: incompatible type
np.char.endswith(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type
np.char.endswith(AR_S, "a", end=9) # E: incompatible type
np.char.startswith(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type
np.char.startswith(AR_S, "a", end=9) # E: incompatible type
np.char.find(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type
np.char.find(AR_S, "a", end=9) # E: incompatible type
np.char.rfind(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type
np.char.rfind(AR_S, "a", end=9) # E: incompatible type
np.char.index(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type
np.char.index(AR_S, "a", end=9) # E: incompatible type
np.char.rindex(AR_U, b"a", start=[1, 2, 3]) # E: incompatible type
np.char.rindex(AR_S, "a", end=9) # E: incompatible type

View File

@@ -0,0 +1,62 @@
import numpy as np
from typing import Any
AR_U: np.chararray[Any, np.dtype[np.str_]]
AR_S: np.chararray[Any, np.dtype[np.bytes_]]
AR_S.encode() # E: Invalid self argument
AR_U.decode() # E: Invalid self argument
AR_U.join(b"_") # E: incompatible type
AR_S.join("_") # E: incompatible type
AR_U.ljust(5, fillchar=b"a") # E: incompatible type
AR_S.ljust(5, fillchar="a") # E: incompatible type
AR_U.rjust(5, fillchar=b"a") # E: incompatible type
AR_S.rjust(5, fillchar="a") # E: incompatible type
AR_U.lstrip(chars=b"a") # E: incompatible type
AR_S.lstrip(chars="a") # E: incompatible type
AR_U.strip(chars=b"a") # E: incompatible type
AR_S.strip(chars="a") # E: incompatible type
AR_U.rstrip(chars=b"a") # E: incompatible type
AR_S.rstrip(chars="a") # E: incompatible type
AR_U.partition(b"a") # E: incompatible type
AR_S.partition("a") # E: incompatible type
AR_U.rpartition(b"a") # E: incompatible type
AR_S.rpartition("a") # E: incompatible type
AR_U.replace(b"_", b"-") # E: incompatible type
AR_S.replace("_", "-") # E: incompatible type
AR_U.split(b"_") # E: incompatible type
AR_S.split("_") # E: incompatible type
AR_S.split(1) # E: incompatible type
AR_U.rsplit(b"_") # E: incompatible type
AR_S.rsplit("_") # E: incompatible type
AR_U.count(b"a", start=[1, 2, 3]) # E: incompatible type
AR_S.count("a", end=9) # E: incompatible type
AR_U.endswith(b"a", start=[1, 2, 3]) # E: incompatible type
AR_S.endswith("a", end=9) # E: incompatible type
AR_U.startswith(b"a", start=[1, 2, 3]) # E: incompatible type
AR_S.startswith("a", end=9) # E: incompatible type
AR_U.find(b"a", start=[1, 2, 3]) # E: incompatible type
AR_S.find("a", end=9) # E: incompatible type
AR_U.rfind(b"a", start=[1, 2, 3]) # E: incompatible type
AR_S.rfind("a", end=9) # E: incompatible type
AR_U.index(b"a", start=[1, 2, 3]) # E: incompatible type
AR_S.index("a", end=9) # E: incompatible type
AR_U.rindex(b"a", start=[1, 2, 3]) # E: incompatible type
AR_S.rindex("a", end=9) # E: incompatible type
AR_U == AR_S # E: Unsupported operand types
AR_U != AR_S # E: Unsupported operand types
AR_U >= AR_S # E: Unsupported operand types
AR_U <= AR_S # E: Unsupported operand types
AR_U > AR_S # E: Unsupported operand types
AR_U < AR_S # E: Unsupported operand types

View File

@@ -0,0 +1,27 @@
from typing import Any
import numpy as np
AR_i: np.ndarray[Any, np.dtype[np.int64]]
AR_f: np.ndarray[Any, np.dtype[np.float64]]
AR_c: np.ndarray[Any, np.dtype[np.complex128]]
AR_m: np.ndarray[Any, np.dtype[np.timedelta64]]
AR_M: np.ndarray[Any, np.dtype[np.datetime64]]
AR_f > AR_m # E: Unsupported operand types
AR_c > AR_m # E: Unsupported operand types
AR_m > AR_f # E: Unsupported operand types
AR_m > AR_c # E: Unsupported operand types
AR_i > AR_M # E: Unsupported operand types
AR_f > AR_M # E: Unsupported operand types
AR_m > AR_M # E: Unsupported operand types
AR_M > AR_i # E: Unsupported operand types
AR_M > AR_f # E: Unsupported operand types
AR_M > AR_m # E: Unsupported operand types
AR_i > str() # E: No overload variant
AR_i > bytes() # E: No overload variant
str() > AR_M # E: Unsupported operand types
bytes() > AR_M # E: Unsupported operand types

View File

@@ -0,0 +1,7 @@
import numpy as np
np.Inf = np.Inf # E: Cannot assign to final
np.ALLOW_THREADS = np.ALLOW_THREADS # E: Cannot assign to final
np.little_endian = np.little_endian # E: Cannot assign to final
np.UFUNC_PYVALS_NAME = "bob" # E: Incompatible types
np.CLIP = 2 # E: Incompatible types

View File

@@ -0,0 +1,15 @@
from pathlib import Path
import numpy as np
path: Path
d1: np.DataSource
d1.abspath(path) # E: incompatible type
d1.abspath(b"...") # E: incompatible type
d1.exists(path) # E: incompatible type
d1.exists(b"...") # E: incompatible type
d1.open(path, "r") # E: incompatible type
d1.open(b"...", encoding="utf8") # E: incompatible type
d1.open(None, newline="/n") # E: incompatible type

View File

@@ -0,0 +1,20 @@
import numpy as np
class Test1:
not_dtype = np.dtype(float)
class Test2:
dtype = float
np.dtype(Test1()) # E: No overload variant of "dtype" matches
np.dtype(Test2()) # E: incompatible type
np.dtype( # E: No overload variant of "dtype" matches
{
"field1": (float, 1),
"field2": (int, 3),
}
)

View File

@@ -0,0 +1,15 @@
from typing import List, Any
import numpy as np
AR_i: np.ndarray[Any, np.dtype[np.int64]]
AR_f: np.ndarray[Any, np.dtype[np.float64]]
AR_m: np.ndarray[Any, np.dtype[np.timedelta64]]
AR_O: np.ndarray[Any, np.dtype[np.object_]]
AR_U: np.ndarray[Any, np.dtype[np.str_]]
np.einsum("i,i->i", AR_i, AR_m) # E: incompatible type
np.einsum("i,i->i", AR_O, AR_O) # E: incompatible type
np.einsum("i,i->i", AR_f, AR_f, dtype=np.int32) # E: incompatible type
np.einsum("i,i->i", AR_i, AR_i, dtype=np.timedelta64, casting="unsafe") # E: No overload variant
np.einsum("i,i->i", AR_i, AR_i, out=AR_U) # E: Value of type variable "_ArrayType" of "einsum" cannot be
np.einsum("i,i->i", AR_i, AR_i, out=AR_U, casting="unsafe") # E: No overload variant

View File

@@ -0,0 +1,11 @@
import numpy as np
import numpy.typing as npt
AR_f8: npt.NDArray[np.float64]
# NOTE: Mypy bug presumably due to the special-casing of heterogeneous tuples;
# xref numpy/numpy#20901
#
# The expected output should be no different than, e.g., when using a
# list instead of a tuple
np.concatenate(([1], AR_f8)) # E: Argument 1 to "concatenate" has incompatible type

View File

@@ -0,0 +1,25 @@
from typing import Any
import numpy as np
from numpy.typing import _SupportsArray
class Index:
def __index__(self) -> int:
...
a: "np.flatiter[np.ndarray]"
supports_array: _SupportsArray
a.base = Any # E: Property "base" defined in "flatiter" is read-only
a.coords = Any # E: Property "coords" defined in "flatiter" is read-only
a.index = Any # E: Property "index" defined in "flatiter" is read-only
a.copy(order='C') # E: Unexpected keyword argument
# NOTE: Contrary to `ndarray.__getitem__` its counterpart in `flatiter`
# does not accept objects with the `__array__` or `__index__` protocols;
# boolean indexing is just plain broken (gh-17175)
a[np.bool_()] # E: No overload variant of "__getitem__"
a[Index()] # E: No overload variant of "__getitem__"
a[supports_array] # E: No overload variant of "__getitem__"

View File

@@ -0,0 +1,154 @@
"""Tests for :mod:`numpy.core.fromnumeric`."""
import numpy as np
A = np.array(True, ndmin=2, dtype=bool)
A.setflags(write=False)
a = np.bool_(True)
np.take(a, None) # E: incompatible type
np.take(a, axis=1.0) # E: incompatible type
np.take(A, out=1) # E: incompatible type
np.take(A, mode="bob") # E: incompatible type
np.reshape(a, None) # E: Argument 2 to "reshape" has incompatible type
np.reshape(A, 1, order="bob") # E: Argument "order" to "reshape" has incompatible type
np.choose(a, None) # E: incompatible type
np.choose(a, out=1.0) # E: incompatible type
np.choose(A, mode="bob") # E: incompatible type
np.repeat(a, None) # E: Argument 2 to "repeat" has incompatible type
np.repeat(A, 1, axis=1.0) # E: Argument "axis" to "repeat" has incompatible type
np.swapaxes(A, None, 1) # E: Argument 2 to "swapaxes" has incompatible type
np.swapaxes(A, 1, [0]) # E: Argument 3 to "swapaxes" has incompatible type
np.transpose(A, axes=1.0) # E: Argument "axes" to "transpose" has incompatible type
np.partition(a, None) # E: Argument 2 to "partition" has incompatible type
np.partition(
a, 0, axis="bob" # E: Argument "axis" to "partition" has incompatible type
)
np.partition(
A, 0, kind="bob" # E: Argument "kind" to "partition" has incompatible type
)
np.partition(
A, 0, order=range(5) # E: Argument "order" to "partition" has incompatible type
)
np.argpartition(
a, None # E: incompatible type
)
np.argpartition(
a, 0, axis="bob" # E: incompatible type
)
np.argpartition(
A, 0, kind="bob" # E: incompatible type
)
np.argpartition(
A, 0, order=range(5) # E: Argument "order" to "argpartition" has incompatible type
)
np.sort(A, axis="bob") # E: Argument "axis" to "sort" has incompatible type
np.sort(A, kind="bob") # E: Argument "kind" to "sort" has incompatible type
np.sort(A, order=range(5)) # E: Argument "order" to "sort" has incompatible type
np.argsort(A, axis="bob") # E: Argument "axis" to "argsort" has incompatible type
np.argsort(A, kind="bob") # E: Argument "kind" to "argsort" has incompatible type
np.argsort(A, order=range(5)) # E: Argument "order" to "argsort" has incompatible type
np.argmax(A, axis="bob") # E: No overload variant of "argmax" matches argument type
np.argmax(A, kind="bob") # E: No overload variant of "argmax" matches argument type
np.argmin(A, axis="bob") # E: No overload variant of "argmin" matches argument type
np.argmin(A, kind="bob") # E: No overload variant of "argmin" matches argument type
np.searchsorted( # E: No overload variant of "searchsorted" matches argument type
A[0], 0, side="bob"
)
np.searchsorted( # E: No overload variant of "searchsorted" matches argument type
A[0], 0, sorter=1.0
)
np.resize(A, 1.0) # E: Argument 2 to "resize" has incompatible type
np.squeeze(A, 1.0) # E: No overload variant of "squeeze" matches argument type
np.diagonal(A, offset=None) # E: Argument "offset" to "diagonal" has incompatible type
np.diagonal(A, axis1="bob") # E: Argument "axis1" to "diagonal" has incompatible type
np.diagonal(A, axis2=[]) # E: Argument "axis2" to "diagonal" has incompatible type
np.trace(A, offset=None) # E: Argument "offset" to "trace" has incompatible type
np.trace(A, axis1="bob") # E: Argument "axis1" to "trace" has incompatible type
np.trace(A, axis2=[]) # E: Argument "axis2" to "trace" has incompatible type
np.ravel(a, order="bob") # E: Argument "order" to "ravel" has incompatible type
np.compress(
[True], A, axis=1.0 # E: Argument "axis" to "compress" has incompatible type
)
np.clip(a, 1, 2, out=1) # E: No overload variant of "clip" matches argument type
np.clip(1, None, None) # E: No overload variant of "clip" matches argument type
np.sum(a, axis=1.0) # E: incompatible type
np.sum(a, keepdims=1.0) # E: incompatible type
np.sum(a, initial=[1]) # E: incompatible type
np.all(a, axis=1.0) # E: No overload variant
np.all(a, keepdims=1.0) # E: No overload variant
np.all(a, out=1.0) # E: No overload variant
np.any(a, axis=1.0) # E: No overload variant
np.any(a, keepdims=1.0) # E: No overload variant
np.any(a, out=1.0) # E: No overload variant
np.cumsum(a, axis=1.0) # E: incompatible type
np.cumsum(a, dtype=1.0) # E: incompatible type
np.cumsum(a, out=1.0) # E: incompatible type
np.ptp(a, axis=1.0) # E: incompatible type
np.ptp(a, keepdims=1.0) # E: incompatible type
np.ptp(a, out=1.0) # E: incompatible type
np.amax(a, axis=1.0) # E: incompatible type
np.amax(a, keepdims=1.0) # E: incompatible type
np.amax(a, out=1.0) # E: incompatible type
np.amax(a, initial=[1.0]) # E: incompatible type
np.amax(a, where=[1.0]) # E: incompatible type
np.amin(a, axis=1.0) # E: incompatible type
np.amin(a, keepdims=1.0) # E: incompatible type
np.amin(a, out=1.0) # E: incompatible type
np.amin(a, initial=[1.0]) # E: incompatible type
np.amin(a, where=[1.0]) # E: incompatible type
np.prod(a, axis=1.0) # E: incompatible type
np.prod(a, out=False) # E: incompatible type
np.prod(a, keepdims=1.0) # E: incompatible type
np.prod(a, initial=int) # E: incompatible type
np.prod(a, where=1.0) # E: incompatible type
np.cumprod(a, axis=1.0) # E: Argument "axis" to "cumprod" has incompatible type
np.cumprod(a, out=False) # E: Argument "out" to "cumprod" has incompatible type
np.size(a, axis=1.0) # E: Argument "axis" to "size" has incompatible type
np.around(a, decimals=1.0) # E: incompatible type
np.around(a, out=type) # E: incompatible type
np.mean(a, axis=1.0) # E: incompatible type
np.mean(a, out=False) # E: incompatible type
np.mean(a, keepdims=1.0) # E: incompatible type
np.std(a, axis=1.0) # E: incompatible type
np.std(a, out=False) # E: incompatible type
np.std(a, ddof='test') # E: incompatible type
np.std(a, keepdims=1.0) # E: incompatible type
np.var(a, axis=1.0) # E: incompatible type
np.var(a, out=False) # E: incompatible type
np.var(a, ddof='test') # E: incompatible type
np.var(a, keepdims=1.0) # E: incompatible type

View File

@@ -0,0 +1,13 @@
import numpy as np
import numpy.typing as npt
AR_i8: npt.NDArray[np.int64]
AR_f8: npt.NDArray[np.float64]
np.histogram_bin_edges(AR_i8, range=(0, 1, 2)) # E: incompatible type
np.histogram(AR_i8, range=(0, 1, 2)) # E: incompatible type
np.histogram(AR_i8, normed=True) # E: incompatible type
np.histogramdd(AR_i8, range=(0, 1)) # E: incompatible type
np.histogramdd(AR_i8, range=[(0, 1, 2)]) # E: incompatible type

View File

@@ -0,0 +1,15 @@
from typing import List
import numpy as np
AR_LIKE_i: List[int]
AR_LIKE_f: List[float]
np.ndindex([1, 2, 3]) # E: No overload variant
np.unravel_index(AR_LIKE_f, (1, 2, 3)) # E: incompatible type
np.ravel_multi_index(AR_LIKE_i, (1, 2, 3), mode="bob") # E: No overload variant
np.mgrid[1] # E: Invalid index type
np.mgrid[...] # E: Invalid index type
np.ogrid[1] # E: Invalid index type
np.ogrid[...] # E: Invalid index type
np.fill_diagonal(AR_LIKE_f, 2) # E: incompatible type
np.diag_indices(1.0) # E: incompatible type

View File

@@ -0,0 +1,53 @@
from typing import Any
import numpy as np
import numpy.typing as npt
AR_f8: npt.NDArray[np.float64]
AR_c16: npt.NDArray[np.complex128]
AR_m: npt.NDArray[np.timedelta64]
AR_M: npt.NDArray[np.datetime64]
AR_O: npt.NDArray[np.object_]
def func(a: int) -> None: ...
np.average(AR_m) # E: incompatible type
np.select(1, [AR_f8]) # E: incompatible type
np.angle(AR_m) # E: incompatible type
np.unwrap(AR_m) # E: incompatible type
np.unwrap(AR_c16) # E: incompatible type
np.trim_zeros(1) # E: incompatible type
np.place(1, [True], 1.5) # E: incompatible type
np.vectorize(1) # E: incompatible type
np.add_newdoc("__main__", 1.5, "docstring") # E: incompatible type
np.place(AR_f8, slice(None), 5) # E: incompatible type
np.interp(AR_f8, AR_c16, AR_f8) # E: incompatible type
np.interp(AR_c16, AR_f8, AR_f8) # E: incompatible type
np.interp(AR_f8, AR_f8, AR_f8, period=AR_c16) # E: No overload variant
np.interp(AR_f8, AR_f8, AR_O) # E: incompatible type
np.cov(AR_m) # E: incompatible type
np.cov(AR_O) # E: incompatible type
np.corrcoef(AR_m) # E: incompatible type
np.corrcoef(AR_O) # E: incompatible type
np.corrcoef(AR_f8, bias=True) # E: No overload variant
np.corrcoef(AR_f8, ddof=2) # E: No overload variant
np.blackman(1j) # E: incompatible type
np.bartlett(1j) # E: incompatible type
np.hanning(1j) # E: incompatible type
np.hamming(1j) # E: incompatible type
np.hamming(AR_c16) # E: incompatible type
np.kaiser(1j, 1) # E: incompatible type
np.sinc(AR_O) # E: incompatible type
np.median(AR_M) # E: incompatible type
np.add_newdoc_ufunc(func, "docstring") # E: incompatible type
np.percentile(AR_f8, 50j) # E: No overload variant
np.percentile(AR_f8, 50, interpolation="bob") # E: No overload variant
np.quantile(AR_f8, 0.5j) # E: No overload variant
np.quantile(AR_f8, 0.5, interpolation="bob") # E: No overload variant
np.meshgrid(AR_f8, AR_f8, indexing="bob") # E: incompatible type
np.delete(AR_f8, AR_f8) # E: incompatible type
np.insert(AR_f8, AR_f8, 1.5) # E: incompatible type
np.digitize(AR_f8, 1j) # E: No overload variant

View File

@@ -0,0 +1,29 @@
import numpy as np
import numpy.typing as npt
AR_f8: npt.NDArray[np.float64]
AR_c16: npt.NDArray[np.complex128]
AR_O: npt.NDArray[np.object_]
AR_U: npt.NDArray[np.str_]
poly_obj: np.poly1d
np.polyint(AR_U) # E: incompatible type
np.polyint(AR_f8, m=1j) # E: No overload variant
np.polyder(AR_U) # E: incompatible type
np.polyder(AR_f8, m=1j) # E: No overload variant
np.polyfit(AR_O, AR_f8, 1) # E: incompatible type
np.polyfit(AR_f8, AR_f8, 1, rcond=1j) # E: No overload variant
np.polyfit(AR_f8, AR_f8, 1, w=AR_c16) # E: incompatible type
np.polyfit(AR_f8, AR_f8, 1, cov="bob") # E: No overload variant
np.polyval(AR_f8, AR_U) # E: incompatible type
np.polyadd(AR_f8, AR_U) # E: incompatible type
np.polysub(AR_f8, AR_U) # E: incompatible type
np.polymul(AR_f8, AR_U) # E: incompatible type
np.polydiv(AR_f8, AR_U) # E: incompatible type
5**poly_obj # E: No overload variant
hash(poly_obj)

View File

@@ -0,0 +1,13 @@
import numpy as np
np.deprecate(1) # E: No overload variant
np.deprecate_with_doc(1) # E: incompatible type
np.byte_bounds(1) # E: incompatible type
np.who(1) # E: incompatible type
np.lookfor(None) # E: incompatible type
np.safe_eval(None) # E: incompatible type

View File

@@ -0,0 +1,6 @@
from numpy.lib import NumpyVersion
version: NumpyVersion
NumpyVersion(b"1.8.0") # E: incompatible type
version >= b"1.8.0" # E: Unsupported operand types

View File

@@ -0,0 +1,48 @@
import numpy as np
import numpy.typing as npt
AR_f8: npt.NDArray[np.float64]
AR_O: npt.NDArray[np.object_]
AR_M: npt.NDArray[np.datetime64]
np.linalg.tensorsolve(AR_O, AR_O) # E: incompatible type
np.linalg.solve(AR_O, AR_O) # E: incompatible type
np.linalg.tensorinv(AR_O) # E: incompatible type
np.linalg.inv(AR_O) # E: incompatible type
np.linalg.matrix_power(AR_M, 5) # E: incompatible type
np.linalg.cholesky(AR_O) # E: incompatible type
np.linalg.qr(AR_O) # E: incompatible type
np.linalg.qr(AR_f8, mode="bob") # E: No overload variant
np.linalg.eigvals(AR_O) # E: incompatible type
np.linalg.eigvalsh(AR_O) # E: incompatible type
np.linalg.eigvalsh(AR_O, UPLO="bob") # E: No overload variant
np.linalg.eig(AR_O) # E: incompatible type
np.linalg.eigh(AR_O) # E: incompatible type
np.linalg.eigh(AR_O, UPLO="bob") # E: No overload variant
np.linalg.svd(AR_O) # E: incompatible type
np.linalg.cond(AR_O) # E: incompatible type
np.linalg.cond(AR_f8, p="bob") # E: incompatible type
np.linalg.matrix_rank(AR_O) # E: incompatible type
np.linalg.pinv(AR_O) # E: incompatible type
np.linalg.slogdet(AR_O) # E: incompatible type
np.linalg.det(AR_O) # E: incompatible type
np.linalg.norm(AR_f8, ord="bob") # E: No overload variant
np.linalg.multi_dot([AR_M]) # E: incompatible type

View File

@@ -0,0 +1,5 @@
import numpy as np
with open("file.txt", "r") as f:
np.memmap(f) # E: No overload variant
np.memmap("test.txt", shape=[10, 5]) # E: No overload variant

View File

@@ -0,0 +1,18 @@
import numpy as np
np.testing.bob # E: Module has no attribute
np.bob # E: Module has no attribute
# Stdlib modules in the namespace by accident
np.warnings # E: Module has no attribute
np.sys # E: Module has no attribute
np.os # E: Module has no attribute
np.math # E: Module has no attribute
# Public sub-modules that are not imported to their parent module by default;
# e.g. one must first execute `import numpy.lib.recfunctions`
np.lib.recfunctions # E: Module has no attribute
np.__NUMPY_SETUP__ # E: Module has no attribute
np.__deprecated_attrs__ # E: Module has no attribute
np.__expired_functions__ # E: Module has no attribute

View File

@@ -0,0 +1,56 @@
from typing import List
import numpy as np
import numpy.typing as npt
i8: np.int64
AR_b: npt.NDArray[np.bool_]
AR_u1: npt.NDArray[np.uint8]
AR_i8: npt.NDArray[np.int64]
AR_f8: npt.NDArray[np.float64]
AR_M: npt.NDArray[np.datetime64]
M: np.datetime64
AR_LIKE_f: List[float]
def func(a: int) -> None: ...
np.where(AR_b, 1) # E: No overload variant
np.can_cast(AR_f8, 1) # E: incompatible type
np.vdot(AR_M, AR_M) # E: incompatible type
np.copyto(AR_LIKE_f, AR_f8) # E: incompatible type
np.putmask(AR_LIKE_f, [True, True, False], 1.5) # E: incompatible type
np.packbits(AR_f8) # E: incompatible type
np.packbits(AR_u1, bitorder=">") # E: incompatible type
np.unpackbits(AR_i8) # E: incompatible type
np.unpackbits(AR_u1, bitorder=">") # E: incompatible type
np.shares_memory(1, 1, max_work=i8) # E: incompatible type
np.may_share_memory(1, 1, max_work=i8) # E: incompatible type
np.arange(M) # E: No overload variant
np.arange(stop=10) # E: No overload variant
np.datetime_data(int) # E: incompatible type
np.busday_offset("2012", 10) # E: incompatible type
np.datetime_as_string("2012") # E: No overload variant
np.compare_chararrays("a", b"a", "==", False) # E: No overload variant
np.add_docstring(func, None) # E: incompatible type
np.nested_iters([AR_i8, AR_i8]) # E: Missing positional argument
np.nested_iters([AR_i8, AR_i8], 0) # E: incompatible type
np.nested_iters([AR_i8, AR_i8], [0]) # E: incompatible type
np.nested_iters([AR_i8, AR_i8], [[0], [1]], flags=["test"]) # E: incompatible type
np.nested_iters([AR_i8, AR_i8], [[0], [1]], op_flags=[["test"]]) # E: incompatible type
np.nested_iters([AR_i8, AR_i8], [[0], [1]], buffersize=1.0) # E: incompatible type

View File

@@ -0,0 +1,11 @@
import numpy as np
# Ban setting dtype since mutating the type of the array in place
# makes having ndarray be generic over dtype impossible. Generally
# users should use `ndarray.view` in this situation anyway. See
#
# https://github.com/numpy/numpy-stubs/issues/7
#
# for more context.
float_array = np.array([1.0])
float_array.dtype = np.bool_ # E: Property "dtype" defined in "ndarray" is read-only

View File

@@ -0,0 +1,41 @@
"""
Tests for miscellaneous (non-magic) ``np.ndarray``/``np.generic`` methods.
More extensive tests are performed for the methods'
function-based counterpart in `../from_numeric.py`.
"""
from typing import Any
import numpy as np
f8: np.float64
AR_f8: np.ndarray[Any, np.dtype[np.float64]]
AR_M: np.ndarray[Any, np.dtype[np.datetime64]]
AR_b: np.ndarray[Any, np.dtype[np.bool_]]
ctypes_obj = AR_f8.ctypes
reveal_type(ctypes_obj.get_data()) # E: has no attribute
reveal_type(ctypes_obj.get_shape()) # E: has no attribute
reveal_type(ctypes_obj.get_strides()) # E: has no attribute
reveal_type(ctypes_obj.get_as_parameter()) # E: has no attribute
f8.argpartition(0) # E: has no attribute
f8.diagonal() # E: has no attribute
f8.dot(1) # E: has no attribute
f8.nonzero() # E: has no attribute
f8.partition(0) # E: has no attribute
f8.put(0, 2) # E: has no attribute
f8.setfield(2, np.float64) # E: has no attribute
f8.sort() # E: has no attribute
f8.trace() # E: has no attribute
AR_M.__int__() # E: Invalid self argument
AR_M.__float__() # E: Invalid self argument
AR_M.__complex__() # E: Invalid self argument
AR_b.__index__() # E: Invalid self argument
AR_f8[1.5] # E: No overload variant
AR_f8["field_a"] # E: No overload variant
AR_f8[["field_a", "field_b"]] # E: Invalid index type

View File

@@ -0,0 +1,8 @@
import numpy as np
class Test(np.nditer): ... # E: Cannot inherit from final class
np.nditer([0, 1], flags=["test"]) # E: incompatible type
np.nditer([0, 1], op_flags=[["test"]]) # E: incompatible type
np.nditer([0, 1], itershape=(1.0,)) # E: incompatible type
np.nditer([0, 1], buffersize=1.0) # E: incompatible type

View File

@@ -0,0 +1,17 @@
from typing import Sequence, Tuple, List
import numpy.typing as npt
a: Sequence[float]
b: List[complex]
c: Tuple[str, ...]
d: int
e: str
def func(a: npt._NestedSequence[int]) -> None:
...
reveal_type(func(a)) # E: incompatible type
reveal_type(func(b)) # E: incompatible type
reveal_type(func(c)) # E: incompatible type
reveal_type(func(d)) # E: incompatible type
reveal_type(func(e)) # E: incompatible type

View File

@@ -0,0 +1,30 @@
import pathlib
from typing import IO
import numpy.typing as npt
import numpy as np
str_path: str
bytes_path: bytes
pathlib_path: pathlib.Path
str_file: IO[str]
AR_i8: npt.NDArray[np.int64]
np.load(str_file) # E: incompatible type
np.save(bytes_path, AR_i8) # E: incompatible type
np.save(str_file, AR_i8) # E: incompatible type
np.savez(bytes_path, AR_i8) # E: incompatible type
np.savez(str_file, AR_i8) # E: incompatible type
np.savez_compressed(bytes_path, AR_i8) # E: incompatible type
np.savez_compressed(str_file, AR_i8) # E: incompatible type
np.loadtxt(bytes_path) # E: incompatible type
np.fromregex(bytes_path, ".", np.int64) # E: No overload variant
np.recfromtxt(bytes_path) # E: incompatible type
np.recfromcsv(bytes_path) # E: incompatible type

View File

@@ -0,0 +1,13 @@
import numpy as np
# Technically this works, but probably shouldn't. See
#
# https://github.com/numpy/numpy/issues/16366
#
np.maximum_sctype(1) # E: No overload variant
np.issubsctype(1, np.int64) # E: incompatible type
np.issubdtype(1, np.int64) # E: incompatible type
np.find_common_type(np.int64, np.int64) # E: incompatible type

View File

@@ -0,0 +1,61 @@
import numpy as np
from typing import Any, List
SEED_FLOAT: float = 457.3
SEED_ARR_FLOAT: np.ndarray[Any, np.dtype[np.float64]] = np.array([1.0, 2, 3, 4])
SEED_ARRLIKE_FLOAT: List[float] = [1.0, 2.0, 3.0, 4.0]
SEED_SEED_SEQ: np.random.SeedSequence = np.random.SeedSequence(0)
SEED_STR: str = "String seeding not allowed"
# default rng
np.random.default_rng(SEED_FLOAT) # E: incompatible type
np.random.default_rng(SEED_ARR_FLOAT) # E: incompatible type
np.random.default_rng(SEED_ARRLIKE_FLOAT) # E: incompatible type
np.random.default_rng(SEED_STR) # E: incompatible type
# Seed Sequence
np.random.SeedSequence(SEED_FLOAT) # E: incompatible type
np.random.SeedSequence(SEED_ARR_FLOAT) # E: incompatible type
np.random.SeedSequence(SEED_ARRLIKE_FLOAT) # E: incompatible type
np.random.SeedSequence(SEED_SEED_SEQ) # E: incompatible type
np.random.SeedSequence(SEED_STR) # E: incompatible type
seed_seq: np.random.bit_generator.SeedSequence = np.random.SeedSequence()
seed_seq.spawn(11.5) # E: incompatible type
seed_seq.generate_state(3.14) # E: incompatible type
seed_seq.generate_state(3, np.uint8) # E: incompatible type
seed_seq.generate_state(3, "uint8") # E: incompatible type
seed_seq.generate_state(3, "u1") # E: incompatible type
seed_seq.generate_state(3, np.uint16) # E: incompatible type
seed_seq.generate_state(3, "uint16") # E: incompatible type
seed_seq.generate_state(3, "u2") # E: incompatible type
seed_seq.generate_state(3, np.int32) # E: incompatible type
seed_seq.generate_state(3, "int32") # E: incompatible type
seed_seq.generate_state(3, "i4") # E: incompatible type
# Bit Generators
np.random.MT19937(SEED_FLOAT) # E: incompatible type
np.random.MT19937(SEED_ARR_FLOAT) # E: incompatible type
np.random.MT19937(SEED_ARRLIKE_FLOAT) # E: incompatible type
np.random.MT19937(SEED_STR) # E: incompatible type
np.random.PCG64(SEED_FLOAT) # E: incompatible type
np.random.PCG64(SEED_ARR_FLOAT) # E: incompatible type
np.random.PCG64(SEED_ARRLIKE_FLOAT) # E: incompatible type
np.random.PCG64(SEED_STR) # E: incompatible type
np.random.Philox(SEED_FLOAT) # E: incompatible type
np.random.Philox(SEED_ARR_FLOAT) # E: incompatible type
np.random.Philox(SEED_ARRLIKE_FLOAT) # E: incompatible type
np.random.Philox(SEED_STR) # E: incompatible type
np.random.SFC64(SEED_FLOAT) # E: incompatible type
np.random.SFC64(SEED_ARR_FLOAT) # E: incompatible type
np.random.SFC64(SEED_ARRLIKE_FLOAT) # E: incompatible type
np.random.SFC64(SEED_STR) # E: incompatible type
# Generator
np.random.Generator(None) # E: incompatible type
np.random.Generator(12333283902830213) # E: incompatible type
np.random.Generator("OxFEEDF00D") # E: incompatible type
np.random.Generator([123, 234]) # E: incompatible type
np.random.Generator(np.array([123, 234], dtype="u4")) # E: incompatible type

View File

@@ -0,0 +1,17 @@
import numpy as np
import numpy.typing as npt
AR_i8: npt.NDArray[np.int64]
np.rec.fromarrays(1) # E: No overload variant
np.rec.fromarrays([1, 2, 3], dtype=[("f8", "f8")], formats=["f8", "f8"]) # E: No overload variant
np.rec.fromrecords(AR_i8) # E: incompatible type
np.rec.fromrecords([(1.5,)], dtype=[("f8", "f8")], formats=["f8", "f8"]) # E: No overload variant
np.rec.fromstring("string", dtype=[("f8", "f8")]) # E: No overload variant
np.rec.fromstring(b"bytes") # E: No overload variant
np.rec.fromstring(b"(1.5,)", dtype=[("f8", "f8")], formats=["f8", "f8"]) # E: No overload variant
with open("test", "r") as f:
np.rec.fromfile(f, dtype=[("f8", "f8")]) # E: No overload variant

View File

@@ -0,0 +1,93 @@
import sys
import numpy as np
f2: np.float16
f8: np.float64
c8: np.complex64
# Construction
np.float32(3j) # E: incompatible type
# Technically the following examples are valid NumPy code. But they
# are not considered a best practice, and people who wish to use the
# stubs should instead do
#
# np.array([1.0, 0.0, 0.0], dtype=np.float32)
# np.array([], dtype=np.complex64)
#
# See e.g. the discussion on the mailing list
#
# https://mail.python.org/pipermail/numpy-discussion/2020-April/080566.html
#
# and the issue
#
# https://github.com/numpy/numpy-stubs/issues/41
#
# for more context.
np.float32([1.0, 0.0, 0.0]) # E: incompatible type
np.complex64([]) # E: incompatible type
np.complex64(1, 2) # E: Too many arguments
# TODO: protocols (can't check for non-existent protocols w/ __getattr__)
np.datetime64(0) # E: No overload variant
class A:
def __float__(self):
return 1.0
np.int8(A()) # E: incompatible type
np.int16(A()) # E: incompatible type
np.int32(A()) # E: incompatible type
np.int64(A()) # E: incompatible type
np.uint8(A()) # E: incompatible type
np.uint16(A()) # E: incompatible type
np.uint32(A()) # E: incompatible type
np.uint64(A()) # E: incompatible type
np.void("test") # E: incompatible type
np.generic(1) # E: Cannot instantiate abstract class
np.number(1) # E: Cannot instantiate abstract class
np.integer(1) # E: Cannot instantiate abstract class
np.inexact(1) # E: Cannot instantiate abstract class
np.character("test") # E: Cannot instantiate abstract class
np.flexible(b"test") # E: Cannot instantiate abstract class
np.float64(value=0.0) # E: Unexpected keyword argument
np.int64(value=0) # E: Unexpected keyword argument
np.uint64(value=0) # E: Unexpected keyword argument
np.complex128(value=0.0j) # E: Unexpected keyword argument
np.str_(value='bob') # E: No overload variant
np.bytes_(value=b'test') # E: No overload variant
np.void(value=b'test') # E: Unexpected keyword argument
np.bool_(value=True) # E: Unexpected keyword argument
np.datetime64(value="2019") # E: No overload variant
np.timedelta64(value=0) # E: Unexpected keyword argument
np.bytes_(b"hello", encoding='utf-8') # E: No overload variant
np.str_("hello", encoding='utf-8') # E: No overload variant
complex(np.bytes_("1")) # E: No overload variant
f8.item(1) # E: incompatible type
f8.item((0, 1)) # E: incompatible type
f8.squeeze(axis=1) # E: incompatible type
f8.squeeze(axis=(0, 1)) # E: incompatible type
f8.transpose(1) # E: incompatible type
def func(a: np.float32) -> None: ...
func(f2) # E: incompatible type
func(f8) # E: incompatible type
round(c8) # E: No overload variant
c8.__getnewargs__() # E: Invalid self argument
f2.__getnewargs__() # E: Invalid self argument
f2.hex() # E: Invalid self argument
np.float16.fromhex("0x0.0p+0") # E: Invalid self argument
f2.__trunc__() # E: Invalid self argument
f2.__getformat__("float") # E: Invalid self argument

View File

@@ -0,0 +1,8 @@
import numpy as np
class DTypeLike:
dtype: np.dtype[np.int_]
dtype_like: DTypeLike
np.expand_dims(dtype_like, (5, 10)) # E: No overload variant

View File

@@ -0,0 +1,9 @@
import numpy as np
import numpy.typing as npt
AR_f8: npt.NDArray[np.float64]
np.lib.stride_tricks.as_strided(AR_f8, shape=8) # E: No overload variant
np.lib.stride_tricks.as_strided(AR_f8, strides=8) # E: No overload variant
np.lib.stride_tricks.sliding_window_view(AR_f8, axis=(1,)) # E: No overload variant

View File

@@ -0,0 +1,26 @@
import numpy as np
import numpy.typing as npt
AR_U: npt.NDArray[np.str_]
def func() -> bool: ...
np.testing.assert_(True, msg=1) # E: incompatible type
np.testing.build_err_msg(1, "test") # E: incompatible type
np.testing.assert_almost_equal(AR_U, AR_U) # E: incompatible type
np.testing.assert_approx_equal([1, 2, 3], [1, 2, 3]) # E: incompatible type
np.testing.assert_array_almost_equal(AR_U, AR_U) # E: incompatible type
np.testing.assert_array_less(AR_U, AR_U) # E: incompatible type
np.testing.assert_string_equal(b"a", b"a") # E: incompatible type
np.testing.assert_raises(expected_exception=TypeError, callable=func) # E: No overload variant
np.testing.assert_raises_regex(expected_exception=TypeError, expected_regex="T", callable=func) # E: No overload variant
np.testing.assert_allclose(AR_U, AR_U) # E: incompatible type
np.testing.assert_array_almost_equal_nulp(AR_U, AR_U) # E: incompatible type
np.testing.assert_array_max_ulp(AR_U, AR_U) # E: incompatible type
np.testing.assert_warns(warning_class=RuntimeWarning, func=func) # E: No overload variant
np.testing.assert_no_warnings(func=func) # E: No overload variant
np.testing.assert_no_gc_cycles(func=func) # E: No overload variant

View File

@@ -0,0 +1,37 @@
from typing import Any, List, TypeVar
import numpy as np
import numpy.typing as npt
def func1(ar: npt.NDArray[Any], a: int) -> npt.NDArray[np.str_]:
pass
def func2(ar: npt.NDArray[Any], a: float) -> float:
pass
AR_b: npt.NDArray[np.bool_]
AR_m: npt.NDArray[np.timedelta64]
AR_LIKE_b: List[bool]
np.eye(10, M=20.0) # E: No overload variant
np.eye(10, k=2.5, dtype=int) # E: No overload variant
np.diag(AR_b, k=0.5) # E: No overload variant
np.diagflat(AR_b, k=0.5) # E: No overload variant
np.tri(10, M=20.0) # E: No overload variant
np.tri(10, k=2.5, dtype=int) # E: No overload variant
np.tril(AR_b, k=0.5) # E: No overload variant
np.triu(AR_b, k=0.5) # E: No overload variant
np.vander(AR_m) # E: incompatible type
np.histogram2d(AR_m) # E: No overload variant
np.mask_indices(10, func1) # E: incompatible type
np.mask_indices(10, func2, 10.5) # E: incompatible type

View File

@@ -0,0 +1,13 @@
import numpy as np
import numpy.typing as npt
DTYPE_i8: np.dtype[np.int64]
np.mintypecode(DTYPE_i8) # E: incompatible type
np.iscomplexobj(DTYPE_i8) # E: incompatible type
np.isrealobj(DTYPE_i8) # E: incompatible type
np.typename(DTYPE_i8) # E: No overload variant
np.typename("invalid") # E: No overload variant
np.common_type(np.timedelta64()) # E: incompatible type

View File

@@ -0,0 +1,21 @@
"""Typing tests for `numpy.core._ufunc_config`."""
import numpy as np
def func1(a: str, b: int, c: float) -> None: ...
def func2(a: str, *, b: int) -> None: ...
class Write1:
def write1(self, a: str) -> None: ...
class Write2:
def write(self, a: str, b: str) -> None: ...
class Write3:
def write(self, *, a: str) -> None: ...
np.seterrcall(func1) # E: Argument 1 to "seterrcall" has incompatible type
np.seterrcall(func2) # E: Argument 1 to "seterrcall" has incompatible type
np.seterrcall(Write1()) # E: Argument 1 to "seterrcall" has incompatible type
np.seterrcall(Write2()) # E: Argument 1 to "seterrcall" has incompatible type
np.seterrcall(Write3()) # E: Argument 1 to "seterrcall" has incompatible type

View File

@@ -0,0 +1,21 @@
from typing import List, Any
import numpy as np
AR_c: np.ndarray[Any, np.dtype[np.complex128]]
AR_m: np.ndarray[Any, np.dtype[np.timedelta64]]
AR_M: np.ndarray[Any, np.dtype[np.datetime64]]
AR_O: np.ndarray[Any, np.dtype[np.object_]]
np.fix(AR_c) # E: incompatible type
np.fix(AR_m) # E: incompatible type
np.fix(AR_M) # E: incompatible type
np.isposinf(AR_c) # E: incompatible type
np.isposinf(AR_m) # E: incompatible type
np.isposinf(AR_M) # E: incompatible type
np.isposinf(AR_O) # E: incompatible type
np.isneginf(AR_c) # E: incompatible type
np.isneginf(AR_m) # E: incompatible type
np.isneginf(AR_M) # E: incompatible type
np.isneginf(AR_O) # E: incompatible type

View File

@@ -0,0 +1,41 @@
import numpy as np
import numpy.typing as npt
AR_f8: npt.NDArray[np.float64]
np.sin.nin + "foo" # E: Unsupported operand types
np.sin(1, foo="bar") # E: No overload variant
np.abs(None) # E: No overload variant
np.add(1, 1, 1) # E: No overload variant
np.add(1, 1, axis=0) # E: No overload variant
np.matmul(AR_f8, AR_f8, where=True) # E: No overload variant
np.frexp(AR_f8, out=None) # E: No overload variant
np.frexp(AR_f8, out=AR_f8) # E: No overload variant
np.absolute.outer() # E: "None" not callable
np.frexp.outer() # E: "None" not callable
np.divmod.outer() # E: "None" not callable
np.matmul.outer() # E: "None" not callable
np.absolute.reduceat() # E: "None" not callable
np.frexp.reduceat() # E: "None" not callable
np.divmod.reduceat() # E: "None" not callable
np.matmul.reduceat() # E: "None" not callable
np.absolute.reduce() # E: "None" not callable
np.frexp.reduce() # E: "None" not callable
np.divmod.reduce() # E: "None" not callable
np.matmul.reduce() # E: "None" not callable
np.absolute.accumulate() # E: "None" not callable
np.frexp.accumulate() # E: "None" not callable
np.divmod.accumulate() # E: "None" not callable
np.matmul.accumulate() # E: "None" not callable
np.frexp.at() # E: "None" not callable
np.divmod.at() # E: "None" not callable
np.matmul.at() # E: "None" not callable

View File

@@ -0,0 +1,5 @@
import numpy as np
np.AxisError(1.0) # E: No overload variant
np.AxisError(1, ndim=2.0) # E: No overload variant
np.AxisError(2, msg_prefix=404) # E: No overload variant

View File

@@ -0,0 +1,17 @@
import numpy as np
reveal_type(np.uint128())
reveal_type(np.uint256())
reveal_type(np.int128())
reveal_type(np.int256())
reveal_type(np.float80())
reveal_type(np.float96())
reveal_type(np.float128())
reveal_type(np.float256())
reveal_type(np.complex160())
reveal_type(np.complex192())
reveal_type(np.complex256())
reveal_type(np.complex512())

View File

@@ -0,0 +1,10 @@
[mypy]
plugins = numpy.typing.mypy_plugin
show_absolute_path = True
implicit_reexport = False
[mypy-numpy]
ignore_errors = True
[mypy-numpy.*]
ignore_errors = True

View File

@@ -0,0 +1,588 @@
from __future__ import annotations
from typing import Any
import numpy as np
c16 = np.complex128(1)
f8 = np.float64(1)
i8 = np.int64(1)
u8 = np.uint64(1)
c8 = np.complex64(1)
f4 = np.float32(1)
i4 = np.int32(1)
u4 = np.uint32(1)
dt = np.datetime64(1, "D")
td = np.timedelta64(1, "D")
b_ = np.bool_(1)
b = bool(1)
c = complex(1)
f = float(1)
i = int(1)
class Object:
def __array__(self) -> np.ndarray[Any, np.dtype[np.object_]]:
ret = np.empty((), dtype=object)
ret[()] = self
return ret
def __sub__(self, value: Any) -> Object:
return self
def __rsub__(self, value: Any) -> Object:
return self
def __floordiv__(self, value: Any) -> Object:
return self
def __rfloordiv__(self, value: Any) -> Object:
return self
def __mul__(self, value: Any) -> Object:
return self
def __rmul__(self, value: Any) -> Object:
return self
def __pow__(self, value: Any) -> Object:
return self
def __rpow__(self, value: Any) -> Object:
return self
AR_b: np.ndarray[Any, np.dtype[np.bool_]] = np.array([True])
AR_u: np.ndarray[Any, np.dtype[np.uint32]] = np.array([1], dtype=np.uint32)
AR_i: np.ndarray[Any, np.dtype[np.int64]] = np.array([1])
AR_f: np.ndarray[Any, np.dtype[np.float64]] = np.array([1.0])
AR_c: np.ndarray[Any, np.dtype[np.complex128]] = np.array([1j])
AR_m: np.ndarray[Any, np.dtype[np.timedelta64]] = np.array([np.timedelta64(1, "D")])
AR_M: np.ndarray[Any, np.dtype[np.datetime64]] = np.array([np.datetime64(1, "D")])
AR_O: np.ndarray[Any, np.dtype[np.object_]] = np.array([Object()])
AR_LIKE_b = [True]
AR_LIKE_u = [np.uint32(1)]
AR_LIKE_i = [1]
AR_LIKE_f = [1.0]
AR_LIKE_c = [1j]
AR_LIKE_m = [np.timedelta64(1, "D")]
AR_LIKE_M = [np.datetime64(1, "D")]
AR_LIKE_O = [Object()]
# Array subtractions
AR_b - AR_LIKE_u
AR_b - AR_LIKE_i
AR_b - AR_LIKE_f
AR_b - AR_LIKE_c
AR_b - AR_LIKE_m
AR_b - AR_LIKE_O
AR_LIKE_u - AR_b
AR_LIKE_i - AR_b
AR_LIKE_f - AR_b
AR_LIKE_c - AR_b
AR_LIKE_m - AR_b
AR_LIKE_M - AR_b
AR_LIKE_O - AR_b
AR_u - AR_LIKE_b
AR_u - AR_LIKE_u
AR_u - AR_LIKE_i
AR_u - AR_LIKE_f
AR_u - AR_LIKE_c
AR_u - AR_LIKE_m
AR_u - AR_LIKE_O
AR_LIKE_b - AR_u
AR_LIKE_u - AR_u
AR_LIKE_i - AR_u
AR_LIKE_f - AR_u
AR_LIKE_c - AR_u
AR_LIKE_m - AR_u
AR_LIKE_M - AR_u
AR_LIKE_O - AR_u
AR_i - AR_LIKE_b
AR_i - AR_LIKE_u
AR_i - AR_LIKE_i
AR_i - AR_LIKE_f
AR_i - AR_LIKE_c
AR_i - AR_LIKE_m
AR_i - AR_LIKE_O
AR_LIKE_b - AR_i
AR_LIKE_u - AR_i
AR_LIKE_i - AR_i
AR_LIKE_f - AR_i
AR_LIKE_c - AR_i
AR_LIKE_m - AR_i
AR_LIKE_M - AR_i
AR_LIKE_O - AR_i
AR_f - AR_LIKE_b
AR_f - AR_LIKE_u
AR_f - AR_LIKE_i
AR_f - AR_LIKE_f
AR_f - AR_LIKE_c
AR_f - AR_LIKE_O
AR_LIKE_b - AR_f
AR_LIKE_u - AR_f
AR_LIKE_i - AR_f
AR_LIKE_f - AR_f
AR_LIKE_c - AR_f
AR_LIKE_O - AR_f
AR_c - AR_LIKE_b
AR_c - AR_LIKE_u
AR_c - AR_LIKE_i
AR_c - AR_LIKE_f
AR_c - AR_LIKE_c
AR_c - AR_LIKE_O
AR_LIKE_b - AR_c
AR_LIKE_u - AR_c
AR_LIKE_i - AR_c
AR_LIKE_f - AR_c
AR_LIKE_c - AR_c
AR_LIKE_O - AR_c
AR_m - AR_LIKE_b
AR_m - AR_LIKE_u
AR_m - AR_LIKE_i
AR_m - AR_LIKE_m
AR_LIKE_b - AR_m
AR_LIKE_u - AR_m
AR_LIKE_i - AR_m
AR_LIKE_m - AR_m
AR_LIKE_M - AR_m
AR_M - AR_LIKE_b
AR_M - AR_LIKE_u
AR_M - AR_LIKE_i
AR_M - AR_LIKE_m
AR_M - AR_LIKE_M
AR_LIKE_M - AR_M
AR_O - AR_LIKE_b
AR_O - AR_LIKE_u
AR_O - AR_LIKE_i
AR_O - AR_LIKE_f
AR_O - AR_LIKE_c
AR_O - AR_LIKE_O
AR_LIKE_b - AR_O
AR_LIKE_u - AR_O
AR_LIKE_i - AR_O
AR_LIKE_f - AR_O
AR_LIKE_c - AR_O
AR_LIKE_O - AR_O
# Array floor division
AR_b // AR_LIKE_b
AR_b // AR_LIKE_u
AR_b // AR_LIKE_i
AR_b // AR_LIKE_f
AR_b // AR_LIKE_O
AR_LIKE_b // AR_b
AR_LIKE_u // AR_b
AR_LIKE_i // AR_b
AR_LIKE_f // AR_b
AR_LIKE_O // AR_b
AR_u // AR_LIKE_b
AR_u // AR_LIKE_u
AR_u // AR_LIKE_i
AR_u // AR_LIKE_f
AR_u // AR_LIKE_O
AR_LIKE_b // AR_u
AR_LIKE_u // AR_u
AR_LIKE_i // AR_u
AR_LIKE_f // AR_u
AR_LIKE_m // AR_u
AR_LIKE_O // AR_u
AR_i // AR_LIKE_b
AR_i // AR_LIKE_u
AR_i // AR_LIKE_i
AR_i // AR_LIKE_f
AR_i // AR_LIKE_O
AR_LIKE_b // AR_i
AR_LIKE_u // AR_i
AR_LIKE_i // AR_i
AR_LIKE_f // AR_i
AR_LIKE_m // AR_i
AR_LIKE_O // AR_i
AR_f // AR_LIKE_b
AR_f // AR_LIKE_u
AR_f // AR_LIKE_i
AR_f // AR_LIKE_f
AR_f // AR_LIKE_O
AR_LIKE_b // AR_f
AR_LIKE_u // AR_f
AR_LIKE_i // AR_f
AR_LIKE_f // AR_f
AR_LIKE_m // AR_f
AR_LIKE_O // AR_f
AR_m // AR_LIKE_u
AR_m // AR_LIKE_i
AR_m // AR_LIKE_f
AR_m // AR_LIKE_m
AR_LIKE_m // AR_m
AR_O // AR_LIKE_b
AR_O // AR_LIKE_u
AR_O // AR_LIKE_i
AR_O // AR_LIKE_f
AR_O // AR_LIKE_O
AR_LIKE_b // AR_O
AR_LIKE_u // AR_O
AR_LIKE_i // AR_O
AR_LIKE_f // AR_O
AR_LIKE_O // AR_O
# Inplace multiplication
AR_b *= AR_LIKE_b
AR_u *= AR_LIKE_b
AR_u *= AR_LIKE_u
AR_i *= AR_LIKE_b
AR_i *= AR_LIKE_u
AR_i *= AR_LIKE_i
AR_f *= AR_LIKE_b
AR_f *= AR_LIKE_u
AR_f *= AR_LIKE_i
AR_f *= AR_LIKE_f
AR_c *= AR_LIKE_b
AR_c *= AR_LIKE_u
AR_c *= AR_LIKE_i
AR_c *= AR_LIKE_f
AR_c *= AR_LIKE_c
AR_m *= AR_LIKE_b
AR_m *= AR_LIKE_u
AR_m *= AR_LIKE_i
AR_m *= AR_LIKE_f
AR_O *= AR_LIKE_b
AR_O *= AR_LIKE_u
AR_O *= AR_LIKE_i
AR_O *= AR_LIKE_f
AR_O *= AR_LIKE_c
AR_O *= AR_LIKE_O
# Inplace power
AR_u **= AR_LIKE_b
AR_u **= AR_LIKE_u
AR_i **= AR_LIKE_b
AR_i **= AR_LIKE_u
AR_i **= AR_LIKE_i
AR_f **= AR_LIKE_b
AR_f **= AR_LIKE_u
AR_f **= AR_LIKE_i
AR_f **= AR_LIKE_f
AR_c **= AR_LIKE_b
AR_c **= AR_LIKE_u
AR_c **= AR_LIKE_i
AR_c **= AR_LIKE_f
AR_c **= AR_LIKE_c
AR_O **= AR_LIKE_b
AR_O **= AR_LIKE_u
AR_O **= AR_LIKE_i
AR_O **= AR_LIKE_f
AR_O **= AR_LIKE_c
AR_O **= AR_LIKE_O
# unary ops
-c16
-c8
-f8
-f4
-i8
-i4
-u8
-u4
-td
-AR_f
+c16
+c8
+f8
+f4
+i8
+i4
+u8
+u4
+td
+AR_f
abs(c16)
abs(c8)
abs(f8)
abs(f4)
abs(i8)
abs(i4)
abs(u8)
abs(u4)
abs(td)
abs(b_)
abs(AR_f)
# Time structures
dt + td
dt + i
dt + i4
dt + i8
dt - dt
dt - i
dt - i4
dt - i8
td + td
td + i
td + i4
td + i8
td - td
td - i
td - i4
td - i8
td / f
td / f4
td / f8
td / td
td // td
td % td
# boolean
b_ / b
b_ / b_
b_ / i
b_ / i8
b_ / i4
b_ / u8
b_ / u4
b_ / f
b_ / f8
b_ / f4
b_ / c
b_ / c16
b_ / c8
b / b_
b_ / b_
i / b_
i8 / b_
i4 / b_
u8 / b_
u4 / b_
f / b_
f8 / b_
f4 / b_
c / b_
c16 / b_
c8 / b_
# Complex
c16 + c16
c16 + f8
c16 + i8
c16 + c8
c16 + f4
c16 + i4
c16 + b_
c16 + b
c16 + c
c16 + f
c16 + i
c16 + AR_f
c16 + c16
f8 + c16
i8 + c16
c8 + c16
f4 + c16
i4 + c16
b_ + c16
b + c16
c + c16
f + c16
i + c16
AR_f + c16
c8 + c16
c8 + f8
c8 + i8
c8 + c8
c8 + f4
c8 + i4
c8 + b_
c8 + b
c8 + c
c8 + f
c8 + i
c8 + AR_f
c16 + c8
f8 + c8
i8 + c8
c8 + c8
f4 + c8
i4 + c8
b_ + c8
b + c8
c + c8
f + c8
i + c8
AR_f + c8
# Float
f8 + f8
f8 + i8
f8 + f4
f8 + i4
f8 + b_
f8 + b
f8 + c
f8 + f
f8 + i
f8 + AR_f
f8 + f8
i8 + f8
f4 + f8
i4 + f8
b_ + f8
b + f8
c + f8
f + f8
i + f8
AR_f + f8
f4 + f8
f4 + i8
f4 + f4
f4 + i4
f4 + b_
f4 + b
f4 + c
f4 + f
f4 + i
f4 + AR_f
f8 + f4
i8 + f4
f4 + f4
i4 + f4
b_ + f4
b + f4
c + f4
f + f4
i + f4
AR_f + f4
# Int
i8 + i8
i8 + u8
i8 + i4
i8 + u4
i8 + b_
i8 + b
i8 + c
i8 + f
i8 + i
i8 + AR_f
u8 + u8
u8 + i4
u8 + u4
u8 + b_
u8 + b
u8 + c
u8 + f
u8 + i
u8 + AR_f
i8 + i8
u8 + i8
i4 + i8
u4 + i8
b_ + i8
b + i8
c + i8
f + i8
i + i8
AR_f + i8
u8 + u8
i4 + u8
u4 + u8
b_ + u8
b + u8
c + u8
f + u8
i + u8
AR_f + u8
i4 + i8
i4 + i4
i4 + i
i4 + b_
i4 + b
i4 + AR_f
u4 + i8
u4 + i4
u4 + u8
u4 + u4
u4 + i
u4 + b_
u4 + b
u4 + AR_f
i8 + i4
i4 + i4
i + i4
b_ + i4
b + i4
AR_f + i4
i8 + u4
i4 + u4
u8 + u4
u4 + u4
b_ + u4
b + u4
i + u4
AR_f + u4

View File

@@ -0,0 +1,138 @@
import sys
from typing import Any
import numpy as np
class Index:
def __index__(self) -> int:
return 0
class SubClass(np.ndarray):
pass
def func(i: int, j: int, **kwargs: Any) -> SubClass:
return B
i8 = np.int64(1)
A = np.array([1])
B = A.view(SubClass).copy()
B_stack = np.array([[1], [1]]).view(SubClass)
C = [1]
if sys.version_info >= (3, 8):
np.ndarray(Index())
np.ndarray([Index()])
np.array(1, dtype=float)
np.array(1, copy=False)
np.array(1, order='F')
np.array(1, order=None)
np.array(1, subok=True)
np.array(1, ndmin=3)
np.array(1, str, copy=True, order='C', subok=False, ndmin=2)
np.asarray(A)
np.asarray(B)
np.asarray(C)
np.asanyarray(A)
np.asanyarray(B)
np.asanyarray(B, dtype=int)
np.asanyarray(C)
np.ascontiguousarray(A)
np.ascontiguousarray(B)
np.ascontiguousarray(C)
np.asfortranarray(A)
np.asfortranarray(B)
np.asfortranarray(C)
np.require(A)
np.require(B)
np.require(B, dtype=int)
np.require(B, requirements=None)
np.require(B, requirements="E")
np.require(B, requirements=["ENSUREARRAY"])
np.require(B, requirements={"F", "E"})
np.require(B, requirements=["C", "OWNDATA"])
np.require(B, requirements="W")
np.require(B, requirements="A")
np.require(C)
np.linspace(0, 2)
np.linspace(0.5, [0, 1, 2])
np.linspace([0, 1, 2], 3)
np.linspace(0j, 2)
np.linspace(0, 2, num=10)
np.linspace(0, 2, endpoint=True)
np.linspace(0, 2, retstep=True)
np.linspace(0j, 2j, retstep=True)
np.linspace(0, 2, dtype=bool)
np.linspace([0, 1], [2, 3], axis=Index())
np.logspace(0, 2, base=2)
np.logspace(0, 2, base=2)
np.logspace(0, 2, base=[1j, 2j], num=2)
np.geomspace(1, 2)
np.zeros_like(A)
np.zeros_like(C)
np.zeros_like(B)
np.zeros_like(B, dtype=np.int64)
np.ones_like(A)
np.ones_like(C)
np.ones_like(B)
np.ones_like(B, dtype=np.int64)
np.empty_like(A)
np.empty_like(C)
np.empty_like(B)
np.empty_like(B, dtype=np.int64)
np.full_like(A, i8)
np.full_like(C, i8)
np.full_like(B, i8)
np.full_like(B, i8, dtype=np.int64)
np.ones(1)
np.ones([1, 1, 1])
np.full(1, i8)
np.full([1, 1, 1], i8)
np.indices([1, 2, 3])
np.indices([1, 2, 3], sparse=True)
np.fromfunction(func, (3, 5))
np.identity(10)
np.atleast_1d(C)
np.atleast_1d(A)
np.atleast_1d(C, C)
np.atleast_1d(C, A)
np.atleast_1d(A, A)
np.atleast_2d(C)
np.atleast_3d(C)
np.vstack([C, C])
np.vstack([C, A])
np.vstack([A, A])
np.hstack([C, C])
np.stack([C, C])
np.stack([C, C], axis=0)
np.stack([C, C], out=B_stack)
np.block([[C, C], [C, C]])
np.block(A)

View File

@@ -0,0 +1,39 @@
from typing import Any, Optional
import numpy as np
from numpy.typing import ArrayLike, _SupportsArray
x1: ArrayLike = True
x2: ArrayLike = 5
x3: ArrayLike = 1.0
x4: ArrayLike = 1 + 1j
x5: ArrayLike = np.int8(1)
x6: ArrayLike = np.float64(1)
x7: ArrayLike = np.complex128(1)
x8: ArrayLike = np.array([1, 2, 3])
x9: ArrayLike = [1, 2, 3]
x10: ArrayLike = (1, 2, 3)
x11: ArrayLike = "foo"
x12: ArrayLike = memoryview(b'foo')
class A:
def __array__(self, dtype: Optional[np.dtype] = None) -> np.ndarray:
return np.array([1, 2, 3])
x13: ArrayLike = A()
scalar: _SupportsArray = np.int64(1)
scalar.__array__()
array: _SupportsArray = np.array(1)
array.__array__()
a: _SupportsArray = A()
a.__array__()
a.__array__()
# Escape hatch for when you mean to make something like an object
# array.
object_array_scalar: Any = (i for i in range(10))
np.array(object_array_scalar)

View File

@@ -0,0 +1,37 @@
import numpy as np
AR = np.arange(10)
AR.setflags(write=False)
with np.printoptions():
np.set_printoptions(
precision=1,
threshold=2,
edgeitems=3,
linewidth=4,
suppress=False,
nanstr="Bob",
infstr="Bill",
formatter={},
sign="+",
floatmode="unique",
)
np.get_printoptions()
str(AR)
np.array2string(
AR,
max_line_width=5,
precision=2,
suppress_small=True,
separator=";",
prefix="test",
threshold=5,
floatmode="fixed",
suffix="?",
legacy="1.13",
)
np.format_float_scientific(1, precision=5)
np.format_float_positional(1, trim="k")
np.array_repr(AR)
np.array_str(AR)

View File

@@ -0,0 +1,27 @@
from __future__ import annotations
from typing import Any
import numpy as np
AR_i8: np.ndarray[Any, np.dtype[np.int_]] = np.arange(10)
ar_iter = np.lib.Arrayterator(AR_i8)
ar_iter.var
ar_iter.buf_size
ar_iter.start
ar_iter.stop
ar_iter.step
ar_iter.shape
ar_iter.flat
ar_iter.__array__()
for i in ar_iter:
pass
ar_iter[0]
ar_iter[...]
ar_iter[:]
ar_iter[0, 0, 0]
ar_iter[..., 0, :]

View File

@@ -0,0 +1,131 @@
import numpy as np
i8 = np.int64(1)
u8 = np.uint64(1)
i4 = np.int32(1)
u4 = np.uint32(1)
b_ = np.bool_(1)
b = bool(1)
i = int(1)
AR = np.array([0, 1, 2], dtype=np.int32)
AR.setflags(write=False)
i8 << i8
i8 >> i8
i8 | i8
i8 ^ i8
i8 & i8
i8 << AR
i8 >> AR
i8 | AR
i8 ^ AR
i8 & AR
i4 << i4
i4 >> i4
i4 | i4
i4 ^ i4
i4 & i4
i8 << i4
i8 >> i4
i8 | i4
i8 ^ i4
i8 & i4
i8 << i
i8 >> i
i8 | i
i8 ^ i
i8 & i
i8 << b_
i8 >> b_
i8 | b_
i8 ^ b_
i8 & b_
i8 << b
i8 >> b
i8 | b
i8 ^ b
i8 & b
u8 << u8
u8 >> u8
u8 | u8
u8 ^ u8
u8 & u8
u8 << AR
u8 >> AR
u8 | AR
u8 ^ AR
u8 & AR
u4 << u4
u4 >> u4
u4 | u4
u4 ^ u4
u4 & u4
u4 << i4
u4 >> i4
u4 | i4
u4 ^ i4
u4 & i4
u4 << i
u4 >> i
u4 | i
u4 ^ i
u4 & i
u8 << b_
u8 >> b_
u8 | b_
u8 ^ b_
u8 & b_
u8 << b
u8 >> b
u8 | b
u8 ^ b
u8 & b
b_ << b_
b_ >> b_
b_ | b_
b_ ^ b_
b_ & b_
b_ << AR
b_ >> AR
b_ | AR
b_ ^ AR
b_ & AR
b_ << b
b_ >> b
b_ | b
b_ ^ b
b_ & b
b_ << i
b_ >> i
b_ | i
b_ ^ i
b_ & i
~i8
~i4
~u8
~u4
~b_
~AR

View File

@@ -0,0 +1,301 @@
from __future__ import annotations
from typing import Any
import numpy as np
c16 = np.complex128()
f8 = np.float64()
i8 = np.int64()
u8 = np.uint64()
c8 = np.complex64()
f4 = np.float32()
i4 = np.int32()
u4 = np.uint32()
dt = np.datetime64(0, "D")
td = np.timedelta64(0, "D")
b_ = np.bool_()
b = bool()
c = complex()
f = float()
i = int()
SEQ = (0, 1, 2, 3, 4)
AR_b: np.ndarray[Any, np.dtype[np.bool_]] = np.array([True])
AR_u: np.ndarray[Any, np.dtype[np.uint32]] = np.array([1], dtype=np.uint32)
AR_i: np.ndarray[Any, np.dtype[np.int_]] = np.array([1])
AR_f: np.ndarray[Any, np.dtype[np.float_]] = np.array([1.0])
AR_c: np.ndarray[Any, np.dtype[np.complex_]] = np.array([1.0j])
AR_m: np.ndarray[Any, np.dtype[np.timedelta64]] = np.array([np.timedelta64("1")])
AR_M: np.ndarray[Any, np.dtype[np.datetime64]] = np.array([np.datetime64("1")])
AR_O: np.ndarray[Any, np.dtype[np.object_]] = np.array([1], dtype=object)
# Arrays
AR_b > AR_b
AR_b > AR_u
AR_b > AR_i
AR_b > AR_f
AR_b > AR_c
AR_u > AR_b
AR_u > AR_u
AR_u > AR_i
AR_u > AR_f
AR_u > AR_c
AR_i > AR_b
AR_i > AR_u
AR_i > AR_i
AR_i > AR_f
AR_i > AR_c
AR_f > AR_b
AR_f > AR_u
AR_f > AR_i
AR_f > AR_f
AR_f > AR_c
AR_c > AR_b
AR_c > AR_u
AR_c > AR_i
AR_c > AR_f
AR_c > AR_c
AR_m > AR_b
AR_m > AR_u
AR_m > AR_i
AR_b > AR_m
AR_u > AR_m
AR_i > AR_m
AR_M > AR_M
AR_O > AR_O
1 > AR_O
AR_O > 1
# Time structures
dt > dt
td > td
td > i
td > i4
td > i8
td > AR_i
td > SEQ
# boolean
b_ > b
b_ > b_
b_ > i
b_ > i8
b_ > i4
b_ > u8
b_ > u4
b_ > f
b_ > f8
b_ > f4
b_ > c
b_ > c16
b_ > c8
b_ > AR_i
b_ > SEQ
# Complex
c16 > c16
c16 > f8
c16 > i8
c16 > c8
c16 > f4
c16 > i4
c16 > b_
c16 > b
c16 > c
c16 > f
c16 > i
c16 > AR_i
c16 > SEQ
c16 > c16
f8 > c16
i8 > c16
c8 > c16
f4 > c16
i4 > c16
b_ > c16
b > c16
c > c16
f > c16
i > c16
AR_i > c16
SEQ > c16
c8 > c16
c8 > f8
c8 > i8
c8 > c8
c8 > f4
c8 > i4
c8 > b_
c8 > b
c8 > c
c8 > f
c8 > i
c8 > AR_i
c8 > SEQ
c16 > c8
f8 > c8
i8 > c8
c8 > c8
f4 > c8
i4 > c8
b_ > c8
b > c8
c > c8
f > c8
i > c8
AR_i > c8
SEQ > c8
# Float
f8 > f8
f8 > i8
f8 > f4
f8 > i4
f8 > b_
f8 > b
f8 > c
f8 > f
f8 > i
f8 > AR_i
f8 > SEQ
f8 > f8
i8 > f8
f4 > f8
i4 > f8
b_ > f8
b > f8
c > f8
f > f8
i > f8
AR_i > f8
SEQ > f8
f4 > f8
f4 > i8
f4 > f4
f4 > i4
f4 > b_
f4 > b
f4 > c
f4 > f
f4 > i
f4 > AR_i
f4 > SEQ
f8 > f4
i8 > f4
f4 > f4
i4 > f4
b_ > f4
b > f4
c > f4
f > f4
i > f4
AR_i > f4
SEQ > f4
# Int
i8 > i8
i8 > u8
i8 > i4
i8 > u4
i8 > b_
i8 > b
i8 > c
i8 > f
i8 > i
i8 > AR_i
i8 > SEQ
u8 > u8
u8 > i4
u8 > u4
u8 > b_
u8 > b
u8 > c
u8 > f
u8 > i
u8 > AR_i
u8 > SEQ
i8 > i8
u8 > i8
i4 > i8
u4 > i8
b_ > i8
b > i8
c > i8
f > i8
i > i8
AR_i > i8
SEQ > i8
u8 > u8
i4 > u8
u4 > u8
b_ > u8
b > u8
c > u8
f > u8
i > u8
AR_i > u8
SEQ > u8
i4 > i8
i4 > i4
i4 > i
i4 > b_
i4 > b
i4 > AR_i
i4 > SEQ
u4 > i8
u4 > i4
u4 > u8
u4 > u4
u4 > i
u4 > b_
u4 > b
u4 > AR_i
u4 > SEQ
i8 > i4
i4 > i4
i > i4
b_ > i4
b > i4
AR_i > i4
SEQ > i4
i8 > u4
i4 > u4
u8 > u4
u4 > u4
b_ > u4
b > u4
i > u4
AR_i > u4
SEQ > u4

View File

@@ -0,0 +1,57 @@
import numpy as np
dtype_obj = np.dtype(np.str_)
void_dtype_obj = np.dtype([("f0", np.float64), ("f1", np.float32)])
np.dtype(dtype=np.int64)
np.dtype(int)
np.dtype("int")
np.dtype(None)
np.dtype((int, 2))
np.dtype((int, (1,)))
np.dtype({"names": ["a", "b"], "formats": [int, float]})
np.dtype({"names": ["a"], "formats": [int], "titles": [object]})
np.dtype({"names": ["a"], "formats": [int], "titles": [object()]})
np.dtype([("name", np.unicode_, 16), ("grades", np.float64, (2,)), ("age", "int32")])
np.dtype(
{
"names": ["a", "b"],
"formats": [int, float],
"itemsize": 9,
"aligned": False,
"titles": ["x", "y"],
"offsets": [0, 1],
}
)
np.dtype((np.float_, float))
class Test:
dtype = np.dtype(float)
np.dtype(Test())
# Methods and attributes
dtype_obj.base
dtype_obj.subdtype
dtype_obj.newbyteorder()
dtype_obj.type
dtype_obj.name
dtype_obj.names
dtype_obj * 0
dtype_obj * 2
0 * dtype_obj
2 * dtype_obj
void_dtype_obj["f0"]
void_dtype_obj[0]
void_dtype_obj[["f0", "f1"]]
void_dtype_obj[["f0"]]

View File

@@ -0,0 +1,36 @@
from __future__ import annotations
from typing import Any
import numpy as np
AR_LIKE_b = [True, True, True]
AR_LIKE_u = [np.uint32(1), np.uint32(2), np.uint32(3)]
AR_LIKE_i = [1, 2, 3]
AR_LIKE_f = [1.0, 2.0, 3.0]
AR_LIKE_c = [1j, 2j, 3j]
AR_LIKE_U = ["1", "2", "3"]
OUT_f: np.ndarray[Any, np.dtype[np.float64]] = np.empty(3, dtype=np.float64)
OUT_c: np.ndarray[Any, np.dtype[np.complex128]] = np.empty(3, dtype=np.complex128)
np.einsum("i,i->i", AR_LIKE_b, AR_LIKE_b)
np.einsum("i,i->i", AR_LIKE_u, AR_LIKE_u)
np.einsum("i,i->i", AR_LIKE_i, AR_LIKE_i)
np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f)
np.einsum("i,i->i", AR_LIKE_c, AR_LIKE_c)
np.einsum("i,i->i", AR_LIKE_b, AR_LIKE_i)
np.einsum("i,i,i,i->i", AR_LIKE_b, AR_LIKE_u, AR_LIKE_i, AR_LIKE_c)
np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f, dtype="c16")
np.einsum("i,i->i", AR_LIKE_U, AR_LIKE_U, dtype=bool, casting="unsafe")
np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f, out=OUT_c)
np.einsum("i,i->i", AR_LIKE_U, AR_LIKE_U, dtype=int, casting="unsafe", out=OUT_f)
np.einsum_path("i,i->i", AR_LIKE_b, AR_LIKE_b)
np.einsum_path("i,i->i", AR_LIKE_u, AR_LIKE_u)
np.einsum_path("i,i->i", AR_LIKE_i, AR_LIKE_i)
np.einsum_path("i,i->i", AR_LIKE_f, AR_LIKE_f)
np.einsum_path("i,i->i", AR_LIKE_c, AR_LIKE_c)
np.einsum_path("i,i->i", AR_LIKE_b, AR_LIKE_i)
np.einsum_path("i,i,i,i->i", AR_LIKE_b, AR_LIKE_u, AR_LIKE_i, AR_LIKE_c)

View File

@@ -0,0 +1,16 @@
import numpy as np
a = np.empty((2, 2)).flat
a.base
a.copy()
a.coords
a.index
iter(a)
next(a)
a[0]
a[[0, 1, 2]]
a[...]
a[:]
a.__array__()
a.__array__(np.dtype(np.float64))

View File

@@ -0,0 +1,260 @@
"""Tests for :mod:`numpy.core.fromnumeric`."""
import numpy as np
A = np.array(True, ndmin=2, dtype=bool)
B = np.array(1.0, ndmin=2, dtype=np.float32)
A.setflags(write=False)
B.setflags(write=False)
a = np.bool_(True)
b = np.float32(1.0)
c = 1.0
d = np.array(1.0, dtype=np.float32) # writeable
np.take(a, 0)
np.take(b, 0)
np.take(c, 0)
np.take(A, 0)
np.take(B, 0)
np.take(A, [0])
np.take(B, [0])
np.reshape(a, 1)
np.reshape(b, 1)
np.reshape(c, 1)
np.reshape(A, 1)
np.reshape(B, 1)
np.choose(a, [True, True])
np.choose(A, [1.0, 1.0])
np.repeat(a, 1)
np.repeat(b, 1)
np.repeat(c, 1)
np.repeat(A, 1)
np.repeat(B, 1)
np.swapaxes(A, 0, 0)
np.swapaxes(B, 0, 0)
np.transpose(a)
np.transpose(b)
np.transpose(c)
np.transpose(A)
np.transpose(B)
np.partition(a, 0, axis=None)
np.partition(b, 0, axis=None)
np.partition(c, 0, axis=None)
np.partition(A, 0)
np.partition(B, 0)
np.argpartition(a, 0)
np.argpartition(b, 0)
np.argpartition(c, 0)
np.argpartition(A, 0)
np.argpartition(B, 0)
np.sort(A, 0)
np.sort(B, 0)
np.argsort(A, 0)
np.argsort(B, 0)
np.argmax(A)
np.argmax(B)
np.argmax(A, axis=0)
np.argmax(B, axis=0)
np.argmin(A)
np.argmin(B)
np.argmin(A, axis=0)
np.argmin(B, axis=0)
np.searchsorted(A[0], 0)
np.searchsorted(B[0], 0)
np.searchsorted(A[0], [0])
np.searchsorted(B[0], [0])
np.resize(a, (5, 5))
np.resize(b, (5, 5))
np.resize(c, (5, 5))
np.resize(A, (5, 5))
np.resize(B, (5, 5))
np.squeeze(a)
np.squeeze(b)
np.squeeze(c)
np.squeeze(A)
np.squeeze(B)
np.diagonal(A)
np.diagonal(B)
np.trace(A)
np.trace(B)
np.ravel(a)
np.ravel(b)
np.ravel(c)
np.ravel(A)
np.ravel(B)
np.nonzero(A)
np.nonzero(B)
np.shape(a)
np.shape(b)
np.shape(c)
np.shape(A)
np.shape(B)
np.compress([True], a)
np.compress([True], b)
np.compress([True], c)
np.compress([True], A)
np.compress([True], B)
np.clip(a, 0, 1.0)
np.clip(b, -1, 1)
np.clip(a, 0, None)
np.clip(b, None, 1)
np.clip(c, 0, 1)
np.clip(A, 0, 1)
np.clip(B, 0, 1)
np.clip(B, [0, 1], [1, 2])
np.sum(a)
np.sum(b)
np.sum(c)
np.sum(A)
np.sum(B)
np.sum(A, axis=0)
np.sum(B, axis=0)
np.all(a)
np.all(b)
np.all(c)
np.all(A)
np.all(B)
np.all(A, axis=0)
np.all(B, axis=0)
np.all(A, keepdims=True)
np.all(B, keepdims=True)
np.any(a)
np.any(b)
np.any(c)
np.any(A)
np.any(B)
np.any(A, axis=0)
np.any(B, axis=0)
np.any(A, keepdims=True)
np.any(B, keepdims=True)
np.cumsum(a)
np.cumsum(b)
np.cumsum(c)
np.cumsum(A)
np.cumsum(B)
np.ptp(b)
np.ptp(c)
np.ptp(B)
np.ptp(B, axis=0)
np.ptp(B, keepdims=True)
np.amax(a)
np.amax(b)
np.amax(c)
np.amax(A)
np.amax(B)
np.amax(A, axis=0)
np.amax(B, axis=0)
np.amax(A, keepdims=True)
np.amax(B, keepdims=True)
np.amin(a)
np.amin(b)
np.amin(c)
np.amin(A)
np.amin(B)
np.amin(A, axis=0)
np.amin(B, axis=0)
np.amin(A, keepdims=True)
np.amin(B, keepdims=True)
np.prod(a)
np.prod(b)
np.prod(c)
np.prod(A)
np.prod(B)
np.prod(a, dtype=None)
np.prod(A, dtype=None)
np.prod(A, axis=0)
np.prod(B, axis=0)
np.prod(A, keepdims=True)
np.prod(B, keepdims=True)
np.prod(b, out=d)
np.prod(B, out=d)
np.cumprod(a)
np.cumprod(b)
np.cumprod(c)
np.cumprod(A)
np.cumprod(B)
np.ndim(a)
np.ndim(b)
np.ndim(c)
np.ndim(A)
np.ndim(B)
np.size(a)
np.size(b)
np.size(c)
np.size(A)
np.size(B)
np.around(a)
np.around(b)
np.around(c)
np.around(A)
np.around(B)
np.mean(a)
np.mean(b)
np.mean(c)
np.mean(A)
np.mean(B)
np.mean(A, axis=0)
np.mean(B, axis=0)
np.mean(A, keepdims=True)
np.mean(B, keepdims=True)
np.mean(b, out=d)
np.mean(B, out=d)
np.std(a)
np.std(b)
np.std(c)
np.std(A)
np.std(B)
np.std(A, axis=0)
np.std(B, axis=0)
np.std(A, keepdims=True)
np.std(B, keepdims=True)
np.std(b, out=d)
np.std(B, out=d)
np.var(a)
np.var(b)
np.var(c)
np.var(A)
np.var(B)
np.var(A, axis=0)
np.var(B, axis=0)
np.var(A, keepdims=True)
np.var(B, keepdims=True)
np.var(b, out=d)
np.var(B, out=d)

View File

@@ -0,0 +1,64 @@
from __future__ import annotations
from typing import Any
import numpy as np
AR_LIKE_b = [[True, True], [True, True]]
AR_LIKE_i = [[1, 2], [3, 4]]
AR_LIKE_f = [[1.0, 2.0], [3.0, 4.0]]
AR_LIKE_U = [["1", "2"], ["3", "4"]]
AR_i8: np.ndarray[Any, np.dtype[np.int64]] = np.array(AR_LIKE_i, dtype=np.int64)
np.ndenumerate(AR_i8)
np.ndenumerate(AR_LIKE_f)
np.ndenumerate(AR_LIKE_U)
np.ndenumerate(AR_i8).iter
np.ndenumerate(AR_LIKE_f).iter
np.ndenumerate(AR_LIKE_U).iter
next(np.ndenumerate(AR_i8))
next(np.ndenumerate(AR_LIKE_f))
next(np.ndenumerate(AR_LIKE_U))
iter(np.ndenumerate(AR_i8))
iter(np.ndenumerate(AR_LIKE_f))
iter(np.ndenumerate(AR_LIKE_U))
iter(np.ndindex(1, 2, 3))
next(np.ndindex(1, 2, 3))
np.unravel_index([22, 41, 37], (7, 6))
np.unravel_index([31, 41, 13], (7, 6), order='F')
np.unravel_index(1621, (6, 7, 8, 9))
np.ravel_multi_index(AR_LIKE_i, (7, 6))
np.ravel_multi_index(AR_LIKE_i, (7, 6), order='F')
np.ravel_multi_index(AR_LIKE_i, (4, 6), mode='clip')
np.ravel_multi_index(AR_LIKE_i, (4, 4), mode=('clip', 'wrap'))
np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9))
np.mgrid[1:1:2]
np.mgrid[1:1:2, None:10]
np.ogrid[1:1:2]
np.ogrid[1:1:2, None:10]
np.index_exp[0:1]
np.index_exp[0:1, None:3]
np.index_exp[0, 0:1, ..., [0, 1, 3]]
np.s_[0:1]
np.s_[0:1, None:3]
np.s_[0, 0:1, ..., [0, 1, 3]]
np.ix_(AR_LIKE_b[0])
np.ix_(AR_LIKE_i[0], AR_LIKE_f[0])
np.ix_(AR_i8[0])
np.fill_diagonal(AR_i8, 5)
np.diag_indices(4)
np.diag_indices(2, 3)
np.diag_indices_from(AR_i8)

View File

@@ -0,0 +1,25 @@
from __future__ import annotations
from io import StringIO
import numpy as np
FILE = StringIO()
AR = np.arange(10, dtype=np.float64)
def func(a: int) -> bool: ...
np.deprecate(func)
np.deprecate()
np.deprecate_with_doc("test")
np.deprecate_with_doc(None)
np.byte_bounds(AR)
np.byte_bounds(np.float64())
np.info(1, output=FILE)
np.source(np.interp, output=FILE)
np.lookfor("binary representation", output=FILE)

View File

@@ -0,0 +1,18 @@
from numpy.lib import NumpyVersion
version = NumpyVersion("1.8.0")
version.vstring
version.version
version.major
version.minor
version.bugfix
version.pre_release
version.is_devversion
version == version
version != version
version < "1.8.0"
version <= version
version > version
version >= "1.8.0"

View File

@@ -0,0 +1,45 @@
from functools import partial
from typing import Callable, List, Tuple
import pytest # type: ignore
import numpy as np
AR = np.array(0)
AR.setflags(write=False)
KACF = frozenset({None, "K", "A", "C", "F"})
ACF = frozenset({None, "A", "C", "F"})
CF = frozenset({None, "C", "F"})
order_list: List[Tuple[frozenset, Callable]] = [
(KACF, partial(np.ndarray, 1)),
(KACF, AR.tobytes),
(KACF, partial(AR.astype, int)),
(KACF, AR.copy),
(ACF, partial(AR.reshape, 1)),
(KACF, AR.flatten),
(KACF, AR.ravel),
(KACF, partial(np.array, 1)),
(CF, partial(np.zeros, 1)),
(CF, partial(np.ones, 1)),
(CF, partial(np.empty, 1)),
(CF, partial(np.full, 1, 1)),
(KACF, partial(np.zeros_like, AR)),
(KACF, partial(np.ones_like, AR)),
(KACF, partial(np.empty_like, AR)),
(KACF, partial(np.full_like, AR, 1)),
(KACF, partial(np.add, 1, 1)), # i.e. np.ufunc.__call__
(ACF, partial(np.reshape, AR, 1)),
(KACF, partial(np.ravel, AR)),
(KACF, partial(np.asarray, 1)),
(KACF, partial(np.asanyarray, 1)),
]
for order_set, func in order_list:
for order in order_set:
func(order=order)
invalid_orders = KACF - order_set
for order in invalid_orders:
with pytest.raises(ValueError):
func(order=order)

View File

@@ -0,0 +1,149 @@
import numpy as np
f8 = np.float64(1)
i8 = np.int64(1)
u8 = np.uint64(1)
f4 = np.float32(1)
i4 = np.int32(1)
u4 = np.uint32(1)
td = np.timedelta64(1, "D")
b_ = np.bool_(1)
b = bool(1)
f = float(1)
i = int(1)
AR = np.array([1], dtype=np.bool_)
AR.setflags(write=False)
AR2 = np.array([1], dtype=np.timedelta64)
AR2.setflags(write=False)
# Time structures
td % td
td % AR2
AR2 % td
divmod(td, td)
divmod(td, AR2)
divmod(AR2, td)
# Bool
b_ % b
b_ % i
b_ % f
b_ % b_
b_ % i8
b_ % u8
b_ % f8
b_ % AR
divmod(b_, b)
divmod(b_, i)
divmod(b_, f)
divmod(b_, b_)
divmod(b_, i8)
divmod(b_, u8)
divmod(b_, f8)
divmod(b_, AR)
b % b_
i % b_
f % b_
b_ % b_
i8 % b_
u8 % b_
f8 % b_
AR % b_
divmod(b, b_)
divmod(i, b_)
divmod(f, b_)
divmod(b_, b_)
divmod(i8, b_)
divmod(u8, b_)
divmod(f8, b_)
divmod(AR, b_)
# int
i8 % b
i8 % i
i8 % f
i8 % i8
i8 % f8
i4 % i8
i4 % f8
i4 % i4
i4 % f4
i8 % AR
divmod(i8, b)
divmod(i8, i)
divmod(i8, f)
divmod(i8, i8)
divmod(i8, f8)
divmod(i8, i4)
divmod(i8, f4)
divmod(i4, i4)
divmod(i4, f4)
divmod(i8, AR)
b % i8
i % i8
f % i8
i8 % i8
f8 % i8
i8 % i4
f8 % i4
i4 % i4
f4 % i4
AR % i8
divmod(b, i8)
divmod(i, i8)
divmod(f, i8)
divmod(i8, i8)
divmod(f8, i8)
divmod(i4, i8)
divmod(f4, i8)
divmod(i4, i4)
divmod(f4, i4)
divmod(AR, i8)
# float
f8 % b
f8 % i
f8 % f
i8 % f4
f4 % f4
f8 % AR
divmod(f8, b)
divmod(f8, i)
divmod(f8, f)
divmod(f8, f8)
divmod(f8, f4)
divmod(f4, f4)
divmod(f8, AR)
b % f8
i % f8
f % f8
f8 % f8
f8 % f8
f4 % f4
AR % f8
divmod(b, f8)
divmod(i, f8)
divmod(f, f8)
divmod(f8, f8)
divmod(f4, f8)
divmod(f4, f4)
divmod(AR, f8)

View File

@@ -0,0 +1,43 @@
import numpy as np
from numpy import f2py
np.char
np.ctypeslib
np.emath
np.fft
np.lib
np.linalg
np.ma
np.matrixlib
np.polynomial
np.random
np.rec
np.testing
np.version
np.lib.format
np.lib.mixins
np.lib.scimath
np.lib.stride_tricks
np.ma.extras
np.polynomial.chebyshev
np.polynomial.hermite
np.polynomial.hermite_e
np.polynomial.laguerre
np.polynomial.legendre
np.polynomial.polynomial
np.__path__
np.__version__
np.__git_version__
np.__all__
np.char.__all__
np.ctypeslib.__all__
np.emath.__all__
np.lib.__all__
np.ma.__all__
np.random.__all__
np.rec.__all__
np.testing.__all__
f2py.__all__

View File

@@ -0,0 +1,76 @@
import numpy as np
import numpy.typing as npt
AR_f8: npt.NDArray[np.float64] = np.array([1.0])
AR_i4 = np.array([1], dtype=np.int32)
AR_u1 = np.array([1], dtype=np.uint8)
AR_LIKE_f = [1.5]
AR_LIKE_i = [1]
b_f8 = np.broadcast(AR_f8)
b_i4_f8_f8 = np.broadcast(AR_i4, AR_f8, AR_f8)
next(b_f8)
b_f8.reset()
b_f8.index
b_f8.iters
b_f8.nd
b_f8.ndim
b_f8.numiter
b_f8.shape
b_f8.size
next(b_i4_f8_f8)
b_i4_f8_f8.reset()
b_i4_f8_f8.ndim
b_i4_f8_f8.index
b_i4_f8_f8.iters
b_i4_f8_f8.nd
b_i4_f8_f8.numiter
b_i4_f8_f8.shape
b_i4_f8_f8.size
np.inner(AR_f8, AR_i4)
np.where([True, True, False])
np.where([True, True, False], 1, 0)
np.lexsort([0, 1, 2])
np.can_cast(np.dtype("i8"), int)
np.can_cast(AR_f8, "f8")
np.can_cast(AR_f8, np.complex128, casting="unsafe")
np.min_scalar_type([1])
np.min_scalar_type(AR_f8)
np.result_type(int, AR_i4)
np.result_type(AR_f8, AR_u1)
np.result_type(AR_f8, np.complex128)
np.dot(AR_LIKE_f, AR_i4)
np.dot(AR_u1, 1)
np.dot(1.5j, 1)
np.dot(AR_u1, 1, out=AR_f8)
np.vdot(AR_LIKE_f, AR_i4)
np.vdot(AR_u1, 1)
np.vdot(1.5j, 1)
np.bincount(AR_i4)
np.copyto(AR_f8, [1.6])
np.putmask(AR_f8, [True], 1.5)
np.packbits(AR_i4)
np.packbits(AR_u1)
np.unpackbits(AR_u1)
np.shares_memory(1, 2)
np.shares_memory(AR_f8, AR_f8, max_work=1)
np.may_share_memory(1, 2)
np.may_share_memory(AR_f8, AR_f8, max_work=1)

View File

@@ -0,0 +1,94 @@
import os
import tempfile
import numpy as np
nd = np.array([[1, 2], [3, 4]])
scalar_array = np.array(1)
# item
scalar_array.item()
nd.item(1)
nd.item(0, 1)
nd.item((0, 1))
# tolist is pretty simple
# itemset
scalar_array.itemset(3)
nd.itemset(3, 0)
nd.itemset((0, 0), 3)
# tobytes
nd.tobytes()
nd.tobytes("C")
nd.tobytes(None)
# tofile
if os.name != "nt":
with tempfile.NamedTemporaryFile(suffix=".txt") as tmp:
nd.tofile(tmp.name)
nd.tofile(tmp.name, "")
nd.tofile(tmp.name, sep="")
nd.tofile(tmp.name, "", "%s")
nd.tofile(tmp.name, format="%s")
nd.tofile(tmp)
# dump is pretty simple
# dumps is pretty simple
# astype
nd.astype("float")
nd.astype(float)
nd.astype(float, "K")
nd.astype(float, order="K")
nd.astype(float, "K", "unsafe")
nd.astype(float, casting="unsafe")
nd.astype(float, "K", "unsafe", True)
nd.astype(float, subok=True)
nd.astype(float, "K", "unsafe", True, True)
nd.astype(float, copy=True)
# byteswap
nd.byteswap()
nd.byteswap(True)
# copy
nd.copy()
nd.copy("C")
# view
nd.view()
nd.view(np.int64)
nd.view(dtype=np.int64)
nd.view(np.int64, np.matrix)
nd.view(type=np.matrix)
# getfield
complex_array = np.array([[1 + 1j, 0], [0, 1 - 1j]], dtype=np.complex128)
complex_array.getfield("float")
complex_array.getfield(float)
complex_array.getfield("float", 8)
complex_array.getfield(float, offset=8)
# setflags
nd.setflags()
nd.setflags(True)
nd.setflags(write=True)
nd.setflags(True, True)
nd.setflags(write=True, align=True)
nd.setflags(True, True, False)
nd.setflags(write=True, align=True, uic=False)
# fill is pretty simple

View File

@@ -0,0 +1,185 @@
"""
Tests for miscellaneous (non-magic) ``np.ndarray``/``np.generic`` methods.
More extensive tests are performed for the methods'
function-based counterpart in `../from_numeric.py`.
"""
from __future__ import annotations
import operator
from typing import cast, Any
import numpy as np
class SubClass(np.ndarray): ...
i4 = np.int32(1)
A: np.ndarray[Any, np.dtype[np.int32]] = np.array([[1]], dtype=np.int32)
B0 = np.empty((), dtype=np.int32).view(SubClass)
B1 = np.empty((1,), dtype=np.int32).view(SubClass)
B2 = np.empty((1, 1), dtype=np.int32).view(SubClass)
C: np.ndarray[Any, np.dtype[np.int32]] = np.array([0, 1, 2], dtype=np.int32)
D = np.empty(3).view(SubClass)
i4.all()
A.all()
A.all(axis=0)
A.all(keepdims=True)
A.all(out=B0)
i4.any()
A.any()
A.any(axis=0)
A.any(keepdims=True)
A.any(out=B0)
i4.argmax()
A.argmax()
A.argmax(axis=0)
A.argmax(out=B0)
i4.argmin()
A.argmin()
A.argmin(axis=0)
A.argmin(out=B0)
i4.argsort()
A.argsort()
i4.choose([()])
_choices = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype=np.int32)
C.choose(_choices)
C.choose(_choices, out=D)
i4.clip(1)
A.clip(1)
A.clip(None, 1)
A.clip(1, out=B2)
A.clip(None, 1, out=B2)
i4.compress([1])
A.compress([1])
A.compress([1], out=B1)
i4.conj()
A.conj()
B0.conj()
i4.conjugate()
A.conjugate()
B0.conjugate()
i4.cumprod()
A.cumprod()
A.cumprod(out=B1)
i4.cumsum()
A.cumsum()
A.cumsum(out=B1)
i4.max()
A.max()
A.max(axis=0)
A.max(keepdims=True)
A.max(out=B0)
i4.mean()
A.mean()
A.mean(axis=0)
A.mean(keepdims=True)
A.mean(out=B0)
i4.min()
A.min()
A.min(axis=0)
A.min(keepdims=True)
A.min(out=B0)
i4.newbyteorder()
A.newbyteorder()
B0.newbyteorder('|')
i4.prod()
A.prod()
A.prod(axis=0)
A.prod(keepdims=True)
A.prod(out=B0)
i4.ptp()
A.ptp()
A.ptp(axis=0)
A.ptp(keepdims=True)
A.astype(int).ptp(out=B0)
i4.round()
A.round()
A.round(out=B2)
i4.repeat(1)
A.repeat(1)
B0.repeat(1)
i4.std()
A.std()
A.std(axis=0)
A.std(keepdims=True)
A.std(out=B0.astype(np.float64))
i4.sum()
A.sum()
A.sum(axis=0)
A.sum(keepdims=True)
A.sum(out=B0)
i4.take(0)
A.take(0)
A.take([0])
A.take(0, out=B0)
A.take([0], out=B1)
i4.var()
A.var()
A.var(axis=0)
A.var(keepdims=True)
A.var(out=B0)
A.argpartition([0])
A.diagonal()
A.dot(1)
A.dot(1, out=B0)
A.nonzero()
C.searchsorted(1)
A.trace()
A.trace(out=B0)
void = cast(np.void, np.array(1, dtype=[("f", np.float64)]).take(0))
void.setfield(10, np.float64)
A.item(0)
C.item(0)
A.ravel()
C.ravel()
A.flatten()
C.flatten()
A.reshape(1)
C.reshape(3)
int(np.array(1.0, dtype=np.float64))
int(np.array("1", dtype=np.str_))
float(np.array(1.0, dtype=np.float64))
float(np.array("1", dtype=np.str_))
complex(np.array(1.0, dtype=np.float64))
operator.index(np.array(1, dtype=np.int64))

View File

@@ -0,0 +1,47 @@
import numpy as np
nd1 = np.array([[1, 2], [3, 4]])
# reshape
nd1.reshape(4)
nd1.reshape(2, 2)
nd1.reshape((2, 2))
nd1.reshape((2, 2), order="C")
nd1.reshape(4, order="C")
# resize
nd1.resize()
nd1.resize(4)
nd1.resize(2, 2)
nd1.resize((2, 2))
nd1.resize((2, 2), refcheck=True)
nd1.resize(4, refcheck=True)
nd2 = np.array([[1, 2], [3, 4]])
# transpose
nd2.transpose()
nd2.transpose(1, 0)
nd2.transpose((1, 0))
# swapaxes
nd2.swapaxes(0, 1)
# flatten
nd2.flatten()
nd2.flatten("C")
# ravel
nd2.ravel()
nd2.ravel("C")
# squeeze
nd2.squeeze()
nd3 = np.array([[1, 2]])
nd3.squeeze(0)
nd4 = np.array([[[1, 2]]])
nd4.squeeze((0, 1))

View File

@@ -0,0 +1,89 @@
"""
Tests for :mod:`numpy.core.numeric`.
Does not include tests which fall under ``array_constructors``.
"""
from typing import List
import numpy as np
class SubClass(np.ndarray):
...
i8 = np.int64(1)
A = np.arange(27).reshape(3, 3, 3)
B: List[List[List[int]]] = A.tolist()
C = np.empty((27, 27)).view(SubClass)
np.count_nonzero(i8)
np.count_nonzero(A)
np.count_nonzero(B)
np.count_nonzero(A, keepdims=True)
np.count_nonzero(A, axis=0)
np.isfortran(i8)
np.isfortran(A)
np.argwhere(i8)
np.argwhere(A)
np.flatnonzero(i8)
np.flatnonzero(A)
np.correlate(B[0][0], A.ravel(), mode="valid")
np.correlate(A.ravel(), A.ravel(), mode="same")
np.convolve(B[0][0], A.ravel(), mode="valid")
np.convolve(A.ravel(), A.ravel(), mode="same")
np.outer(i8, A)
np.outer(B, A)
np.outer(A, A)
np.outer(A, A, out=C)
np.tensordot(B, A)
np.tensordot(A, A)
np.tensordot(A, A, axes=0)
np.tensordot(A, A, axes=(0, 1))
np.isscalar(i8)
np.isscalar(A)
np.isscalar(B)
np.roll(A, 1)
np.roll(A, (1, 2))
np.roll(B, 1)
np.rollaxis(A, 0, 1)
np.moveaxis(A, 0, 1)
np.moveaxis(A, (0, 1), (1, 2))
np.cross(B, A)
np.cross(A, A)
np.indices([0, 1, 2])
np.indices([0, 1, 2], sparse=False)
np.indices([0, 1, 2], sparse=True)
np.binary_repr(1)
np.base_repr(1)
np.allclose(i8, A)
np.allclose(B, A)
np.allclose(A, A)
np.isclose(i8, A)
np.isclose(B, A)
np.isclose(A, A)
np.array_equal(i8, A)
np.array_equal(B, A)
np.array_equal(A, A)
np.array_equiv(i8, A)
np.array_equiv(B, A)
np.array_equiv(A, A)

View File

@@ -0,0 +1,47 @@
import numpy as np
np.maximum_sctype("S8")
np.maximum_sctype(object)
np.issctype(object)
np.issctype("S8")
np.obj2sctype(list)
np.obj2sctype(list, default=None)
np.obj2sctype(list, default=np.string_)
np.issubclass_(np.int32, int)
np.issubclass_(np.float64, float)
np.issubclass_(np.float64, (int, float))
np.issubsctype("int64", int)
np.issubsctype(np.array([1]), np.array([1]))
np.issubdtype("S1", np.string_)
np.issubdtype(np.float64, np.float32)
np.sctype2char("S1")
np.sctype2char(list)
np.find_common_type([], [np.int64, np.float32, complex])
np.find_common_type((), (np.int64, np.float32, complex))
np.find_common_type([np.int64, np.float32], [])
np.find_common_type([np.float32], [np.int64, np.float64])
np.cast[int]
np.cast["i8"]
np.cast[np.int64]
np.nbytes[int]
np.nbytes["i8"]
np.nbytes[np.int64]
np.ScalarType
np.ScalarType[0]
np.ScalarType[4]
np.ScalarType[9]
np.ScalarType[11]
np.typecodes["Character"]
np.typecodes["Complex"]
np.typecodes["All"]

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,254 @@
import sys
import datetime as dt
import pytest
import numpy as np
b = np.bool_()
u8 = np.uint64()
i8 = np.int64()
f8 = np.float64()
c16 = np.complex128()
U = np.str_()
S = np.bytes_()
# Construction
class D:
def __index__(self) -> int:
return 0
class C:
def __complex__(self) -> complex:
return 3j
class B:
def __int__(self) -> int:
return 4
class A:
def __float__(self) -> float:
return 4.0
np.complex64(3j)
np.complex64(A())
np.complex64(C())
np.complex128(3j)
np.complex128(C())
np.complex128(None)
np.complex64("1.2")
np.complex128(b"2j")
np.int8(4)
np.int16(3.4)
np.int32(4)
np.int64(-1)
np.uint8(B())
np.uint32()
np.int32("1")
np.int64(b"2")
np.float16(A())
np.float32(16)
np.float64(3.0)
np.float64(None)
np.float32("1")
np.float16(b"2.5")
if sys.version_info >= (3, 8):
np.uint64(D())
np.float32(D())
np.complex64(D())
np.bytes_(b"hello")
np.bytes_("hello", 'utf-8')
np.bytes_("hello", encoding='utf-8')
np.str_("hello")
np.str_(b"hello", 'utf-8')
np.str_(b"hello", encoding='utf-8')
# Array-ish semantics
np.int8().real
np.int16().imag
np.int32().data
np.int64().flags
np.uint8().itemsize * 2
np.uint16().ndim + 1
np.uint32().strides
np.uint64().shape
# Time structures
np.datetime64()
np.datetime64(0, "D")
np.datetime64(0, b"D")
np.datetime64(0, ('ms', 3))
np.datetime64("2019")
np.datetime64(b"2019")
np.datetime64("2019", "D")
np.datetime64(np.datetime64())
np.datetime64(dt.datetime(2000, 5, 3))
np.datetime64(dt.date(2000, 5, 3))
np.datetime64(None)
np.datetime64(None, "D")
np.timedelta64()
np.timedelta64(0)
np.timedelta64(0, "D")
np.timedelta64(0, ('ms', 3))
np.timedelta64(0, b"D")
np.timedelta64("3")
np.timedelta64(b"5")
np.timedelta64(np.timedelta64(2))
np.timedelta64(dt.timedelta(2))
np.timedelta64(None)
np.timedelta64(None, "D")
np.void(1)
np.void(np.int64(1))
np.void(True)
np.void(np.bool_(True))
np.void(b"test")
np.void(np.bytes_("test"))
# Protocols
i8 = np.int64()
u8 = np.uint64()
f8 = np.float64()
c16 = np.complex128()
b_ = np.bool_()
td = np.timedelta64()
U = np.str_("1")
S = np.bytes_("1")
AR = np.array(1, dtype=np.float64)
int(i8)
int(u8)
int(f8)
int(b_)
int(td)
int(U)
int(S)
int(AR)
with pytest.warns(np.ComplexWarning):
int(c16)
float(i8)
float(u8)
float(f8)
float(b_)
float(td)
float(U)
float(S)
float(AR)
with pytest.warns(np.ComplexWarning):
float(c16)
complex(i8)
complex(u8)
complex(f8)
complex(c16)
complex(b_)
complex(td)
complex(U)
complex(AR)
# Misc
c16.dtype
c16.real
c16.imag
c16.real.real
c16.real.imag
c16.ndim
c16.size
c16.itemsize
c16.shape
c16.strides
c16.squeeze()
c16.byteswap()
c16.transpose()
# Aliases
np.str0()
np.bool8()
np.bytes0()
np.string_()
np.object0()
np.void0(0)
np.byte()
np.short()
np.intc()
np.intp()
np.int0()
np.int_()
np.longlong()
np.ubyte()
np.ushort()
np.uintc()
np.uintp()
np.uint0()
np.uint()
np.ulonglong()
np.half()
np.single()
np.double()
np.float_()
np.longdouble()
np.longfloat()
np.csingle()
np.singlecomplex()
np.cdouble()
np.complex_()
np.cfloat()
np.clongdouble()
np.clongfloat()
np.longcomplex()
b.item()
i8.item()
u8.item()
f8.item()
c16.item()
U.item()
S.item()
b.tolist()
i8.tolist()
u8.tolist()
f8.tolist()
c16.tolist()
U.tolist()
S.tolist()
b.ravel()
i8.ravel()
u8.ravel()
f8.ravel()
c16.ravel()
U.ravel()
S.ravel()
b.flatten()
i8.flatten()
u8.flatten()
f8.flatten()
c16.flatten()
U.flatten()
S.flatten()
b.reshape(1)
i8.reshape(1)
u8.reshape(1)
f8.reshape(1)
c16.reshape(1)
U.reshape(1)
S.reshape(1)

View File

@@ -0,0 +1,165 @@
"""Simple expression that should pass with mypy."""
import operator
import numpy as np
from typing import Iterable # noqa: F401
# Basic checks
array = np.array([1, 2])
def ndarray_func(x):
# type: (np.ndarray) -> np.ndarray
return x
ndarray_func(np.array([1, 2]))
array == 1
array.dtype == float
# Dtype construction
np.dtype(float)
np.dtype(np.float64)
np.dtype(None)
np.dtype("float64")
np.dtype(np.dtype(float))
np.dtype(("U", 10))
np.dtype((np.int32, (2, 2)))
# Define the arguments on the previous line to prevent bidirectional
# type inference in mypy from broadening the types.
two_tuples_dtype = [("R", "u1"), ("G", "u1"), ("B", "u1")]
np.dtype(two_tuples_dtype)
three_tuples_dtype = [("R", "u1", 2)]
np.dtype(three_tuples_dtype)
mixed_tuples_dtype = [("R", "u1"), ("G", np.unicode_, 1)]
np.dtype(mixed_tuples_dtype)
shape_tuple_dtype = [("R", "u1", (2, 2))]
np.dtype(shape_tuple_dtype)
shape_like_dtype = [("R", "u1", (2, 2)), ("G", np.unicode_, 1)]
np.dtype(shape_like_dtype)
object_dtype = [("field1", object)]
np.dtype(object_dtype)
np.dtype((np.int32, (np.int8, 4)))
# Dtype comparison
np.dtype(float) == float
np.dtype(float) != np.float64
np.dtype(float) < None
np.dtype(float) <= "float64"
np.dtype(float) > np.dtype(float)
np.dtype(float) >= np.dtype(("U", 10))
# Iteration and indexing
def iterable_func(x):
# type: (Iterable) -> Iterable
return x
iterable_func(array)
[element for element in array]
iter(array)
zip(array, array)
array[1]
array[:]
array[...]
array[:] = 0
array_2d = np.ones((3, 3))
array_2d[:2, :2]
array_2d[..., 0]
array_2d[:2, :2] = 0
# Other special methods
len(array)
str(array)
array_scalar = np.array(1)
int(array_scalar)
float(array_scalar)
# currently does not work due to https://github.com/python/typeshed/issues/1904
# complex(array_scalar)
bytes(array_scalar)
operator.index(array_scalar)
bool(array_scalar)
# comparisons
array < 1
array <= 1
array == 1
array != 1
array > 1
array >= 1
1 < array
1 <= array
1 == array
1 != array
1 > array
1 >= array
# binary arithmetic
array + 1
1 + array
array += 1
array - 1
1 - array
array -= 1
array * 1
1 * array
array *= 1
nonzero_array = np.array([1, 2])
array / 1
1 / nonzero_array
float_array = np.array([1.0, 2.0])
float_array /= 1
array // 1
1 // nonzero_array
array //= 1
array % 1
1 % nonzero_array
array %= 1
divmod(array, 1)
divmod(1, nonzero_array)
array ** 1
1 ** array
array **= 1
array << 1
1 << array
array <<= 1
array >> 1
1 >> array
array >>= 1
array & 1
1 & array
array &= 1
array ^ 1
1 ^ array
array ^= 1
array | 1
1 | array
array |= 1
# unary arithmetic
-array
+array
abs(array)
~array
# Other methods
np.array([1, 2]).transpose()

View File

@@ -0,0 +1,6 @@
import numpy as np
array = np.array([1, 2])
# The @ operator is not in python 2
array @ array

View File

@@ -0,0 +1,50 @@
"""Typing tests for `numpy.core._ufunc_config`."""
import numpy as np
def func1(a: str, b: int) -> None: ...
def func2(a: str, b: int, c: float = ...) -> None: ...
def func3(a: str, b: int) -> int: ...
class Write1:
def write(self, a: str) -> None: ...
class Write2:
def write(self, a: str, b: int = ...) -> None: ...
class Write3:
def write(self, a: str) -> int: ...
_err_default = np.geterr()
_bufsize_default = np.getbufsize()
_errcall_default = np.geterrcall()
try:
np.seterr(all=None)
np.seterr(divide="ignore")
np.seterr(over="warn")
np.seterr(under="call")
np.seterr(invalid="raise")
np.geterr()
np.setbufsize(4096)
np.getbufsize()
np.seterrcall(func1)
np.seterrcall(func2)
np.seterrcall(func3)
np.seterrcall(Write1())
np.seterrcall(Write2())
np.seterrcall(Write3())
np.geterrcall()
with np.errstate(call=func1, all="call"):
pass
with np.errstate(call=Write1(), divide="log", over="log"):
pass
finally:
np.seterr(**_err_default)
np.setbufsize(_bufsize_default)
np.seterrcall(_errcall_default)

View File

@@ -0,0 +1,46 @@
from __future__ import annotations
from typing import Any
import numpy as np
class Object:
def __ceil__(self) -> Object:
return self
def __floor__(self) -> Object:
return self
def __ge__(self, value: object) -> bool:
return True
def __array__(self) -> np.ndarray[Any, np.dtype[np.object_]]:
ret = np.empty((), dtype=object)
ret[()] = self
return ret
AR_LIKE_b = [True, True, False]
AR_LIKE_u = [np.uint32(1), np.uint32(2), np.uint32(3)]
AR_LIKE_i = [1, 2, 3]
AR_LIKE_f = [1.0, 2.0, 3.0]
AR_LIKE_O = [Object(), Object(), Object()]
AR_U: np.ndarray[Any, np.dtype[np.str_]] = np.zeros(3, dtype="U5")
np.fix(AR_LIKE_b)
np.fix(AR_LIKE_u)
np.fix(AR_LIKE_i)
np.fix(AR_LIKE_f)
np.fix(AR_LIKE_O)
np.fix(AR_LIKE_f, out=AR_U)
np.isposinf(AR_LIKE_b)
np.isposinf(AR_LIKE_u)
np.isposinf(AR_LIKE_i)
np.isposinf(AR_LIKE_f)
np.isposinf(AR_LIKE_f, out=AR_U)
np.isneginf(AR_LIKE_b)
np.isneginf(AR_LIKE_u)
np.isneginf(AR_LIKE_i)
np.isneginf(AR_LIKE_f)
np.isneginf(AR_LIKE_f, out=AR_U)

View File

@@ -0,0 +1,17 @@
import numpy as np
np.sin(1)
np.sin([1, 2, 3])
np.sin(1, out=np.empty(1))
np.matmul(np.ones((2, 2, 2)), np.ones((2, 2, 2)), axes=[(0, 1), (0, 1), (0, 1)])
np.sin(1, signature="D->D")
np.sin(1, extobj=[16, 1, lambda: None])
# NOTE: `np.generic` subclasses are not guaranteed to support addition;
# re-enable this we can infer the exact return type of `np.sin(...)`.
#
# np.sin(1) + np.sin(1)
np.sin.types[0]
np.sin.__name__
np.sin.__doc__
np.abs(np.array([1]))

View File

@@ -0,0 +1,6 @@
import numpy as np
np.AxisError("test")
np.AxisError(1, ndim=2)
np.AxisError(1, ndim=2, msg_prefix="error")
np.AxisError(1, ndim=2, msg_prefix=None)

View File

@@ -0,0 +1,522 @@
from typing import Any, List
import numpy as np
import numpy.typing as npt
# Can't directly import `np.float128` as it is not available on all platforms
f16: np.floating[npt._128Bit]
c16 = np.complex128()
f8 = np.float64()
i8 = np.int64()
u8 = np.uint64()
c8 = np.complex64()
f4 = np.float32()
i4 = np.int32()
u4 = np.uint32()
dt = np.datetime64(0, "D")
td = np.timedelta64(0, "D")
b_ = np.bool_()
b = bool()
c = complex()
f = float()
i = int()
AR_b: np.ndarray[Any, np.dtype[np.bool_]]
AR_u: np.ndarray[Any, np.dtype[np.uint32]]
AR_i: np.ndarray[Any, np.dtype[np.int64]]
AR_f: np.ndarray[Any, np.dtype[np.float64]]
AR_c: np.ndarray[Any, np.dtype[np.complex128]]
AR_m: np.ndarray[Any, np.dtype[np.timedelta64]]
AR_M: np.ndarray[Any, np.dtype[np.datetime64]]
AR_O: np.ndarray[Any, np.dtype[np.object_]]
AR_LIKE_b: List[bool]
AR_LIKE_u: List[np.uint32]
AR_LIKE_i: List[int]
AR_LIKE_f: List[float]
AR_LIKE_c: List[complex]
AR_LIKE_m: List[np.timedelta64]
AR_LIKE_M: List[np.datetime64]
AR_LIKE_O: List[np.object_]
# Array subtraction
reveal_type(AR_b - AR_LIKE_u) # E: ndarray[Any, dtype[unsignedinteger[Any]]]
reveal_type(AR_b - AR_LIKE_i) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_b - AR_LIKE_f) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_b - AR_LIKE_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_b - AR_LIKE_m) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_b - AR_LIKE_O) # E: Any
reveal_type(AR_LIKE_u - AR_b) # E: ndarray[Any, dtype[unsignedinteger[Any]]]
reveal_type(AR_LIKE_i - AR_b) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_LIKE_f - AR_b) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_LIKE_c - AR_b) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_LIKE_m - AR_b) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_LIKE_M - AR_b) # E: ndarray[Any, dtype[datetime64]]
reveal_type(AR_LIKE_O - AR_b) # E: Any
reveal_type(AR_u - AR_LIKE_b) # E: ndarray[Any, dtype[unsignedinteger[Any]]]
reveal_type(AR_u - AR_LIKE_u) # E: ndarray[Any, dtype[unsignedinteger[Any]]]
reveal_type(AR_u - AR_LIKE_i) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_u - AR_LIKE_f) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_u - AR_LIKE_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_u - AR_LIKE_m) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_u - AR_LIKE_O) # E: Any
reveal_type(AR_LIKE_b - AR_u) # E: ndarray[Any, dtype[unsignedinteger[Any]]]
reveal_type(AR_LIKE_u - AR_u) # E: ndarray[Any, dtype[unsignedinteger[Any]]]
reveal_type(AR_LIKE_i - AR_u) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_LIKE_f - AR_u) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_LIKE_c - AR_u) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_LIKE_m - AR_u) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_LIKE_M - AR_u) # E: ndarray[Any, dtype[datetime64]]
reveal_type(AR_LIKE_O - AR_u) # E: Any
reveal_type(AR_i - AR_LIKE_b) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_i - AR_LIKE_u) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_i - AR_LIKE_i) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_i - AR_LIKE_f) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_i - AR_LIKE_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_i - AR_LIKE_m) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_i - AR_LIKE_O) # E: Any
reveal_type(AR_LIKE_b - AR_i) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_LIKE_u - AR_i) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_LIKE_i - AR_i) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_LIKE_f - AR_i) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_LIKE_c - AR_i) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_LIKE_m - AR_i) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_LIKE_M - AR_i) # E: ndarray[Any, dtype[datetime64]]
reveal_type(AR_LIKE_O - AR_i) # E: Any
reveal_type(AR_f - AR_LIKE_b) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_f - AR_LIKE_u) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_f - AR_LIKE_i) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_f - AR_LIKE_f) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_f - AR_LIKE_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_f - AR_LIKE_O) # E: Any
reveal_type(AR_LIKE_b - AR_f) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_LIKE_u - AR_f) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_LIKE_i - AR_f) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_LIKE_f - AR_f) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_LIKE_c - AR_f) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_LIKE_O - AR_f) # E: Any
reveal_type(AR_c - AR_LIKE_b) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_c - AR_LIKE_u) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_c - AR_LIKE_i) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_c - AR_LIKE_f) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_c - AR_LIKE_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_c - AR_LIKE_O) # E: Any
reveal_type(AR_LIKE_b - AR_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_LIKE_u - AR_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_LIKE_i - AR_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_LIKE_f - AR_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_LIKE_c - AR_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]]
reveal_type(AR_LIKE_O - AR_c) # E: Any
reveal_type(AR_m - AR_LIKE_b) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_m - AR_LIKE_u) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_m - AR_LIKE_i) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_m - AR_LIKE_m) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_m - AR_LIKE_O) # E: Any
reveal_type(AR_LIKE_b - AR_m) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_LIKE_u - AR_m) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_LIKE_i - AR_m) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_LIKE_m - AR_m) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_LIKE_M - AR_m) # E: ndarray[Any, dtype[datetime64]]
reveal_type(AR_LIKE_O - AR_m) # E: Any
reveal_type(AR_M - AR_LIKE_b) # E: ndarray[Any, dtype[datetime64]]
reveal_type(AR_M - AR_LIKE_u) # E: ndarray[Any, dtype[datetime64]]
reveal_type(AR_M - AR_LIKE_i) # E: ndarray[Any, dtype[datetime64]]
reveal_type(AR_M - AR_LIKE_m) # E: ndarray[Any, dtype[datetime64]]
reveal_type(AR_M - AR_LIKE_M) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_M - AR_LIKE_O) # E: Any
reveal_type(AR_LIKE_M - AR_M) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_LIKE_O - AR_M) # E: Any
reveal_type(AR_O - AR_LIKE_b) # E: Any
reveal_type(AR_O - AR_LIKE_u) # E: Any
reveal_type(AR_O - AR_LIKE_i) # E: Any
reveal_type(AR_O - AR_LIKE_f) # E: Any
reveal_type(AR_O - AR_LIKE_c) # E: Any
reveal_type(AR_O - AR_LIKE_m) # E: Any
reveal_type(AR_O - AR_LIKE_M) # E: Any
reveal_type(AR_O - AR_LIKE_O) # E: Any
reveal_type(AR_LIKE_b - AR_O) # E: Any
reveal_type(AR_LIKE_u - AR_O) # E: Any
reveal_type(AR_LIKE_i - AR_O) # E: Any
reveal_type(AR_LIKE_f - AR_O) # E: Any
reveal_type(AR_LIKE_c - AR_O) # E: Any
reveal_type(AR_LIKE_m - AR_O) # E: Any
reveal_type(AR_LIKE_M - AR_O) # E: Any
reveal_type(AR_LIKE_O - AR_O) # E: Any
# Array floor division
reveal_type(AR_b // AR_LIKE_b) # E: ndarray[Any, dtype[{int8}]]
reveal_type(AR_b // AR_LIKE_u) # E: ndarray[Any, dtype[unsignedinteger[Any]]]
reveal_type(AR_b // AR_LIKE_i) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_b // AR_LIKE_f) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_b // AR_LIKE_O) # E: Any
reveal_type(AR_LIKE_b // AR_b) # E: ndarray[Any, dtype[{int8}]]
reveal_type(AR_LIKE_u // AR_b) # E: ndarray[Any, dtype[unsignedinteger[Any]]]
reveal_type(AR_LIKE_i // AR_b) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_LIKE_f // AR_b) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_LIKE_O // AR_b) # E: Any
reveal_type(AR_u // AR_LIKE_b) # E: ndarray[Any, dtype[unsignedinteger[Any]]]
reveal_type(AR_u // AR_LIKE_u) # E: ndarray[Any, dtype[unsignedinteger[Any]]]
reveal_type(AR_u // AR_LIKE_i) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_u // AR_LIKE_f) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_u // AR_LIKE_O) # E: Any
reveal_type(AR_LIKE_b // AR_u) # E: ndarray[Any, dtype[unsignedinteger[Any]]]
reveal_type(AR_LIKE_u // AR_u) # E: ndarray[Any, dtype[unsignedinteger[Any]]]
reveal_type(AR_LIKE_i // AR_u) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_LIKE_f // AR_u) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_LIKE_m // AR_u) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_LIKE_O // AR_u) # E: Any
reveal_type(AR_i // AR_LIKE_b) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_i // AR_LIKE_u) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_i // AR_LIKE_i) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_i // AR_LIKE_f) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_i // AR_LIKE_O) # E: Any
reveal_type(AR_LIKE_b // AR_i) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_LIKE_u // AR_i) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_LIKE_i // AR_i) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(AR_LIKE_f // AR_i) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_LIKE_m // AR_i) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_LIKE_O // AR_i) # E: Any
reveal_type(AR_f // AR_LIKE_b) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_f // AR_LIKE_u) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_f // AR_LIKE_i) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_f // AR_LIKE_f) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_f // AR_LIKE_O) # E: Any
reveal_type(AR_LIKE_b // AR_f) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_LIKE_u // AR_f) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_LIKE_i // AR_f) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_LIKE_f // AR_f) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(AR_LIKE_m // AR_f) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_LIKE_O // AR_f) # E: Any
reveal_type(AR_m // AR_LIKE_u) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_m // AR_LIKE_i) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_m // AR_LIKE_f) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(AR_m // AR_LIKE_m) # E: ndarray[Any, dtype[{int64}]]
reveal_type(AR_m // AR_LIKE_O) # E: Any
reveal_type(AR_LIKE_m // AR_m) # E: ndarray[Any, dtype[{int64}]]
reveal_type(AR_LIKE_O // AR_m) # E: Any
reveal_type(AR_O // AR_LIKE_b) # E: Any
reveal_type(AR_O // AR_LIKE_u) # E: Any
reveal_type(AR_O // AR_LIKE_i) # E: Any
reveal_type(AR_O // AR_LIKE_f) # E: Any
reveal_type(AR_O // AR_LIKE_m) # E: Any
reveal_type(AR_O // AR_LIKE_M) # E: Any
reveal_type(AR_O // AR_LIKE_O) # E: Any
reveal_type(AR_LIKE_b // AR_O) # E: Any
reveal_type(AR_LIKE_u // AR_O) # E: Any
reveal_type(AR_LIKE_i // AR_O) # E: Any
reveal_type(AR_LIKE_f // AR_O) # E: Any
reveal_type(AR_LIKE_m // AR_O) # E: Any
reveal_type(AR_LIKE_M // AR_O) # E: Any
reveal_type(AR_LIKE_O // AR_O) # E: Any
# unary ops
reveal_type(-f16) # E: {float128}
reveal_type(-c16) # E: {complex128}
reveal_type(-c8) # E: {complex64}
reveal_type(-f8) # E: {float64}
reveal_type(-f4) # E: {float32}
reveal_type(-i8) # E: {int64}
reveal_type(-i4) # E: {int32}
reveal_type(-u8) # E: {uint64}
reveal_type(-u4) # E: {uint32}
reveal_type(-td) # E: timedelta64
reveal_type(-AR_f) # E: Any
reveal_type(+f16) # E: {float128}
reveal_type(+c16) # E: {complex128}
reveal_type(+c8) # E: {complex64}
reveal_type(+f8) # E: {float64}
reveal_type(+f4) # E: {float32}
reveal_type(+i8) # E: {int64}
reveal_type(+i4) # E: {int32}
reveal_type(+u8) # E: {uint64}
reveal_type(+u4) # E: {uint32}
reveal_type(+td) # E: timedelta64
reveal_type(+AR_f) # E: Any
reveal_type(abs(f16)) # E: {float128}
reveal_type(abs(c16)) # E: {float64}
reveal_type(abs(c8)) # E: {float32}
reveal_type(abs(f8)) # E: {float64}
reveal_type(abs(f4)) # E: {float32}
reveal_type(abs(i8)) # E: {int64}
reveal_type(abs(i4)) # E: {int32}
reveal_type(abs(u8)) # E: {uint64}
reveal_type(abs(u4)) # E: {uint32}
reveal_type(abs(td)) # E: timedelta64
reveal_type(abs(b_)) # E: bool_
reveal_type(abs(AR_f)) # E: Any
# Time structures
reveal_type(dt + td) # E: datetime64
reveal_type(dt + i) # E: datetime64
reveal_type(dt + i4) # E: datetime64
reveal_type(dt + i8) # E: datetime64
reveal_type(dt - dt) # E: timedelta64
reveal_type(dt - i) # E: datetime64
reveal_type(dt - i4) # E: datetime64
reveal_type(dt - i8) # E: datetime64
reveal_type(td + td) # E: timedelta64
reveal_type(td + i) # E: timedelta64
reveal_type(td + i4) # E: timedelta64
reveal_type(td + i8) # E: timedelta64
reveal_type(td - td) # E: timedelta64
reveal_type(td - i) # E: timedelta64
reveal_type(td - i4) # E: timedelta64
reveal_type(td - i8) # E: timedelta64
reveal_type(td / f) # E: timedelta64
reveal_type(td / f4) # E: timedelta64
reveal_type(td / f8) # E: timedelta64
reveal_type(td / td) # E: {float64}
reveal_type(td // td) # E: {int64}
# boolean
reveal_type(b_ / b) # E: {float64}
reveal_type(b_ / b_) # E: {float64}
reveal_type(b_ / i) # E: {float64}
reveal_type(b_ / i8) # E: {float64}
reveal_type(b_ / i4) # E: {float64}
reveal_type(b_ / u8) # E: {float64}
reveal_type(b_ / u4) # E: {float64}
reveal_type(b_ / f) # E: {float64}
reveal_type(b_ / f16) # E: {float128}
reveal_type(b_ / f8) # E: {float64}
reveal_type(b_ / f4) # E: {float32}
reveal_type(b_ / c) # E: {complex128}
reveal_type(b_ / c16) # E: {complex128}
reveal_type(b_ / c8) # E: {complex64}
reveal_type(b / b_) # E: {float64}
reveal_type(b_ / b_) # E: {float64}
reveal_type(i / b_) # E: {float64}
reveal_type(i8 / b_) # E: {float64}
reveal_type(i4 / b_) # E: {float64}
reveal_type(u8 / b_) # E: {float64}
reveal_type(u4 / b_) # E: {float64}
reveal_type(f / b_) # E: {float64}
reveal_type(f16 / b_) # E: {float128}
reveal_type(f8 / b_) # E: {float64}
reveal_type(f4 / b_) # E: {float32}
reveal_type(c / b_) # E: {complex128}
reveal_type(c16 / b_) # E: {complex128}
reveal_type(c8 / b_) # E: {complex64}
# Complex
reveal_type(c16 + f16) # E: {complex256}
reveal_type(c16 + c16) # E: {complex128}
reveal_type(c16 + f8) # E: {complex128}
reveal_type(c16 + i8) # E: {complex128}
reveal_type(c16 + c8) # E: {complex128}
reveal_type(c16 + f4) # E: {complex128}
reveal_type(c16 + i4) # E: {complex128}
reveal_type(c16 + b_) # E: {complex128}
reveal_type(c16 + b) # E: {complex128}
reveal_type(c16 + c) # E: {complex128}
reveal_type(c16 + f) # E: {complex128}
reveal_type(c16 + i) # E: {complex128}
reveal_type(c16 + AR_f) # E: Any
reveal_type(f16 + c16) # E: {complex256}
reveal_type(c16 + c16) # E: {complex128}
reveal_type(f8 + c16) # E: {complex128}
reveal_type(i8 + c16) # E: {complex128}
reveal_type(c8 + c16) # E: {complex128}
reveal_type(f4 + c16) # E: {complex128}
reveal_type(i4 + c16) # E: {complex128}
reveal_type(b_ + c16) # E: {complex128}
reveal_type(b + c16) # E: {complex128}
reveal_type(c + c16) # E: {complex128}
reveal_type(f + c16) # E: {complex128}
reveal_type(i + c16) # E: {complex128}
reveal_type(AR_f + c16) # E: Any
reveal_type(c8 + f16) # E: {complex256}
reveal_type(c8 + c16) # E: {complex128}
reveal_type(c8 + f8) # E: {complex128}
reveal_type(c8 + i8) # E: {complex128}
reveal_type(c8 + c8) # E: {complex64}
reveal_type(c8 + f4) # E: {complex64}
reveal_type(c8 + i4) # E: {complex64}
reveal_type(c8 + b_) # E: {complex64}
reveal_type(c8 + b) # E: {complex64}
reveal_type(c8 + c) # E: {complex128}
reveal_type(c8 + f) # E: {complex128}
reveal_type(c8 + i) # E: complexfloating[{_NBitInt}, {_NBitInt}]
reveal_type(c8 + AR_f) # E: Any
reveal_type(f16 + c8) # E: {complex256}
reveal_type(c16 + c8) # E: {complex128}
reveal_type(f8 + c8) # E: {complex128}
reveal_type(i8 + c8) # E: {complex128}
reveal_type(c8 + c8) # E: {complex64}
reveal_type(f4 + c8) # E: {complex64}
reveal_type(i4 + c8) # E: {complex64}
reveal_type(b_ + c8) # E: {complex64}
reveal_type(b + c8) # E: {complex64}
reveal_type(c + c8) # E: {complex128}
reveal_type(f + c8) # E: {complex128}
reveal_type(i + c8) # E: complexfloating[{_NBitInt}, {_NBitInt}]
reveal_type(AR_f + c8) # E: Any
# Float
reveal_type(f8 + f16) # E: {float128}
reveal_type(f8 + f8) # E: {float64}
reveal_type(f8 + i8) # E: {float64}
reveal_type(f8 + f4) # E: {float64}
reveal_type(f8 + i4) # E: {float64}
reveal_type(f8 + b_) # E: {float64}
reveal_type(f8 + b) # E: {float64}
reveal_type(f8 + c) # E: {complex128}
reveal_type(f8 + f) # E: {float64}
reveal_type(f8 + i) # E: {float64}
reveal_type(f8 + AR_f) # E: Any
reveal_type(f16 + f8) # E: {float128}
reveal_type(f8 + f8) # E: {float64}
reveal_type(i8 + f8) # E: {float64}
reveal_type(f4 + f8) # E: {float64}
reveal_type(i4 + f8) # E: {float64}
reveal_type(b_ + f8) # E: {float64}
reveal_type(b + f8) # E: {float64}
reveal_type(c + f8) # E: {complex128}
reveal_type(f + f8) # E: {float64}
reveal_type(i + f8) # E: {float64}
reveal_type(AR_f + f8) # E: Any
reveal_type(f4 + f16) # E: {float128}
reveal_type(f4 + f8) # E: {float64}
reveal_type(f4 + i8) # E: {float64}
reveal_type(f4 + f4) # E: {float32}
reveal_type(f4 + i4) # E: {float32}
reveal_type(f4 + b_) # E: {float32}
reveal_type(f4 + b) # E: {float32}
reveal_type(f4 + c) # E: {complex128}
reveal_type(f4 + f) # E: {float64}
reveal_type(f4 + i) # E: floating[{_NBitInt}]
reveal_type(f4 + AR_f) # E: Any
reveal_type(f16 + f4) # E: {float128}
reveal_type(f8 + f4) # E: {float64}
reveal_type(i8 + f4) # E: {float64}
reveal_type(f4 + f4) # E: {float32}
reveal_type(i4 + f4) # E: {float32}
reveal_type(b_ + f4) # E: {float32}
reveal_type(b + f4) # E: {float32}
reveal_type(c + f4) # E: {complex128}
reveal_type(f + f4) # E: {float64}
reveal_type(i + f4) # E: floating[{_NBitInt}]
reveal_type(AR_f + f4) # E: Any
# Int
reveal_type(i8 + i8) # E: {int64}
reveal_type(i8 + u8) # E: Any
reveal_type(i8 + i4) # E: {int64}
reveal_type(i8 + u4) # E: Any
reveal_type(i8 + b_) # E: {int64}
reveal_type(i8 + b) # E: {int64}
reveal_type(i8 + c) # E: {complex128}
reveal_type(i8 + f) # E: {float64}
reveal_type(i8 + i) # E: {int64}
reveal_type(i8 + AR_f) # E: Any
reveal_type(u8 + u8) # E: {uint64}
reveal_type(u8 + i4) # E: Any
reveal_type(u8 + u4) # E: {uint64}
reveal_type(u8 + b_) # E: {uint64}
reveal_type(u8 + b) # E: {uint64}
reveal_type(u8 + c) # E: {complex128}
reveal_type(u8 + f) # E: {float64}
reveal_type(u8 + i) # E: Any
reveal_type(u8 + AR_f) # E: Any
reveal_type(i8 + i8) # E: {int64}
reveal_type(u8 + i8) # E: Any
reveal_type(i4 + i8) # E: {int64}
reveal_type(u4 + i8) # E: Any
reveal_type(b_ + i8) # E: {int64}
reveal_type(b + i8) # E: {int64}
reveal_type(c + i8) # E: {complex128}
reveal_type(f + i8) # E: {float64}
reveal_type(i + i8) # E: {int64}
reveal_type(AR_f + i8) # E: Any
reveal_type(u8 + u8) # E: {uint64}
reveal_type(i4 + u8) # E: Any
reveal_type(u4 + u8) # E: {uint64}
reveal_type(b_ + u8) # E: {uint64}
reveal_type(b + u8) # E: {uint64}
reveal_type(c + u8) # E: {complex128}
reveal_type(f + u8) # E: {float64}
reveal_type(i + u8) # E: Any
reveal_type(AR_f + u8) # E: Any
reveal_type(i4 + i8) # E: {int64}
reveal_type(i4 + i4) # E: {int32}
reveal_type(i4 + i) # E: {int_}
reveal_type(i4 + b_) # E: {int32}
reveal_type(i4 + b) # E: {int32}
reveal_type(i4 + AR_f) # E: Any
reveal_type(u4 + i8) # E: Any
reveal_type(u4 + i4) # E: Any
reveal_type(u4 + u8) # E: {uint64}
reveal_type(u4 + u4) # E: {uint32}
reveal_type(u4 + i) # E: Any
reveal_type(u4 + b_) # E: {uint32}
reveal_type(u4 + b) # E: {uint32}
reveal_type(u4 + AR_f) # E: Any
reveal_type(i8 + i4) # E: {int64}
reveal_type(i4 + i4) # E: {int32}
reveal_type(i + i4) # E: {int_}
reveal_type(b_ + i4) # E: {int32}
reveal_type(b + i4) # E: {int32}
reveal_type(AR_f + i4) # E: Any
reveal_type(i8 + u4) # E: Any
reveal_type(i4 + u4) # E: Any
reveal_type(u8 + u4) # E: {uint64}
reveal_type(u4 + u4) # E: {uint32}
reveal_type(b_ + u4) # E: {uint32}
reveal_type(b + u4) # E: {uint32}
reveal_type(i + u4) # E: Any
reveal_type(AR_f + u4) # E: Any

View File

@@ -0,0 +1,187 @@
from typing import List, Any, TypeVar
from pathlib import Path
import numpy as np
import numpy.typing as npt
_SCT = TypeVar("_SCT", bound=np.generic, covariant=True)
class SubClass(np.ndarray[Any, np.dtype[_SCT]]): ...
i8: np.int64
A: npt.NDArray[np.float64]
B: SubClass[np.float64]
C: List[int]
def func(i: int, j: int, **kwargs: Any) -> SubClass[np.float64]: ...
reveal_type(np.empty_like(A)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.empty_like(B)) # E: SubClass[{float64}]
reveal_type(np.empty_like([1, 1.0])) # E: ndarray[Any, dtype[Any]]
reveal_type(np.empty_like(A, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.empty_like(A, dtype='c16')) # E: ndarray[Any, dtype[Any]]
reveal_type(np.array(A)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.array(B)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.array(B, subok=True)) # E: SubClass[{float64}]
reveal_type(np.array([1, 1.0])) # E: ndarray[Any, dtype[Any]]
reveal_type(np.array(A, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.array(A, dtype='c16')) # E: ndarray[Any, dtype[Any]]
reveal_type(np.zeros([1, 5, 6])) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.zeros([1, 5, 6], dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.zeros([1, 5, 6], dtype='c16')) # E: ndarray[Any, dtype[Any]]
reveal_type(np.empty([1, 5, 6])) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.empty([1, 5, 6], dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.empty([1, 5, 6], dtype='c16')) # E: ndarray[Any, dtype[Any]]
reveal_type(np.concatenate(A)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.concatenate([A, A])) # E: Any
reveal_type(np.concatenate([[1], A])) # E: ndarray[Any, dtype[Any]]
reveal_type(np.concatenate([[1], [1]])) # E: ndarray[Any, dtype[Any]]
reveal_type(np.concatenate((A, A))) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.concatenate(([1], [1]))) # E: ndarray[Any, dtype[Any]]
reveal_type(np.concatenate([1, 1.0])) # E: ndarray[Any, dtype[Any]]
reveal_type(np.concatenate(A, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.concatenate(A, dtype='c16')) # E: ndarray[Any, dtype[Any]]
reveal_type(np.concatenate([1, 1.0], out=A)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.asarray(A)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.asarray(B)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.asarray([1, 1.0])) # E: ndarray[Any, dtype[Any]]
reveal_type(np.asarray(A, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.asarray(A, dtype='c16')) # E: ndarray[Any, dtype[Any]]
reveal_type(np.asanyarray(A)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.asanyarray(B)) # E: SubClass[{float64}]
reveal_type(np.asanyarray([1, 1.0])) # E: ndarray[Any, dtype[Any]]
reveal_type(np.asanyarray(A, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.asanyarray(A, dtype='c16')) # E: ndarray[Any, dtype[Any]]
reveal_type(np.ascontiguousarray(A)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.ascontiguousarray(B)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.ascontiguousarray([1, 1.0])) # E: ndarray[Any, dtype[Any]]
reveal_type(np.ascontiguousarray(A, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.ascontiguousarray(A, dtype='c16')) # E: ndarray[Any, dtype[Any]]
reveal_type(np.asfortranarray(A)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.asfortranarray(B)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.asfortranarray([1, 1.0])) # E: ndarray[Any, dtype[Any]]
reveal_type(np.asfortranarray(A, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.asfortranarray(A, dtype='c16')) # E: ndarray[Any, dtype[Any]]
reveal_type(np.fromstring("1 1 1", sep=" ")) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.fromstring(b"1 1 1", sep=" ")) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.fromstring("1 1 1", dtype=np.int64, sep=" ")) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.fromstring(b"1 1 1", dtype=np.int64, sep=" ")) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.fromstring("1 1 1", dtype="c16", sep=" ")) # E: ndarray[Any, dtype[Any]]
reveal_type(np.fromstring(b"1 1 1", dtype="c16", sep=" ")) # E: ndarray[Any, dtype[Any]]
reveal_type(np.fromfile("test.txt", sep=" ")) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.fromfile("test.txt", dtype=np.int64, sep=" ")) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.fromfile("test.txt", dtype="c16", sep=" ")) # E: ndarray[Any, dtype[Any]]
with open("test.txt") as f:
reveal_type(np.fromfile(f, sep=" ")) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.fromfile(b"test.txt", sep=" ")) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.fromfile(Path("test.txt"), sep=" ")) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.fromiter("12345", np.float64)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.fromiter("12345", float)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.frombuffer(A)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.frombuffer(A, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.frombuffer(A, dtype="c16")) # E: ndarray[Any, dtype[Any]]
reveal_type(np.arange(False, True)) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.arange(10)) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.arange(0, 10, step=2)) # E: ndarray[Any, dtype[signedinteger[Any]]]
reveal_type(np.arange(10.0)) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(np.arange(start=0, stop=10.0)) # E: ndarray[Any, dtype[floating[Any]]]
reveal_type(np.arange(np.timedelta64(0))) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(np.arange(0, np.timedelta64(10))) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(np.arange(np.datetime64("0"), np.datetime64("10"))) # E: ndarray[Any, dtype[datetime64]]
reveal_type(np.arange(10, dtype=np.float64)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.arange(0, 10, step=2, dtype=np.int16)) # E: ndarray[Any, dtype[{int16}]]
reveal_type(np.arange(10, dtype=int)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.arange(0, 10, dtype="f8")) # E: ndarray[Any, dtype[Any]]
reveal_type(np.require(A)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.require(B)) # E: SubClass[{float64}]
reveal_type(np.require(B, requirements=None)) # E: SubClass[{float64}]
reveal_type(np.require(B, dtype=int)) # E: ndarray[Any, Any]
reveal_type(np.require(B, requirements="E")) # E: ndarray[Any, Any]
reveal_type(np.require(B, requirements=["ENSUREARRAY"])) # E: ndarray[Any, Any]
reveal_type(np.require(B, requirements={"F", "E"})) # E: ndarray[Any, Any]
reveal_type(np.require(B, requirements=["C", "OWNDATA"])) # E: SubClass[{float64}]
reveal_type(np.require(B, requirements="W")) # E: SubClass[{float64}]
reveal_type(np.require(B, requirements="A")) # E: SubClass[{float64}]
reveal_type(np.require(C)) # E: ndarray[Any, Any]
reveal_type(np.linspace(0, 10)) # E: ndarray[Any, Any]
reveal_type(np.linspace(0, 10, retstep=True)) # E: Tuple[ndarray[Any, Any], Any]
reveal_type(np.logspace(0, 10)) # E: ndarray[Any, Any]
reveal_type(np.geomspace(1, 10)) # E: ndarray[Any, Any]
reveal_type(np.zeros_like(A)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.zeros_like(C)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.zeros_like(A, dtype=float)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.zeros_like(B)) # E: SubClass[{float64}]
reveal_type(np.zeros_like(B, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.ones_like(A)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.ones_like(C)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.ones_like(A, dtype=float)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.ones_like(B)) # E: SubClass[{float64}]
reveal_type(np.ones_like(B, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.full_like(A, i8)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.full_like(C, i8)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.full_like(A, i8, dtype=int)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.full_like(B, i8)) # E: SubClass[{float64}]
reveal_type(np.full_like(B, i8, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.ones(1)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.ones([1, 1, 1])) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.ones(5, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.ones(5, dtype=int)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.full(1, i8)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.full([1, 1, 1], i8)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.full(1, i8, dtype=np.float64)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.full(1, i8, dtype=float)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.indices([1, 2, 3])) # E: ndarray[Any, dtype[{int_}]]
reveal_type(np.indices([1, 2, 3], sparse=True)) # E: tuple[ndarray[Any, dtype[{int_}]], ...]
reveal_type(np.fromfunction(func, (3, 5))) # E: SubClass[{float64}]
reveal_type(np.identity(10)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.identity(10, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.identity(10, dtype=int)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.atleast_1d(A)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.atleast_1d(C)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.atleast_1d(A, A)) # E: list[ndarray[Any, dtype[Any]]]
reveal_type(np.atleast_1d(A, C)) # E: list[ndarray[Any, dtype[Any]]]
reveal_type(np.atleast_1d(C, C)) # E: list[ndarray[Any, dtype[Any]]]
reveal_type(np.atleast_2d(A)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.atleast_3d(A)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.vstack([A, A])) # E: ndarray[Any, Any]
reveal_type(np.vstack([A, C])) # E: ndarray[Any, dtype[Any]]
reveal_type(np.vstack([C, C])) # E: ndarray[Any, dtype[Any]]
reveal_type(np.hstack([A, A])) # E: ndarray[Any, Any]
reveal_type(np.stack([A, A])) # E: Any
reveal_type(np.stack([A, C])) # E: ndarray[Any, dtype[Any]]
reveal_type(np.stack([C, C])) # E: ndarray[Any, dtype[Any]]
reveal_type(np.stack([A, A], axis=0)) # E: Any
reveal_type(np.stack([A, A], out=B)) # E: SubClass[{float64}]
reveal_type(np.block([[A, A], [A, A]])) # E: ndarray[Any, Any]
reveal_type(np.block(C)) # E: ndarray[Any, dtype[Any]]

View File

@@ -0,0 +1,21 @@
from typing import List, Any, Mapping, Tuple, SupportsIndex
import numpy as np
import numpy.typing as npt
def mode_func(
ar: npt.NDArray[np.number[Any]],
width: Tuple[int, int],
iaxis: SupportsIndex,
kwargs: Mapping[str, Any],
) -> None: ...
AR_i8: npt.NDArray[np.int64]
AR_f8: npt.NDArray[np.float64]
AR_LIKE: List[int]
reveal_type(np.pad(AR_i8, (2, 3), "constant")) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.pad(AR_LIKE, (2, 3), "constant")) # E: ndarray[Any, dtype[Any]]
reveal_type(np.pad(AR_f8, (2, 3), mode_func)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.pad(AR_f8, (2, 3), mode_func, a=1, b=2)) # E: ndarray[Any, dtype[{float64}]]

View File

@@ -0,0 +1,19 @@
from typing import Any, Callable
import numpy as np
AR: np.ndarray[Any, Any]
func_float: Callable[[np.floating[Any]], str]
func_int: Callable[[np.integer[Any]], str]
reveal_type(np.get_printoptions()) # E: TypedDict
reveal_type(np.array2string( # E: str
AR, formatter={'float_kind': func_float, 'int_kind': func_int}
))
reveal_type(np.format_float_scientific(1.0)) # E: str
reveal_type(np.format_float_positional(1)) # E: str
reveal_type(np.array_repr(AR)) # E: str
reveal_type(np.array_str(AR)) # E: str
reveal_type(np.printoptions()) # E: contextlib._GeneratorContextManager
with np.printoptions() as dct:
reveal_type(dct) # E: TypedDict

View File

@@ -0,0 +1,60 @@
import numpy as np
import numpy.typing as npt
AR_b: npt.NDArray[np.bool_]
AR_i8: npt.NDArray[np.int64]
AR_f8: npt.NDArray[np.float64]
AR_M: npt.NDArray[np.datetime64]
AR_O: npt.NDArray[np.object_]
AR_LIKE_f8: list[float]
reveal_type(np.ediff1d(AR_b)) # E: ndarray[Any, dtype[{int8}]]
reveal_type(np.ediff1d(AR_i8, to_end=[1, 2, 3])) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.ediff1d(AR_M)) # E: ndarray[Any, dtype[timedelta64]]
reveal_type(np.ediff1d(AR_O)) # E: ndarray[Any, dtype[object_]]
reveal_type(np.ediff1d(AR_LIKE_f8, to_begin=[1, 1.5])) # E: ndarray[Any, dtype[Any]]
reveal_type(np.intersect1d(AR_i8, AR_i8)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.intersect1d(AR_M, AR_M, assume_unique=True)) # E: ndarray[Any, dtype[datetime64]]
reveal_type(np.intersect1d(AR_f8, AR_i8)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.intersect1d(AR_f8, AR_f8, return_indices=True)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]]
reveal_type(np.setxor1d(AR_i8, AR_i8)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.setxor1d(AR_M, AR_M, assume_unique=True)) # E: ndarray[Any, dtype[datetime64]]
reveal_type(np.setxor1d(AR_f8, AR_i8)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.in1d(AR_i8, AR_i8)) # E: ndarray[Any, dtype[bool_]]
reveal_type(np.in1d(AR_M, AR_M, assume_unique=True)) # E: ndarray[Any, dtype[bool_]]
reveal_type(np.in1d(AR_f8, AR_i8)) # E: ndarray[Any, dtype[bool_]]
reveal_type(np.in1d(AR_f8, AR_LIKE_f8, invert=True)) # E: ndarray[Any, dtype[bool_]]
reveal_type(np.isin(AR_i8, AR_i8)) # E: ndarray[Any, dtype[bool_]]
reveal_type(np.isin(AR_M, AR_M, assume_unique=True)) # E: ndarray[Any, dtype[bool_]]
reveal_type(np.isin(AR_f8, AR_i8)) # E: ndarray[Any, dtype[bool_]]
reveal_type(np.isin(AR_f8, AR_LIKE_f8, invert=True)) # E: ndarray[Any, dtype[bool_]]
reveal_type(np.union1d(AR_i8, AR_i8)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.union1d(AR_M, AR_M)) # E: ndarray[Any, dtype[datetime64]]
reveal_type(np.union1d(AR_f8, AR_i8)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.setdiff1d(AR_i8, AR_i8)) # E: ndarray[Any, dtype[{int64}]]
reveal_type(np.setdiff1d(AR_M, AR_M, assume_unique=True)) # E: ndarray[Any, dtype[datetime64]]
reveal_type(np.setdiff1d(AR_f8, AR_i8)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.unique(AR_f8)) # E: ndarray[Any, dtype[{float64}]]
reveal_type(np.unique(AR_LIKE_f8, axis=0)) # E: ndarray[Any, dtype[Any]]
reveal_type(np.unique(AR_f8, return_index=True)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{intp}]]]
reveal_type(np.unique(AR_LIKE_f8, return_index=True)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[{intp}]]]
reveal_type(np.unique(AR_f8, return_inverse=True)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{intp}]]]
reveal_type(np.unique(AR_LIKE_f8, return_inverse=True)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[{intp}]]]
reveal_type(np.unique(AR_f8, return_counts=True)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{intp}]]]
reveal_type(np.unique(AR_LIKE_f8, return_counts=True)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[{intp}]]]
reveal_type(np.unique(AR_f8, return_index=True, return_inverse=True)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]]
reveal_type(np.unique(AR_LIKE_f8, return_index=True, return_inverse=True)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]]
reveal_type(np.unique(AR_f8, return_index=True, return_counts=True)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]]
reveal_type(np.unique(AR_LIKE_f8, return_index=True, return_counts=True)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]]
reveal_type(np.unique(AR_f8, return_inverse=True, return_counts=True)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]]
reveal_type(np.unique(AR_LIKE_f8, return_inverse=True, return_counts=True)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]]
reveal_type(np.unique(AR_f8, return_index=True, return_inverse=True, return_counts=True)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]]
reveal_type(np.unique(AR_LIKE_f8, return_index=True, return_inverse=True, return_counts=True)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]]

View File

@@ -0,0 +1,24 @@
from typing import Any
import numpy as np
AR_i8: np.ndarray[Any, np.dtype[np.int64]]
ar_iter = np.lib.Arrayterator(AR_i8)
reveal_type(ar_iter.var) # E: ndarray[Any, dtype[{int64}]]
reveal_type(ar_iter.buf_size) # E: Union[None, builtins.int]
reveal_type(ar_iter.start) # E: builtins.list[builtins.int]
reveal_type(ar_iter.stop) # E: builtins.list[builtins.int]
reveal_type(ar_iter.step) # E: builtins.list[builtins.int]
reveal_type(ar_iter.shape) # E: builtins.tuple[builtins.int, ...]
reveal_type(ar_iter.flat) # E: typing.Generator[{int64}, None, None]
reveal_type(ar_iter.__array__()) # E: ndarray[Any, dtype[{int64}]]
for i in ar_iter:
reveal_type(i) # E: ndarray[Any, dtype[{int64}]]
reveal_type(ar_iter[0]) # E: lib.arrayterator.Arrayterator[Any, dtype[{int64}]]
reveal_type(ar_iter[...]) # E: lib.arrayterator.Arrayterator[Any, dtype[{int64}]]
reveal_type(ar_iter[:]) # E: lib.arrayterator.Arrayterator[Any, dtype[{int64}]]
reveal_type(ar_iter[0, 0, 0]) # E: lib.arrayterator.Arrayterator[Any, dtype[{int64}]]
reveal_type(ar_iter[..., 0, :]) # E: lib.arrayterator.Arrayterator[Any, dtype[{int64}]]

Some files were not shown because too many files have changed in this diff Show More