mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-07-04 07:08:05 +00:00
first commit
This commit is contained in:
21
.venv/Lib/site-packages/pandas/io/json/__init__.py
Normal file
21
.venv/Lib/site-packages/pandas/io/json/__init__.py
Normal file
@ -0,0 +1,21 @@
|
||||
from pandas.io.json._json import (
|
||||
dumps,
|
||||
loads,
|
||||
read_json,
|
||||
to_json,
|
||||
)
|
||||
from pandas.io.json._normalize import (
|
||||
_json_normalize,
|
||||
json_normalize,
|
||||
)
|
||||
from pandas.io.json._table_schema import build_table_schema
|
||||
|
||||
__all__ = [
|
||||
"dumps",
|
||||
"loads",
|
||||
"read_json",
|
||||
"to_json",
|
||||
"_json_normalize",
|
||||
"json_normalize",
|
||||
"build_table_schema",
|
||||
]
|
1226
.venv/Lib/site-packages/pandas/io/json/_json.py
Normal file
1226
.venv/Lib/site-packages/pandas/io/json/_json.py
Normal file
File diff suppressed because it is too large
Load Diff
541
.venv/Lib/site-packages/pandas/io/json/_normalize.py
Normal file
541
.venv/Lib/site-packages/pandas/io/json/_normalize.py
Normal file
@ -0,0 +1,541 @@
|
||||
# ---------------------------------------------------------------------
|
||||
# JSON normalization routines
|
||||
from __future__ import annotations
|
||||
|
||||
from collections import (
|
||||
abc,
|
||||
defaultdict,
|
||||
)
|
||||
import copy
|
||||
from typing import (
|
||||
Any,
|
||||
DefaultDict,
|
||||
Iterable,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas._libs.writers import convert_json_to_lines
|
||||
from pandas._typing import Scalar
|
||||
from pandas.util._decorators import deprecate
|
||||
|
||||
import pandas as pd
|
||||
from pandas import DataFrame
|
||||
|
||||
|
||||
def convert_to_line_delimits(s: str) -> str:
|
||||
"""
|
||||
Helper function that converts JSON lists to line delimited JSON.
|
||||
"""
|
||||
# Determine we have a JSON list to turn to lines otherwise just return the
|
||||
# json object, only lists can
|
||||
if not s[0] == "[" and s[-1] == "]":
|
||||
return s
|
||||
s = s[1:-1]
|
||||
|
||||
return convert_json_to_lines(s)
|
||||
|
||||
|
||||
def nested_to_record(
|
||||
ds,
|
||||
prefix: str = "",
|
||||
sep: str = ".",
|
||||
level: int = 0,
|
||||
max_level: int | None = None,
|
||||
):
|
||||
"""
|
||||
A simplified json_normalize
|
||||
|
||||
Converts a nested dict into a flat dict ("record"), unlike json_normalize,
|
||||
it does not attempt to extract a subset of the data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ds : dict or list of dicts
|
||||
prefix: the prefix, optional, default: ""
|
||||
sep : str, default '.'
|
||||
Nested records will generate names separated by sep,
|
||||
e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
|
||||
level: int, optional, default: 0
|
||||
The number of levels in the json string.
|
||||
|
||||
max_level: int, optional, default: None
|
||||
The max depth to normalize.
|
||||
|
||||
.. versionadded:: 0.25.0
|
||||
|
||||
Returns
|
||||
-------
|
||||
d - dict or list of dicts, matching `ds`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> nested_to_record(
|
||||
... dict(flat1=1, dict1=dict(c=1, d=2), nested=dict(e=dict(c=1, d=2), d=2))
|
||||
... )
|
||||
{\
|
||||
'flat1': 1, \
|
||||
'dict1.c': 1, \
|
||||
'dict1.d': 2, \
|
||||
'nested.e.c': 1, \
|
||||
'nested.e.d': 2, \
|
||||
'nested.d': 2\
|
||||
}
|
||||
"""
|
||||
singleton = False
|
||||
if isinstance(ds, dict):
|
||||
ds = [ds]
|
||||
singleton = True
|
||||
new_ds = []
|
||||
for d in ds:
|
||||
new_d = copy.deepcopy(d)
|
||||
for k, v in d.items():
|
||||
# each key gets renamed with prefix
|
||||
if not isinstance(k, str):
|
||||
k = str(k)
|
||||
if level == 0:
|
||||
newkey = k
|
||||
else:
|
||||
newkey = prefix + sep + k
|
||||
|
||||
# flatten if type is dict and
|
||||
# current dict level < maximum level provided and
|
||||
# only dicts gets recurse-flattened
|
||||
# only at level>1 do we rename the rest of the keys
|
||||
if not isinstance(v, dict) or (
|
||||
max_level is not None and level >= max_level
|
||||
):
|
||||
if level != 0: # so we skip copying for top level, common case
|
||||
v = new_d.pop(k)
|
||||
new_d[newkey] = v
|
||||
continue
|
||||
else:
|
||||
v = new_d.pop(k)
|
||||
new_d.update(nested_to_record(v, newkey, sep, level + 1, max_level))
|
||||
new_ds.append(new_d)
|
||||
|
||||
if singleton:
|
||||
return new_ds[0]
|
||||
return new_ds
|
||||
|
||||
|
||||
def _normalise_json(
|
||||
data: Any,
|
||||
key_string: str,
|
||||
normalized_dict: dict[str, Any],
|
||||
separator: str,
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Main recursive function
|
||||
Designed for the most basic use case of pd.json_normalize(data)
|
||||
intended as a performance improvement, see #15621
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : Any
|
||||
Type dependent on types contained within nested Json
|
||||
key_string : str
|
||||
New key (with separator(s) in) for data
|
||||
normalized_dict : dict
|
||||
The new normalized/flattened Json dict
|
||||
separator : str, default '.'
|
||||
Nested records will generate names separated by sep,
|
||||
e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
|
||||
"""
|
||||
if isinstance(data, dict):
|
||||
for key, value in data.items():
|
||||
new_key = f"{key_string}{separator}{key}"
|
||||
_normalise_json(
|
||||
data=value,
|
||||
# to avoid adding the separator to the start of every key
|
||||
# GH#43831 avoid adding key if key_string blank
|
||||
key_string=new_key
|
||||
if new_key[: len(separator)] != separator
|
||||
else new_key[len(separator) :],
|
||||
normalized_dict=normalized_dict,
|
||||
separator=separator,
|
||||
)
|
||||
else:
|
||||
normalized_dict[key_string] = data
|
||||
return normalized_dict
|
||||
|
||||
|
||||
def _normalise_json_ordered(data: dict[str, Any], separator: str) -> dict[str, Any]:
|
||||
"""
|
||||
Order the top level keys and then recursively go to depth
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : dict or list of dicts
|
||||
separator : str, default '.'
|
||||
Nested records will generate names separated by sep,
|
||||
e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict or list of dicts, matching `normalised_json_object`
|
||||
"""
|
||||
top_dict_ = {k: v for k, v in data.items() if not isinstance(v, dict)}
|
||||
nested_dict_ = _normalise_json(
|
||||
data={k: v for k, v in data.items() if isinstance(v, dict)},
|
||||
key_string="",
|
||||
normalized_dict={},
|
||||
separator=separator,
|
||||
)
|
||||
return {**top_dict_, **nested_dict_}
|
||||
|
||||
|
||||
def _simple_json_normalize(
|
||||
ds: dict | list[dict],
|
||||
sep: str = ".",
|
||||
) -> dict | list[dict] | Any:
|
||||
"""
|
||||
A optimized basic json_normalize
|
||||
|
||||
Converts a nested dict into a flat dict ("record"), unlike
|
||||
json_normalize and nested_to_record it doesn't do anything clever.
|
||||
But for the most basic use cases it enhances performance.
|
||||
E.g. pd.json_normalize(data)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ds : dict or list of dicts
|
||||
sep : str, default '.'
|
||||
Nested records will generate names separated by sep,
|
||||
e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
|
||||
|
||||
Returns
|
||||
-------
|
||||
frame : DataFrame
|
||||
d - dict or list of dicts, matching `normalised_json_object`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> _simple_json_normalize(
|
||||
... {
|
||||
... "flat1": 1,
|
||||
... "dict1": {"c": 1, "d": 2},
|
||||
... "nested": {"e": {"c": 1, "d": 2}, "d": 2},
|
||||
... }
|
||||
... )
|
||||
{\
|
||||
'flat1': 1, \
|
||||
'dict1.c': 1, \
|
||||
'dict1.d': 2, \
|
||||
'nested.e.c': 1, \
|
||||
'nested.e.d': 2, \
|
||||
'nested.d': 2\
|
||||
}
|
||||
|
||||
"""
|
||||
normalised_json_object = {}
|
||||
# expect a dictionary, as most jsons are. However, lists are perfectly valid
|
||||
if isinstance(ds, dict):
|
||||
normalised_json_object = _normalise_json_ordered(data=ds, separator=sep)
|
||||
elif isinstance(ds, list):
|
||||
normalised_json_list = [_simple_json_normalize(row, sep=sep) for row in ds]
|
||||
return normalised_json_list
|
||||
return normalised_json_object
|
||||
|
||||
|
||||
def _json_normalize(
|
||||
data: dict | list[dict],
|
||||
record_path: str | list | None = None,
|
||||
meta: str | list[str | list[str]] | None = None,
|
||||
meta_prefix: str | None = None,
|
||||
record_prefix: str | None = None,
|
||||
errors: str = "raise",
|
||||
sep: str = ".",
|
||||
max_level: int | None = None,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Normalize semi-structured JSON data into a flat table.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : dict or list of dicts
|
||||
Unserialized JSON objects.
|
||||
record_path : str or list of str, default None
|
||||
Path in each object to list of records. If not passed, data will be
|
||||
assumed to be an array of records.
|
||||
meta : list of paths (str or list of str), default None
|
||||
Fields to use as metadata for each record in resulting table.
|
||||
meta_prefix : str, default None
|
||||
If True, prefix records with dotted (?) path, e.g. foo.bar.field if
|
||||
meta is ['foo', 'bar'].
|
||||
record_prefix : str, default None
|
||||
If True, prefix records with dotted (?) path, e.g. foo.bar.field if
|
||||
path to records is ['foo', 'bar'].
|
||||
errors : {'raise', 'ignore'}, default 'raise'
|
||||
Configures error handling.
|
||||
|
||||
* 'ignore' : will ignore KeyError if keys listed in meta are not
|
||||
always present.
|
||||
* 'raise' : will raise KeyError if keys listed in meta are not
|
||||
always present.
|
||||
sep : str, default '.'
|
||||
Nested records will generate names separated by sep.
|
||||
e.g., for sep='.', {'foo': {'bar': 0}} -> foo.bar.
|
||||
max_level : int, default None
|
||||
Max number of levels(depth of dict) to normalize.
|
||||
if None, normalizes all levels.
|
||||
|
||||
.. versionadded:: 0.25.0
|
||||
|
||||
Returns
|
||||
-------
|
||||
frame : DataFrame
|
||||
Normalize semi-structured JSON data into a flat table.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> data = [
|
||||
... {"id": 1, "name": {"first": "Coleen", "last": "Volk"}},
|
||||
... {"name": {"given": "Mark", "family": "Regner"}},
|
||||
... {"id": 2, "name": "Faye Raker"},
|
||||
... ]
|
||||
>>> pd.json_normalize(data)
|
||||
id name.first name.last name.given name.family name
|
||||
0 1.0 Coleen Volk NaN NaN NaN
|
||||
1 NaN NaN NaN Mark Regner NaN
|
||||
2 2.0 NaN NaN NaN NaN Faye Raker
|
||||
|
||||
>>> data = [
|
||||
... {
|
||||
... "id": 1,
|
||||
... "name": "Cole Volk",
|
||||
... "fitness": {"height": 130, "weight": 60},
|
||||
... },
|
||||
... {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}},
|
||||
... {
|
||||
... "id": 2,
|
||||
... "name": "Faye Raker",
|
||||
... "fitness": {"height": 130, "weight": 60},
|
||||
... },
|
||||
... ]
|
||||
>>> pd.json_normalize(data, max_level=0)
|
||||
id name fitness
|
||||
0 1.0 Cole Volk {'height': 130, 'weight': 60}
|
||||
1 NaN Mark Reg {'height': 130, 'weight': 60}
|
||||
2 2.0 Faye Raker {'height': 130, 'weight': 60}
|
||||
|
||||
Normalizes nested data up to level 1.
|
||||
|
||||
>>> data = [
|
||||
... {
|
||||
... "id": 1,
|
||||
... "name": "Cole Volk",
|
||||
... "fitness": {"height": 130, "weight": 60},
|
||||
... },
|
||||
... {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}},
|
||||
... {
|
||||
... "id": 2,
|
||||
... "name": "Faye Raker",
|
||||
... "fitness": {"height": 130, "weight": 60},
|
||||
... },
|
||||
... ]
|
||||
>>> pd.json_normalize(data, max_level=1)
|
||||
id name fitness.height fitness.weight
|
||||
0 1.0 Cole Volk 130 60
|
||||
1 NaN Mark Reg 130 60
|
||||
2 2.0 Faye Raker 130 60
|
||||
|
||||
>>> data = [
|
||||
... {
|
||||
... "state": "Florida",
|
||||
... "shortname": "FL",
|
||||
... "info": {"governor": "Rick Scott"},
|
||||
... "counties": [
|
||||
... {"name": "Dade", "population": 12345},
|
||||
... {"name": "Broward", "population": 40000},
|
||||
... {"name": "Palm Beach", "population": 60000},
|
||||
... ],
|
||||
... },
|
||||
... {
|
||||
... "state": "Ohio",
|
||||
... "shortname": "OH",
|
||||
... "info": {"governor": "John Kasich"},
|
||||
... "counties": [
|
||||
... {"name": "Summit", "population": 1234},
|
||||
... {"name": "Cuyahoga", "population": 1337},
|
||||
... ],
|
||||
... },
|
||||
... ]
|
||||
>>> result = pd.json_normalize(
|
||||
... data, "counties", ["state", "shortname", ["info", "governor"]]
|
||||
... )
|
||||
>>> result
|
||||
name population state shortname info.governor
|
||||
0 Dade 12345 Florida FL Rick Scott
|
||||
1 Broward 40000 Florida FL Rick Scott
|
||||
2 Palm Beach 60000 Florida FL Rick Scott
|
||||
3 Summit 1234 Ohio OH John Kasich
|
||||
4 Cuyahoga 1337 Ohio OH John Kasich
|
||||
|
||||
>>> data = {"A": [1, 2]}
|
||||
>>> pd.json_normalize(data, "A", record_prefix="Prefix.")
|
||||
Prefix.0
|
||||
0 1
|
||||
1 2
|
||||
|
||||
Returns normalized data with columns prefixed with the given string.
|
||||
"""
|
||||
|
||||
def _pull_field(
|
||||
js: dict[str, Any], spec: list | str, extract_record: bool = False
|
||||
) -> Scalar | Iterable:
|
||||
"""Internal function to pull field"""
|
||||
result = js
|
||||
try:
|
||||
if isinstance(spec, list):
|
||||
for field in spec:
|
||||
if result is None:
|
||||
raise KeyError(field)
|
||||
result = result[field]
|
||||
else:
|
||||
result = result[spec]
|
||||
except KeyError as e:
|
||||
if extract_record:
|
||||
raise KeyError(
|
||||
f"Key {e} not found. If specifying a record_path, all elements of "
|
||||
f"data should have the path."
|
||||
) from e
|
||||
elif errors == "ignore":
|
||||
return np.nan
|
||||
else:
|
||||
raise KeyError(
|
||||
f"Key {e} not found. To replace missing values of {e} with "
|
||||
f"np.nan, pass in errors='ignore'"
|
||||
) from e
|
||||
|
||||
return result
|
||||
|
||||
def _pull_records(js: dict[str, Any], spec: list | str) -> list:
|
||||
"""
|
||||
Internal function to pull field for records, and similar to
|
||||
_pull_field, but require to return list. And will raise error
|
||||
if has non iterable value.
|
||||
"""
|
||||
result = _pull_field(js, spec, extract_record=True)
|
||||
|
||||
# GH 31507 GH 30145, GH 26284 if result is not list, raise TypeError if not
|
||||
# null, otherwise return an empty list
|
||||
if not isinstance(result, list):
|
||||
if pd.isnull(result):
|
||||
result = []
|
||||
else:
|
||||
raise TypeError(
|
||||
f"{js} has non list value {result} for path {spec}. "
|
||||
"Must be list or null."
|
||||
)
|
||||
return result
|
||||
|
||||
if isinstance(data, list) and not data:
|
||||
return DataFrame()
|
||||
elif isinstance(data, dict):
|
||||
# A bit of a hackjob
|
||||
data = [data]
|
||||
elif isinstance(data, abc.Iterable) and not isinstance(data, str):
|
||||
# GH35923 Fix pd.json_normalize to not skip the first element of a
|
||||
# generator input
|
||||
data = list(data)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
# check to see if a simple recursive function is possible to
|
||||
# improve performance (see #15621) but only for cases such
|
||||
# as pd.Dataframe(data) or pd.Dataframe(data, sep)
|
||||
if (
|
||||
record_path is None
|
||||
and meta is None
|
||||
and meta_prefix is None
|
||||
and record_prefix is None
|
||||
and max_level is None
|
||||
):
|
||||
return DataFrame(_simple_json_normalize(data, sep=sep))
|
||||
|
||||
if record_path is None:
|
||||
if any([isinstance(x, dict) for x in y.values()] for y in data):
|
||||
# naive normalization, this is idempotent for flat records
|
||||
# and potentially will inflate the data considerably for
|
||||
# deeply nested structures:
|
||||
# {VeryLong: { b: 1,c:2}} -> {VeryLong.b:1 ,VeryLong.c:@}
|
||||
#
|
||||
# TODO: handle record value which are lists, at least error
|
||||
# reasonably
|
||||
data = nested_to_record(data, sep=sep, max_level=max_level)
|
||||
return DataFrame(data)
|
||||
elif not isinstance(record_path, list):
|
||||
record_path = [record_path]
|
||||
|
||||
if meta is None:
|
||||
meta = []
|
||||
elif not isinstance(meta, list):
|
||||
meta = [meta]
|
||||
|
||||
_meta = [m if isinstance(m, list) else [m] for m in meta]
|
||||
|
||||
# Disastrously inefficient for now
|
||||
records: list = []
|
||||
lengths = []
|
||||
|
||||
meta_vals: DefaultDict = defaultdict(list)
|
||||
meta_keys = [sep.join(val) for val in _meta]
|
||||
|
||||
def _recursive_extract(data, path, seen_meta, level=0):
|
||||
if isinstance(data, dict):
|
||||
data = [data]
|
||||
if len(path) > 1:
|
||||
for obj in data:
|
||||
for val, key in zip(_meta, meta_keys):
|
||||
if level + 1 == len(val):
|
||||
seen_meta[key] = _pull_field(obj, val[-1])
|
||||
|
||||
_recursive_extract(obj[path[0]], path[1:], seen_meta, level=level + 1)
|
||||
else:
|
||||
for obj in data:
|
||||
recs = _pull_records(obj, path[0])
|
||||
recs = [
|
||||
nested_to_record(r, sep=sep, max_level=max_level)
|
||||
if isinstance(r, dict)
|
||||
else r
|
||||
for r in recs
|
||||
]
|
||||
|
||||
# For repeating the metadata later
|
||||
lengths.append(len(recs))
|
||||
for val, key in zip(_meta, meta_keys):
|
||||
if level + 1 > len(val):
|
||||
meta_val = seen_meta[key]
|
||||
else:
|
||||
meta_val = _pull_field(obj, val[level:])
|
||||
meta_vals[key].append(meta_val)
|
||||
records.extend(recs)
|
||||
|
||||
_recursive_extract(data, record_path, {}, level=0)
|
||||
|
||||
result = DataFrame(records)
|
||||
|
||||
if record_prefix is not None:
|
||||
# Incompatible types in assignment (expression has type "Optional[DataFrame]",
|
||||
# variable has type "DataFrame")
|
||||
result = result.rename( # type: ignore[assignment]
|
||||
columns=lambda x: f"{record_prefix}{x}"
|
||||
)
|
||||
|
||||
# Data types, a problem
|
||||
for k, v in meta_vals.items():
|
||||
if meta_prefix is not None:
|
||||
k = meta_prefix + k
|
||||
|
||||
if k in result:
|
||||
raise ValueError(
|
||||
f"Conflicting metadata name {k}, need distinguishing prefix "
|
||||
)
|
||||
result[k] = np.array(v, dtype=object).repeat(lengths)
|
||||
return result
|
||||
|
||||
|
||||
json_normalize = deprecate(
|
||||
"pandas.io.json.json_normalize", _json_normalize, "1.0.0", "pandas.json_normalize"
|
||||
)
|
368
.venv/Lib/site-packages/pandas/io/json/_table_schema.py
Normal file
368
.venv/Lib/site-packages/pandas/io/json/_table_schema.py
Normal file
@ -0,0 +1,368 @@
|
||||
"""
|
||||
Table Schema builders
|
||||
|
||||
https://specs.frictionlessdata.io/json-table-schema/
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
cast,
|
||||
)
|
||||
import warnings
|
||||
|
||||
import pandas._libs.json as json
|
||||
from pandas._typing import (
|
||||
DtypeObj,
|
||||
JSONSerializable,
|
||||
)
|
||||
|
||||
from pandas.core.dtypes.base import _registry as registry
|
||||
from pandas.core.dtypes.common import (
|
||||
is_bool_dtype,
|
||||
is_categorical_dtype,
|
||||
is_datetime64_dtype,
|
||||
is_datetime64tz_dtype,
|
||||
is_extension_array_dtype,
|
||||
is_integer_dtype,
|
||||
is_numeric_dtype,
|
||||
is_period_dtype,
|
||||
is_string_dtype,
|
||||
is_timedelta64_dtype,
|
||||
)
|
||||
from pandas.core.dtypes.dtypes import CategoricalDtype
|
||||
|
||||
from pandas import DataFrame
|
||||
import pandas.core.common as com
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pandas import Series
|
||||
from pandas.core.indexes.multi import MultiIndex
|
||||
|
||||
loads = json.loads
|
||||
|
||||
TABLE_SCHEMA_VERSION = "1.4.0"
|
||||
|
||||
|
||||
def as_json_table_type(x: DtypeObj) -> str:
|
||||
"""
|
||||
Convert a NumPy / pandas type to its corresponding json_table.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : np.dtype or ExtensionDtype
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
the Table Schema data types
|
||||
|
||||
Notes
|
||||
-----
|
||||
This table shows the relationship between NumPy / pandas dtypes,
|
||||
and Table Schema dtypes.
|
||||
|
||||
============== =================
|
||||
Pandas type Table Schema type
|
||||
============== =================
|
||||
int64 integer
|
||||
float64 number
|
||||
bool boolean
|
||||
datetime64[ns] datetime
|
||||
timedelta64[ns] duration
|
||||
object str
|
||||
categorical any
|
||||
=============== =================
|
||||
"""
|
||||
if is_integer_dtype(x):
|
||||
return "integer"
|
||||
elif is_bool_dtype(x):
|
||||
return "boolean"
|
||||
elif is_numeric_dtype(x):
|
||||
return "number"
|
||||
elif is_datetime64_dtype(x) or is_datetime64tz_dtype(x) or is_period_dtype(x):
|
||||
return "datetime"
|
||||
elif is_timedelta64_dtype(x):
|
||||
return "duration"
|
||||
elif is_categorical_dtype(x):
|
||||
return "any"
|
||||
elif is_extension_array_dtype(x):
|
||||
return "any"
|
||||
elif is_string_dtype(x):
|
||||
return "string"
|
||||
else:
|
||||
return "any"
|
||||
|
||||
|
||||
def set_default_names(data):
|
||||
"""Sets index names to 'index' for regular, or 'level_x' for Multi"""
|
||||
if com.all_not_none(*data.index.names):
|
||||
nms = data.index.names
|
||||
if len(nms) == 1 and data.index.name == "index":
|
||||
warnings.warn("Index name of 'index' is not round-trippable.")
|
||||
elif len(nms) > 1 and any(x.startswith("level_") for x in nms):
|
||||
warnings.warn(
|
||||
"Index names beginning with 'level_' are not round-trippable."
|
||||
)
|
||||
return data
|
||||
|
||||
data = data.copy()
|
||||
if data.index.nlevels > 1:
|
||||
data.index.names = com.fill_missing_names(data.index.names)
|
||||
else:
|
||||
data.index.name = data.index.name or "index"
|
||||
return data
|
||||
|
||||
|
||||
def convert_pandas_type_to_json_field(arr):
|
||||
dtype = arr.dtype
|
||||
if arr.name is None:
|
||||
name = "values"
|
||||
else:
|
||||
name = arr.name
|
||||
field: dict[str, JSONSerializable] = {
|
||||
"name": name,
|
||||
"type": as_json_table_type(dtype),
|
||||
}
|
||||
|
||||
if is_categorical_dtype(dtype):
|
||||
cats = dtype.categories
|
||||
ordered = dtype.ordered
|
||||
|
||||
field["constraints"] = {"enum": list(cats)}
|
||||
field["ordered"] = ordered
|
||||
elif is_period_dtype(dtype):
|
||||
field["freq"] = dtype.freq.freqstr
|
||||
elif is_datetime64tz_dtype(dtype):
|
||||
field["tz"] = dtype.tz.zone
|
||||
elif is_extension_array_dtype(dtype):
|
||||
field["extDtype"] = dtype.name
|
||||
return field
|
||||
|
||||
|
||||
def convert_json_field_to_pandas_type(field):
|
||||
"""
|
||||
Converts a JSON field descriptor into its corresponding NumPy / pandas type
|
||||
|
||||
Parameters
|
||||
----------
|
||||
field
|
||||
A JSON field descriptor
|
||||
|
||||
Returns
|
||||
-------
|
||||
dtype
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If the type of the provided field is unknown or currently unsupported
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> convert_json_field_to_pandas_type({"name": "an_int", "type": "integer"})
|
||||
'int64'
|
||||
|
||||
>>> convert_json_field_to_pandas_type(
|
||||
... {
|
||||
... "name": "a_categorical",
|
||||
... "type": "any",
|
||||
... "constraints": {"enum": ["a", "b", "c"]},
|
||||
... "ordered": True,
|
||||
... }
|
||||
... )
|
||||
CategoricalDtype(categories=['a', 'b', 'c'], ordered=True)
|
||||
|
||||
>>> convert_json_field_to_pandas_type({"name": "a_datetime", "type": "datetime"})
|
||||
'datetime64[ns]'
|
||||
|
||||
>>> convert_json_field_to_pandas_type(
|
||||
... {"name": "a_datetime_with_tz", "type": "datetime", "tz": "US/Central"}
|
||||
... )
|
||||
'datetime64[ns, US/Central]'
|
||||
"""
|
||||
typ = field["type"]
|
||||
if typ == "string":
|
||||
return "object"
|
||||
elif typ == "integer":
|
||||
return "int64"
|
||||
elif typ == "number":
|
||||
return "float64"
|
||||
elif typ == "boolean":
|
||||
return "bool"
|
||||
elif typ == "duration":
|
||||
return "timedelta64"
|
||||
elif typ == "datetime":
|
||||
if field.get("tz"):
|
||||
return f"datetime64[ns, {field['tz']}]"
|
||||
else:
|
||||
return "datetime64[ns]"
|
||||
elif typ == "any":
|
||||
if "constraints" in field and "ordered" in field:
|
||||
return CategoricalDtype(
|
||||
categories=field["constraints"]["enum"], ordered=field["ordered"]
|
||||
)
|
||||
elif "extDtype" in field:
|
||||
return registry.find(field["extDtype"])
|
||||
else:
|
||||
return "object"
|
||||
|
||||
raise ValueError(f"Unsupported or invalid field type: {typ}")
|
||||
|
||||
|
||||
def build_table_schema(
|
||||
data: DataFrame | Series,
|
||||
index: bool = True,
|
||||
primary_key: bool | None = None,
|
||||
version: bool = True,
|
||||
) -> dict[str, JSONSerializable]:
|
||||
"""
|
||||
Create a Table schema from ``data``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : Series, DataFrame
|
||||
index : bool, default True
|
||||
Whether to include ``data.index`` in the schema.
|
||||
primary_key : bool or None, default True
|
||||
Column names to designate as the primary key.
|
||||
The default `None` will set `'primaryKey'` to the index
|
||||
level or levels if the index is unique.
|
||||
version : bool, default True
|
||||
Whether to include a field `pandas_version` with the version
|
||||
of pandas that last revised the table schema. This version
|
||||
can be different from the installed pandas version.
|
||||
|
||||
Returns
|
||||
-------
|
||||
schema : dict
|
||||
|
||||
Notes
|
||||
-----
|
||||
See `Table Schema
|
||||
<https://pandas.pydata.org/docs/user_guide/io.html#table-schema>`__ for
|
||||
conversion types.
|
||||
Timedeltas as converted to ISO8601 duration format with
|
||||
9 decimal places after the seconds field for nanosecond precision.
|
||||
|
||||
Categoricals are converted to the `any` dtype, and use the `enum` field
|
||||
constraint to list the allowed values. The `ordered` attribute is included
|
||||
in an `ordered` field.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> df = pd.DataFrame(
|
||||
... {'A': [1, 2, 3],
|
||||
... 'B': ['a', 'b', 'c'],
|
||||
... 'C': pd.date_range('2016-01-01', freq='d', periods=3),
|
||||
... }, index=pd.Index(range(3), name='idx'))
|
||||
>>> build_table_schema(df)
|
||||
{'fields': \
|
||||
[{'name': 'idx', 'type': 'integer'}, \
|
||||
{'name': 'A', 'type': 'integer'}, \
|
||||
{'name': 'B', 'type': 'string'}, \
|
||||
{'name': 'C', 'type': 'datetime'}], \
|
||||
'primaryKey': ['idx'], \
|
||||
'pandas_version': '1.4.0'}
|
||||
"""
|
||||
if index is True:
|
||||
data = set_default_names(data)
|
||||
|
||||
schema: dict[str, Any] = {}
|
||||
fields = []
|
||||
|
||||
if index:
|
||||
if data.index.nlevels > 1:
|
||||
data.index = cast("MultiIndex", data.index)
|
||||
for level, name in zip(data.index.levels, data.index.names):
|
||||
new_field = convert_pandas_type_to_json_field(level)
|
||||
new_field["name"] = name
|
||||
fields.append(new_field)
|
||||
else:
|
||||
fields.append(convert_pandas_type_to_json_field(data.index))
|
||||
|
||||
if data.ndim > 1:
|
||||
for column, s in data.items():
|
||||
fields.append(convert_pandas_type_to_json_field(s))
|
||||
else:
|
||||
fields.append(convert_pandas_type_to_json_field(data))
|
||||
|
||||
schema["fields"] = fields
|
||||
if index and data.index.is_unique and primary_key is None:
|
||||
if data.index.nlevels == 1:
|
||||
schema["primaryKey"] = [data.index.name]
|
||||
else:
|
||||
schema["primaryKey"] = data.index.names
|
||||
elif primary_key is not None:
|
||||
schema["primaryKey"] = primary_key
|
||||
|
||||
if version:
|
||||
schema["pandas_version"] = TABLE_SCHEMA_VERSION
|
||||
return schema
|
||||
|
||||
|
||||
def parse_table_schema(json, precise_float):
|
||||
"""
|
||||
Builds a DataFrame from a given schema
|
||||
|
||||
Parameters
|
||||
----------
|
||||
json :
|
||||
A JSON table schema
|
||||
precise_float : bool
|
||||
Flag controlling precision when decoding string to double values, as
|
||||
dictated by ``read_json``
|
||||
|
||||
Returns
|
||||
-------
|
||||
df : DataFrame
|
||||
|
||||
Raises
|
||||
------
|
||||
NotImplementedError
|
||||
If the JSON table schema contains either timezone or timedelta data
|
||||
|
||||
Notes
|
||||
-----
|
||||
Because :func:`DataFrame.to_json` uses the string 'index' to denote a
|
||||
name-less :class:`Index`, this function sets the name of the returned
|
||||
:class:`DataFrame` to ``None`` when said string is encountered with a
|
||||
normal :class:`Index`. For a :class:`MultiIndex`, the same limitation
|
||||
applies to any strings beginning with 'level_'. Therefore, an
|
||||
:class:`Index` name of 'index' and :class:`MultiIndex` names starting
|
||||
with 'level_' are not supported.
|
||||
|
||||
See Also
|
||||
--------
|
||||
build_table_schema : Inverse function.
|
||||
pandas.read_json
|
||||
"""
|
||||
table = loads(json, precise_float=precise_float)
|
||||
col_order = [field["name"] for field in table["schema"]["fields"]]
|
||||
df = DataFrame(table["data"], columns=col_order)[col_order]
|
||||
|
||||
dtypes = {
|
||||
field["name"]: convert_json_field_to_pandas_type(field)
|
||||
for field in table["schema"]["fields"]
|
||||
}
|
||||
|
||||
# No ISO constructor for Timedelta as of yet, so need to raise
|
||||
if "timedelta64" in dtypes.values():
|
||||
raise NotImplementedError(
|
||||
'table="orient" can not yet read ISO-formatted Timedelta data'
|
||||
)
|
||||
|
||||
df = df.astype(dtypes)
|
||||
|
||||
if "primaryKey" in table["schema"]:
|
||||
df = df.set_index(table["schema"]["primaryKey"])
|
||||
if len(df.index.names) == 1:
|
||||
if df.index.name == "index":
|
||||
df.index.name = None
|
||||
else:
|
||||
df.index.names = [
|
||||
None if x.startswith("level_") else x for x in df.index.names
|
||||
]
|
||||
|
||||
return df
|
Reference in New Issue
Block a user