mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-07-01 14:07:48 +00:00
first commit
This commit is contained in:
238
.venv/Lib/site-packages/pandas/errors/__init__.py
Normal file
238
.venv/Lib/site-packages/pandas/errors/__init__.py
Normal file
@ -0,0 +1,238 @@
|
||||
"""
|
||||
Expose public exceptions & warnings
|
||||
"""
|
||||
|
||||
from pandas._config.config import OptionError # noqa:F401
|
||||
|
||||
from pandas._libs.tslibs import ( # noqa:F401
|
||||
OutOfBoundsDatetime,
|
||||
OutOfBoundsTimedelta,
|
||||
)
|
||||
|
||||
|
||||
class IntCastingNaNError(ValueError):
|
||||
"""
|
||||
Raised when attempting an astype operation on an array with NaN to an integer
|
||||
dtype.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class NullFrequencyError(ValueError):
|
||||
"""
|
||||
Error raised when a null `freq` attribute is used in an operation
|
||||
that needs a non-null frequency, particularly `DatetimeIndex.shift`,
|
||||
`TimedeltaIndex.shift`, `PeriodIndex.shift`.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class PerformanceWarning(Warning):
|
||||
"""
|
||||
Warning raised when there is a possible performance impact.
|
||||
"""
|
||||
|
||||
|
||||
class UnsupportedFunctionCall(ValueError):
|
||||
"""
|
||||
Exception raised when attempting to call a numpy function
|
||||
on a pandas object, but that function is not supported by
|
||||
the object e.g. ``np.cumsum(groupby_object)``.
|
||||
"""
|
||||
|
||||
|
||||
class UnsortedIndexError(KeyError):
|
||||
"""
|
||||
Error raised when attempting to get a slice of a MultiIndex,
|
||||
and the index has not been lexsorted. Subclass of `KeyError`.
|
||||
"""
|
||||
|
||||
|
||||
class ParserError(ValueError):
|
||||
"""
|
||||
Exception that is raised by an error encountered in parsing file contents.
|
||||
|
||||
This is a generic error raised for errors encountered when functions like
|
||||
`read_csv` or `read_html` are parsing contents of a file.
|
||||
|
||||
See Also
|
||||
--------
|
||||
read_csv : Read CSV (comma-separated) file into a DataFrame.
|
||||
read_html : Read HTML table into a DataFrame.
|
||||
"""
|
||||
|
||||
|
||||
class DtypeWarning(Warning):
|
||||
"""
|
||||
Warning raised when reading different dtypes in a column from a file.
|
||||
|
||||
Raised for a dtype incompatibility. This can happen whenever `read_csv`
|
||||
or `read_table` encounter non-uniform dtypes in a column(s) of a given
|
||||
CSV file.
|
||||
|
||||
See Also
|
||||
--------
|
||||
read_csv : Read CSV (comma-separated) file into a DataFrame.
|
||||
read_table : Read general delimited file into a DataFrame.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This warning is issued when dealing with larger files because the dtype
|
||||
checking happens per chunk read.
|
||||
|
||||
Despite the warning, the CSV file is read with mixed types in a single
|
||||
column which will be an object type. See the examples below to better
|
||||
understand this issue.
|
||||
|
||||
Examples
|
||||
--------
|
||||
This example creates and reads a large CSV file with a column that contains
|
||||
`int` and `str`.
|
||||
|
||||
>>> df = pd.DataFrame({'a': (['1'] * 100000 + ['X'] * 100000 +
|
||||
... ['1'] * 100000),
|
||||
... 'b': ['b'] * 300000}) # doctest: +SKIP
|
||||
>>> df.to_csv('test.csv', index=False) # doctest: +SKIP
|
||||
>>> df2 = pd.read_csv('test.csv') # doctest: +SKIP
|
||||
... # DtypeWarning: Columns (0) have mixed types
|
||||
|
||||
Important to notice that ``df2`` will contain both `str` and `int` for the
|
||||
same input, '1'.
|
||||
|
||||
>>> df2.iloc[262140, 0] # doctest: +SKIP
|
||||
'1'
|
||||
>>> type(df2.iloc[262140, 0]) # doctest: +SKIP
|
||||
<class 'str'>
|
||||
>>> df2.iloc[262150, 0] # doctest: +SKIP
|
||||
1
|
||||
>>> type(df2.iloc[262150, 0]) # doctest: +SKIP
|
||||
<class 'int'>
|
||||
|
||||
One way to solve this issue is using the `dtype` parameter in the
|
||||
`read_csv` and `read_table` functions to explicit the conversion:
|
||||
|
||||
>>> df2 = pd.read_csv('test.csv', sep=',', dtype={'a': str}) # doctest: +SKIP
|
||||
|
||||
No warning was issued.
|
||||
"""
|
||||
|
||||
|
||||
class EmptyDataError(ValueError):
|
||||
"""
|
||||
Exception that is thrown in `pd.read_csv` (by both the C and
|
||||
Python engines) when empty data or header is encountered.
|
||||
"""
|
||||
|
||||
|
||||
class ParserWarning(Warning):
|
||||
"""
|
||||
Warning raised when reading a file that doesn't use the default 'c' parser.
|
||||
|
||||
Raised by `pd.read_csv` and `pd.read_table` when it is necessary to change
|
||||
parsers, generally from the default 'c' parser to 'python'.
|
||||
|
||||
It happens due to a lack of support or functionality for parsing a
|
||||
particular attribute of a CSV file with the requested engine.
|
||||
|
||||
Currently, 'c' unsupported options include the following parameters:
|
||||
|
||||
1. `sep` other than a single character (e.g. regex separators)
|
||||
2. `skipfooter` higher than 0
|
||||
3. `sep=None` with `delim_whitespace=False`
|
||||
|
||||
The warning can be avoided by adding `engine='python'` as a parameter in
|
||||
`pd.read_csv` and `pd.read_table` methods.
|
||||
|
||||
See Also
|
||||
--------
|
||||
pd.read_csv : Read CSV (comma-separated) file into DataFrame.
|
||||
pd.read_table : Read general delimited file into DataFrame.
|
||||
|
||||
Examples
|
||||
--------
|
||||
Using a `sep` in `pd.read_csv` other than a single character:
|
||||
|
||||
>>> import io
|
||||
>>> csv = '''a;b;c
|
||||
... 1;1,8
|
||||
... 1;2,1'''
|
||||
>>> df = pd.read_csv(io.StringIO(csv), sep='[;,]') # doctest: +SKIP
|
||||
... # ParserWarning: Falling back to the 'python' engine...
|
||||
|
||||
Adding `engine='python'` to `pd.read_csv` removes the Warning:
|
||||
|
||||
>>> df = pd.read_csv(io.StringIO(csv), sep='[;,]', engine='python')
|
||||
"""
|
||||
|
||||
|
||||
class MergeError(ValueError):
|
||||
"""
|
||||
Error raised when problems arise during merging due to problems
|
||||
with input data. Subclass of `ValueError`.
|
||||
"""
|
||||
|
||||
|
||||
class AccessorRegistrationWarning(Warning):
|
||||
"""
|
||||
Warning for attribute conflicts in accessor registration.
|
||||
"""
|
||||
|
||||
|
||||
class AbstractMethodError(NotImplementedError):
|
||||
"""
|
||||
Raise this error instead of NotImplementedError for abstract methods
|
||||
while keeping compatibility with Python 2 and Python 3.
|
||||
"""
|
||||
|
||||
def __init__(self, class_instance, methodtype="method"):
|
||||
types = {"method", "classmethod", "staticmethod", "property"}
|
||||
if methodtype not in types:
|
||||
raise ValueError(
|
||||
f"methodtype must be one of {methodtype}, got {types} instead."
|
||||
)
|
||||
self.methodtype = methodtype
|
||||
self.class_instance = class_instance
|
||||
|
||||
def __str__(self) -> str:
|
||||
if self.methodtype == "classmethod":
|
||||
name = self.class_instance.__name__
|
||||
else:
|
||||
name = type(self.class_instance).__name__
|
||||
return f"This {self.methodtype} must be defined in the concrete class {name}"
|
||||
|
||||
|
||||
class NumbaUtilError(Exception):
|
||||
"""
|
||||
Error raised for unsupported Numba engine routines.
|
||||
"""
|
||||
|
||||
|
||||
class DuplicateLabelError(ValueError):
|
||||
"""
|
||||
Error raised when an operation would introduce duplicate labels.
|
||||
|
||||
.. versionadded:: 1.2.0
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> s = pd.Series([0, 1, 2], index=['a', 'b', 'c']).set_flags(
|
||||
... allows_duplicate_labels=False
|
||||
... )
|
||||
>>> s.reindex(['a', 'a', 'b'])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
DuplicateLabelError: Index has duplicates.
|
||||
positions
|
||||
label
|
||||
a [0, 1]
|
||||
"""
|
||||
|
||||
|
||||
class InvalidIndexError(Exception):
|
||||
"""
|
||||
Exception raised when attempting to use an invalid index key.
|
||||
|
||||
.. versionadded:: 1.1.0
|
||||
"""
|
Reference in New Issue
Block a user