mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-07-01 22:13:01 +00:00
first commit
This commit is contained in:
@ -0,0 +1,121 @@
|
||||
import operator
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.arrays import FloatingArray
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data():
|
||||
return pd.array(
|
||||
[True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False],
|
||||
dtype="boolean",
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def left_array():
|
||||
return pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def right_array():
|
||||
return pd.array([True, False, None] * 3, dtype="boolean")
|
||||
|
||||
|
||||
# Basic test for the arithmetic array ops
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"opname, exp",
|
||||
[
|
||||
("add", [True, True, None, True, False, None, None, None, None]),
|
||||
("mul", [True, False, None, False, False, None, None, None, None]),
|
||||
],
|
||||
ids=["add", "mul"],
|
||||
)
|
||||
def test_add_mul(left_array, right_array, opname, exp):
|
||||
op = getattr(operator, opname)
|
||||
result = op(left_array, right_array)
|
||||
expected = pd.array(exp, dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_sub(left_array, right_array):
|
||||
msg = (
|
||||
r"numpy boolean subtract, the `-` operator, is (?:deprecated|not supported), "
|
||||
r"use the bitwise_xor, the `\^` operator, or the logical_xor function instead\."
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
left_array - right_array
|
||||
|
||||
|
||||
def test_div(left_array, right_array):
|
||||
result = left_array / right_array
|
||||
expected = FloatingArray(
|
||||
np.array(
|
||||
[1.0, np.inf, np.nan, 0.0, np.nan, np.nan, np.nan, np.nan, np.nan],
|
||||
dtype="float64",
|
||||
),
|
||||
np.array([False, False, True, False, False, True, True, True, True]),
|
||||
)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"opname",
|
||||
[
|
||||
"floordiv",
|
||||
"mod",
|
||||
pytest.param(
|
||||
"pow", marks=pytest.mark.xfail(reason="TODO follow int8 behaviour? GH34686")
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_op_int8(left_array, right_array, opname):
|
||||
op = getattr(operator, opname)
|
||||
result = op(left_array, right_array)
|
||||
expected = op(left_array.astype("Int8"), right_array.astype("Int8"))
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
# Test generic characteristics / errors
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
def test_error_invalid_values(data, all_arithmetic_operators):
|
||||
# invalid ops
|
||||
|
||||
op = all_arithmetic_operators
|
||||
s = pd.Series(data)
|
||||
ops = getattr(s, op)
|
||||
|
||||
# invalid scalars
|
||||
msg = (
|
||||
"did not contain a loop with signature matching types|"
|
||||
"BooleanArray cannot perform the operation|"
|
||||
"not supported for the input types, and the inputs could not be safely coerced "
|
||||
"to any supported types according to the casting rule ''safe''"
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
ops("foo")
|
||||
msg = (
|
||||
r"unsupported operand type\(s\) for|"
|
||||
"Concatenation operation is not implemented for NumPy arrays"
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
ops(pd.Timestamp("20180101"))
|
||||
|
||||
# invalid array-likes
|
||||
if op not in ("__mul__", "__rmul__"):
|
||||
# TODO(extension) numpy's mul with object array sees booleans as numbers
|
||||
msg = (
|
||||
r"unsupported operand type\(s\) for|can only concatenate str|"
|
||||
"not all arguments converted during string formatting"
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
ops(pd.Series("foo", index=s.index))
|
@ -0,0 +1,53 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
def test_astype():
|
||||
# with missing values
|
||||
arr = pd.array([True, False, None], dtype="boolean")
|
||||
|
||||
with pytest.raises(ValueError, match="cannot convert NA to integer"):
|
||||
arr.astype("int64")
|
||||
|
||||
with pytest.raises(ValueError, match="cannot convert float NaN to"):
|
||||
arr.astype("bool")
|
||||
|
||||
result = arr.astype("float64")
|
||||
expected = np.array([1, 0, np.nan], dtype="float64")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = arr.astype("str")
|
||||
expected = np.array(["True", "False", "<NA>"], dtype="<U5")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
# no missing values
|
||||
arr = pd.array([True, False, True], dtype="boolean")
|
||||
result = arr.astype("int64")
|
||||
expected = np.array([1, 0, 1], dtype="int64")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = arr.astype("bool")
|
||||
expected = np.array([True, False, True], dtype="bool")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_astype_to_boolean_array():
|
||||
# astype to BooleanArray
|
||||
arr = pd.array([True, False, None], dtype="boolean")
|
||||
|
||||
result = arr.astype("boolean")
|
||||
tm.assert_extension_array_equal(result, arr)
|
||||
result = arr.astype(pd.BooleanDtype())
|
||||
tm.assert_extension_array_equal(result, arr)
|
||||
|
||||
|
||||
def test_astype_to_integer_array():
|
||||
# astype to IntegerArray
|
||||
arr = pd.array([True, False, None], dtype="boolean")
|
||||
|
||||
result = arr.astype("Int64")
|
||||
expected = pd.array([1, 0, None], dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
@ -0,0 +1,58 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.arrays import BooleanArray
|
||||
from pandas.tests.arrays.masked_shared import ComparisonOps
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data():
|
||||
return pd.array(
|
||||
[True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False],
|
||||
dtype="boolean",
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def dtype():
|
||||
return pd.BooleanDtype()
|
||||
|
||||
|
||||
class TestComparisonOps(ComparisonOps):
|
||||
def test_compare_scalar(self, data, comparison_op):
|
||||
self._compare_other(data, comparison_op, True)
|
||||
|
||||
def test_compare_array(self, data, comparison_op):
|
||||
other = pd.array([True] * len(data), dtype="boolean")
|
||||
self._compare_other(data, comparison_op, other)
|
||||
other = np.array([True] * len(data))
|
||||
self._compare_other(data, comparison_op, other)
|
||||
other = pd.Series([True] * len(data))
|
||||
self._compare_other(data, comparison_op, other)
|
||||
|
||||
@pytest.mark.parametrize("other", [True, False, pd.NA])
|
||||
def test_scalar(self, other, comparison_op, dtype):
|
||||
ComparisonOps.test_scalar(self, other, comparison_op, dtype)
|
||||
|
||||
def test_array(self, comparison_op):
|
||||
op = comparison_op
|
||||
a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
||||
b = pd.array([True, False, None] * 3, dtype="boolean")
|
||||
|
||||
result = op(a, b)
|
||||
|
||||
values = op(a._data, b._data)
|
||||
mask = a._mask | b._mask
|
||||
expected = BooleanArray(values, mask)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# ensure we haven't mutated anything inplace
|
||||
result[0] = None
|
||||
tm.assert_extension_array_equal(
|
||||
a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
||||
)
|
||||
tm.assert_extension_array_equal(
|
||||
b, pd.array([True, False, None] * 3, dtype="boolean")
|
||||
)
|
@ -0,0 +1,323 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.arrays import BooleanArray
|
||||
from pandas.core.arrays.boolean import coerce_to_array
|
||||
|
||||
|
||||
def test_boolean_array_constructor():
|
||||
values = np.array([True, False, True, False], dtype="bool")
|
||||
mask = np.array([False, False, False, True], dtype="bool")
|
||||
|
||||
result = BooleanArray(values, mask)
|
||||
expected = pd.array([True, False, True, None], dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
with pytest.raises(TypeError, match="values should be boolean numpy array"):
|
||||
BooleanArray(values.tolist(), mask)
|
||||
|
||||
with pytest.raises(TypeError, match="mask should be boolean numpy array"):
|
||||
BooleanArray(values, mask.tolist())
|
||||
|
||||
with pytest.raises(TypeError, match="values should be boolean numpy array"):
|
||||
BooleanArray(values.astype(int), mask)
|
||||
|
||||
with pytest.raises(TypeError, match="mask should be boolean numpy array"):
|
||||
BooleanArray(values, None)
|
||||
|
||||
with pytest.raises(ValueError, match="values.shape must match mask.shape"):
|
||||
BooleanArray(values.reshape(1, -1), mask)
|
||||
|
||||
with pytest.raises(ValueError, match="values.shape must match mask.shape"):
|
||||
BooleanArray(values, mask.reshape(1, -1))
|
||||
|
||||
|
||||
def test_boolean_array_constructor_copy():
|
||||
values = np.array([True, False, True, False], dtype="bool")
|
||||
mask = np.array([False, False, False, True], dtype="bool")
|
||||
|
||||
result = BooleanArray(values, mask)
|
||||
assert result._data is values
|
||||
assert result._mask is mask
|
||||
|
||||
result = BooleanArray(values, mask, copy=True)
|
||||
assert result._data is not values
|
||||
assert result._mask is not mask
|
||||
|
||||
|
||||
def test_to_boolean_array():
|
||||
expected = BooleanArray(
|
||||
np.array([True, False, True]), np.array([False, False, False])
|
||||
)
|
||||
|
||||
result = pd.array([True, False, True], dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
result = pd.array(np.array([True, False, True]), dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
result = pd.array(np.array([True, False, True], dtype=object), dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# with missing values
|
||||
expected = BooleanArray(
|
||||
np.array([True, False, True]), np.array([False, False, True])
|
||||
)
|
||||
|
||||
result = pd.array([True, False, None], dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
result = pd.array(np.array([True, False, None], dtype=object), dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_to_boolean_array_all_none():
|
||||
expected = BooleanArray(np.array([True, True, True]), np.array([True, True, True]))
|
||||
|
||||
result = pd.array([None, None, None], dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
result = pd.array(np.array([None, None, None], dtype=object), dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"a, b",
|
||||
[
|
||||
([True, False, None, np.nan, pd.NA], [True, False, None, None, None]),
|
||||
([True, np.nan], [True, None]),
|
||||
([True, pd.NA], [True, None]),
|
||||
([np.nan, np.nan], [None, None]),
|
||||
(np.array([np.nan, np.nan], dtype=float), [None, None]),
|
||||
],
|
||||
)
|
||||
def test_to_boolean_array_missing_indicators(a, b):
|
||||
result = pd.array(a, dtype="boolean")
|
||||
expected = pd.array(b, dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"values",
|
||||
[
|
||||
["foo", "bar"],
|
||||
["1", "2"],
|
||||
# "foo",
|
||||
[1, 2],
|
||||
[1.0, 2.0],
|
||||
pd.date_range("20130101", periods=2),
|
||||
np.array(["foo"]),
|
||||
np.array([1, 2]),
|
||||
np.array([1.0, 2.0]),
|
||||
[np.nan, {"a": 1}],
|
||||
],
|
||||
)
|
||||
def test_to_boolean_array_error(values):
|
||||
# error in converting existing arrays to BooleanArray
|
||||
msg = "Need to pass bool-like value"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
pd.array(values, dtype="boolean")
|
||||
|
||||
|
||||
def test_to_boolean_array_from_integer_array():
|
||||
result = pd.array(np.array([1, 0, 1, 0]), dtype="boolean")
|
||||
expected = pd.array([True, False, True, False], dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# with missing values
|
||||
result = pd.array(np.array([1, 0, 1, None]), dtype="boolean")
|
||||
expected = pd.array([True, False, True, None], dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_to_boolean_array_from_float_array():
|
||||
result = pd.array(np.array([1.0, 0.0, 1.0, 0.0]), dtype="boolean")
|
||||
expected = pd.array([True, False, True, False], dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# with missing values
|
||||
result = pd.array(np.array([1.0, 0.0, 1.0, np.nan]), dtype="boolean")
|
||||
expected = pd.array([True, False, True, None], dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_to_boolean_array_integer_like():
|
||||
# integers of 0's and 1's
|
||||
result = pd.array([1, 0, 1, 0], dtype="boolean")
|
||||
expected = pd.array([True, False, True, False], dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# with missing values
|
||||
result = pd.array([1, 0, 1, None], dtype="boolean")
|
||||
expected = pd.array([True, False, True, None], dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_coerce_to_array():
|
||||
# TODO this is currently not public API
|
||||
values = np.array([True, False, True, False], dtype="bool")
|
||||
mask = np.array([False, False, False, True], dtype="bool")
|
||||
result = BooleanArray(*coerce_to_array(values, mask=mask))
|
||||
expected = BooleanArray(values, mask)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
assert result._data is values
|
||||
assert result._mask is mask
|
||||
result = BooleanArray(*coerce_to_array(values, mask=mask, copy=True))
|
||||
expected = BooleanArray(values, mask)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
assert result._data is not values
|
||||
assert result._mask is not mask
|
||||
|
||||
# mixed missing from values and mask
|
||||
values = [True, False, None, False]
|
||||
mask = np.array([False, False, False, True], dtype="bool")
|
||||
result = BooleanArray(*coerce_to_array(values, mask=mask))
|
||||
expected = BooleanArray(
|
||||
np.array([True, False, True, True]), np.array([False, False, True, True])
|
||||
)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
result = BooleanArray(*coerce_to_array(np.array(values, dtype=object), mask=mask))
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
result = BooleanArray(*coerce_to_array(values, mask=mask.tolist()))
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# raise errors for wrong dimension
|
||||
values = np.array([True, False, True, False], dtype="bool")
|
||||
mask = np.array([False, False, False, True], dtype="bool")
|
||||
|
||||
with pytest.raises(ValueError, match="values.shape and mask.shape must match"):
|
||||
coerce_to_array(values.reshape(1, -1))
|
||||
|
||||
with pytest.raises(ValueError, match="values.shape and mask.shape must match"):
|
||||
coerce_to_array(values, mask=mask.reshape(1, -1))
|
||||
|
||||
|
||||
def test_coerce_to_array_from_boolean_array():
|
||||
# passing BooleanArray to coerce_to_array
|
||||
values = np.array([True, False, True, False], dtype="bool")
|
||||
mask = np.array([False, False, False, True], dtype="bool")
|
||||
arr = BooleanArray(values, mask)
|
||||
result = BooleanArray(*coerce_to_array(arr))
|
||||
tm.assert_extension_array_equal(result, arr)
|
||||
# no copy
|
||||
assert result._data is arr._data
|
||||
assert result._mask is arr._mask
|
||||
|
||||
result = BooleanArray(*coerce_to_array(arr), copy=True)
|
||||
tm.assert_extension_array_equal(result, arr)
|
||||
assert result._data is not arr._data
|
||||
assert result._mask is not arr._mask
|
||||
|
||||
with pytest.raises(ValueError, match="cannot pass mask for BooleanArray input"):
|
||||
coerce_to_array(arr, mask=mask)
|
||||
|
||||
|
||||
def test_coerce_to_numpy_array():
|
||||
# with missing values -> object dtype
|
||||
arr = pd.array([True, False, None], dtype="boolean")
|
||||
result = np.array(arr)
|
||||
expected = np.array([True, False, pd.NA], dtype="object")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
# also with no missing values -> object dtype
|
||||
arr = pd.array([True, False, True], dtype="boolean")
|
||||
result = np.array(arr)
|
||||
expected = np.array([True, False, True], dtype="object")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
# force bool dtype
|
||||
result = np.array(arr, dtype="bool")
|
||||
expected = np.array([True, False, True], dtype="bool")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
# with missing values will raise error
|
||||
arr = pd.array([True, False, None], dtype="boolean")
|
||||
msg = (
|
||||
"cannot convert to 'bool'-dtype NumPy array with missing values. "
|
||||
"Specify an appropriate 'na_value' for this dtype."
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
np.array(arr, dtype="bool")
|
||||
|
||||
|
||||
def test_to_boolean_array_from_strings():
|
||||
result = BooleanArray._from_sequence_of_strings(
|
||||
np.array(["True", "False", "1", "1.0", "0", "0.0", np.nan], dtype=object)
|
||||
)
|
||||
expected = BooleanArray(
|
||||
np.array([True, False, True, True, False, False, False]),
|
||||
np.array([False, False, False, False, False, False, True]),
|
||||
)
|
||||
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_to_boolean_array_from_strings_invalid_string():
|
||||
with pytest.raises(ValueError, match="cannot be cast"):
|
||||
BooleanArray._from_sequence_of_strings(["donkey"])
|
||||
|
||||
|
||||
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
|
||||
def test_to_numpy(box):
|
||||
con = pd.Series if box else pd.array
|
||||
# default (with or without missing values) -> object dtype
|
||||
arr = con([True, False, True], dtype="boolean")
|
||||
result = arr.to_numpy()
|
||||
expected = np.array([True, False, True], dtype="object")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
arr = con([True, False, None], dtype="boolean")
|
||||
result = arr.to_numpy()
|
||||
expected = np.array([True, False, pd.NA], dtype="object")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
arr = con([True, False, None], dtype="boolean")
|
||||
result = arr.to_numpy(dtype="str")
|
||||
expected = np.array([True, False, pd.NA], dtype="<U5")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
# no missing values -> can convert to bool, otherwise raises
|
||||
arr = con([True, False, True], dtype="boolean")
|
||||
result = arr.to_numpy(dtype="bool")
|
||||
expected = np.array([True, False, True], dtype="bool")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
arr = con([True, False, None], dtype="boolean")
|
||||
with pytest.raises(ValueError, match="cannot convert to 'bool'-dtype"):
|
||||
result = arr.to_numpy(dtype="bool")
|
||||
|
||||
# specify dtype and na_value
|
||||
arr = con([True, False, None], dtype="boolean")
|
||||
result = arr.to_numpy(dtype=object, na_value=None)
|
||||
expected = np.array([True, False, None], dtype="object")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = arr.to_numpy(dtype=bool, na_value=False)
|
||||
expected = np.array([True, False, False], dtype="bool")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = arr.to_numpy(dtype="int64", na_value=-99)
|
||||
expected = np.array([1, 0, -99], dtype="int64")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = arr.to_numpy(dtype="float64", na_value=np.nan)
|
||||
expected = np.array([1, 0, np.nan], dtype="float64")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
# converting to int or float without specifying na_value raises
|
||||
with pytest.raises(ValueError, match="cannot convert to 'int64'-dtype"):
|
||||
arr.to_numpy(dtype="int64")
|
||||
with pytest.raises(ValueError, match="cannot convert to 'float64'-dtype"):
|
||||
arr.to_numpy(dtype="float64")
|
||||
|
||||
|
||||
def test_to_numpy_copy():
|
||||
# to_numpy can be zero-copy if no missing values
|
||||
arr = pd.array([True, False, True], dtype="boolean")
|
||||
result = arr.to_numpy(dtype=bool)
|
||||
result[0] = False
|
||||
tm.assert_extension_array_equal(
|
||||
arr, pd.array([False, False, True], dtype="boolean")
|
||||
)
|
||||
|
||||
arr = pd.array([True, False, True], dtype="boolean")
|
||||
result = arr.to_numpy(dtype=bool, copy=True)
|
||||
result[0] = False
|
||||
tm.assert_extension_array_equal(arr, pd.array([True, False, True], dtype="boolean"))
|
@ -0,0 +1,126 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"ufunc", [np.add, np.logical_or, np.logical_and, np.logical_xor]
|
||||
)
|
||||
def test_ufuncs_binary(ufunc):
|
||||
# two BooleanArrays
|
||||
a = pd.array([True, False, None], dtype="boolean")
|
||||
result = ufunc(a, a)
|
||||
expected = pd.array(ufunc(a._data, a._data), dtype="boolean")
|
||||
expected[a._mask] = np.nan
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
s = pd.Series(a)
|
||||
result = ufunc(s, a)
|
||||
expected = pd.Series(ufunc(a._data, a._data), dtype="boolean")
|
||||
expected[a._mask] = np.nan
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# Boolean with numpy array
|
||||
arr = np.array([True, True, False])
|
||||
result = ufunc(a, arr)
|
||||
expected = pd.array(ufunc(a._data, arr), dtype="boolean")
|
||||
expected[a._mask] = np.nan
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = ufunc(arr, a)
|
||||
expected = pd.array(ufunc(arr, a._data), dtype="boolean")
|
||||
expected[a._mask] = np.nan
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# BooleanArray with scalar
|
||||
result = ufunc(a, True)
|
||||
expected = pd.array(ufunc(a._data, True), dtype="boolean")
|
||||
expected[a._mask] = np.nan
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = ufunc(True, a)
|
||||
expected = pd.array(ufunc(True, a._data), dtype="boolean")
|
||||
expected[a._mask] = np.nan
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# not handled types
|
||||
msg = r"operand type\(s\) all returned NotImplemented from __array_ufunc__"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
ufunc(a, "test")
|
||||
|
||||
|
||||
@pytest.mark.parametrize("ufunc", [np.logical_not])
|
||||
def test_ufuncs_unary(ufunc):
|
||||
a = pd.array([True, False, None], dtype="boolean")
|
||||
result = ufunc(a)
|
||||
expected = pd.array(ufunc(a._data), dtype="boolean")
|
||||
expected[a._mask] = np.nan
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
ser = pd.Series(a)
|
||||
result = ufunc(ser)
|
||||
expected = pd.Series(ufunc(a._data), dtype="boolean")
|
||||
expected[a._mask] = np.nan
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_ufunc_numeric():
|
||||
# np.sqrt on np.bool returns float16, which we upcast to Float32
|
||||
# bc we do not have Float16
|
||||
arr = pd.array([True, False, None], dtype="boolean")
|
||||
|
||||
res = np.sqrt(arr)
|
||||
|
||||
expected = pd.array([1, 0, None], dtype="Float32")
|
||||
tm.assert_extension_array_equal(res, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("values", [[True, False], [True, None]])
|
||||
def test_ufunc_reduce_raises(values):
|
||||
arr = pd.array(values, dtype="boolean")
|
||||
|
||||
res = np.add.reduce(arr)
|
||||
if arr[-1] is pd.NA:
|
||||
expected = pd.NA
|
||||
else:
|
||||
expected = arr._data.sum()
|
||||
tm.assert_almost_equal(res, expected)
|
||||
|
||||
|
||||
def test_value_counts_na():
|
||||
arr = pd.array([True, False, pd.NA], dtype="boolean")
|
||||
result = arr.value_counts(dropna=False)
|
||||
expected = pd.Series([1, 1, 1], index=arr, dtype="Int64")
|
||||
assert expected.index.dtype == arr.dtype
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = arr.value_counts(dropna=True)
|
||||
expected = pd.Series([1, 1], index=arr[:-1], dtype="Int64")
|
||||
assert expected.index.dtype == arr.dtype
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_value_counts_with_normalize():
|
||||
ser = pd.Series([True, False, pd.NA], dtype="boolean")
|
||||
result = ser.value_counts(normalize=True)
|
||||
expected = pd.Series([1, 1], index=ser[:-1], dtype="Float64") / 2
|
||||
assert expected.index.dtype == "boolean"
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_diff():
|
||||
a = pd.array(
|
||||
[True, True, False, False, True, None, True, None, False], dtype="boolean"
|
||||
)
|
||||
result = pd.core.algorithms.diff(a, 1)
|
||||
expected = pd.array(
|
||||
[None, False, True, False, True, None, None, None, None], dtype="boolean"
|
||||
)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
ser = pd.Series(a)
|
||||
result = ser.diff()
|
||||
expected = pd.Series(expected)
|
||||
tm.assert_series_equal(result, expected)
|
@ -0,0 +1,13 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.mark.parametrize("na", [None, np.nan, pd.NA])
|
||||
def test_setitem_missing_values(na):
|
||||
arr = pd.array([True, False, None], dtype="boolean")
|
||||
expected = pd.array([True, None, None], dtype="boolean")
|
||||
arr[1] = na
|
||||
tm.assert_extension_array_equal(arr, expected)
|
@ -0,0 +1,254 @@
|
||||
import operator
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.arrays import BooleanArray
|
||||
from pandas.core.ops.mask_ops import (
|
||||
kleene_and,
|
||||
kleene_or,
|
||||
kleene_xor,
|
||||
)
|
||||
from pandas.tests.extension.base import BaseOpsUtil
|
||||
|
||||
|
||||
class TestLogicalOps(BaseOpsUtil):
|
||||
def test_numpy_scalars_ok(self, all_logical_operators):
|
||||
a = pd.array([True, False, None], dtype="boolean")
|
||||
op = getattr(a, all_logical_operators)
|
||||
|
||||
tm.assert_extension_array_equal(op(True), op(np.bool_(True)))
|
||||
tm.assert_extension_array_equal(op(False), op(np.bool_(False)))
|
||||
|
||||
def get_op_from_name(self, op_name):
|
||||
short_opname = op_name.strip("_")
|
||||
short_opname = short_opname if "xor" in short_opname else short_opname + "_"
|
||||
try:
|
||||
op = getattr(operator, short_opname)
|
||||
except AttributeError:
|
||||
# Assume it is the reverse operator
|
||||
rop = getattr(operator, short_opname[1:])
|
||||
op = lambda x, y: rop(y, x)
|
||||
|
||||
return op
|
||||
|
||||
def test_empty_ok(self, all_logical_operators):
|
||||
a = pd.array([], dtype="boolean")
|
||||
op_name = all_logical_operators
|
||||
result = getattr(a, op_name)(True)
|
||||
tm.assert_extension_array_equal(a, result)
|
||||
|
||||
result = getattr(a, op_name)(False)
|
||||
tm.assert_extension_array_equal(a, result)
|
||||
|
||||
result = getattr(a, op_name)(pd.NA)
|
||||
tm.assert_extension_array_equal(a, result)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"other", ["a", pd.Timestamp(2017, 1, 1, 12), np.timedelta64(4)]
|
||||
)
|
||||
def test_eq_mismatched_type(self, other):
|
||||
# GH-44499
|
||||
arr = pd.array([True, False])
|
||||
result = arr == other
|
||||
expected = pd.array([False, False])
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = arr != other
|
||||
expected = pd.array([True, True])
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
def test_logical_length_mismatch_raises(self, all_logical_operators):
|
||||
op_name = all_logical_operators
|
||||
a = pd.array([True, False, None], dtype="boolean")
|
||||
msg = "Lengths must match to compare"
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
getattr(a, op_name)([True, False])
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
getattr(a, op_name)(np.array([True, False]))
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
getattr(a, op_name)(pd.array([True, False], dtype="boolean"))
|
||||
|
||||
def test_logical_nan_raises(self, all_logical_operators):
|
||||
op_name = all_logical_operators
|
||||
a = pd.array([True, False, None], dtype="boolean")
|
||||
msg = "Got float instead"
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
getattr(a, op_name)(np.nan)
|
||||
|
||||
@pytest.mark.parametrize("other", ["a", 1])
|
||||
def test_non_bool_or_na_other_raises(self, other, all_logical_operators):
|
||||
a = pd.array([True, False], dtype="boolean")
|
||||
with pytest.raises(TypeError, match=str(type(other).__name__)):
|
||||
getattr(a, all_logical_operators)(other)
|
||||
|
||||
def test_kleene_or(self):
|
||||
# A clear test of behavior.
|
||||
a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
||||
b = pd.array([True, False, None] * 3, dtype="boolean")
|
||||
result = a | b
|
||||
expected = pd.array(
|
||||
[True, True, True, True, False, None, True, None, None], dtype="boolean"
|
||||
)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = b | a
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# ensure we haven't mutated anything inplace
|
||||
tm.assert_extension_array_equal(
|
||||
a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
||||
)
|
||||
tm.assert_extension_array_equal(
|
||||
b, pd.array([True, False, None] * 3, dtype="boolean")
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"other, expected",
|
||||
[
|
||||
(pd.NA, [True, None, None]),
|
||||
(True, [True, True, True]),
|
||||
(np.bool_(True), [True, True, True]),
|
||||
(False, [True, False, None]),
|
||||
(np.bool_(False), [True, False, None]),
|
||||
],
|
||||
)
|
||||
def test_kleene_or_scalar(self, other, expected):
|
||||
# TODO: test True & False
|
||||
a = pd.array([True, False, None], dtype="boolean")
|
||||
result = a | other
|
||||
expected = pd.array(expected, dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = other | a
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# ensure we haven't mutated anything inplace
|
||||
tm.assert_extension_array_equal(
|
||||
a, pd.array([True, False, None], dtype="boolean")
|
||||
)
|
||||
|
||||
def test_kleene_and(self):
|
||||
# A clear test of behavior.
|
||||
a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
||||
b = pd.array([True, False, None] * 3, dtype="boolean")
|
||||
result = a & b
|
||||
expected = pd.array(
|
||||
[True, False, None, False, False, False, None, False, None], dtype="boolean"
|
||||
)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = b & a
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# ensure we haven't mutated anything inplace
|
||||
tm.assert_extension_array_equal(
|
||||
a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
||||
)
|
||||
tm.assert_extension_array_equal(
|
||||
b, pd.array([True, False, None] * 3, dtype="boolean")
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"other, expected",
|
||||
[
|
||||
(pd.NA, [None, False, None]),
|
||||
(True, [True, False, None]),
|
||||
(False, [False, False, False]),
|
||||
(np.bool_(True), [True, False, None]),
|
||||
(np.bool_(False), [False, False, False]),
|
||||
],
|
||||
)
|
||||
def test_kleene_and_scalar(self, other, expected):
|
||||
a = pd.array([True, False, None], dtype="boolean")
|
||||
result = a & other
|
||||
expected = pd.array(expected, dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = other & a
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# ensure we haven't mutated anything inplace
|
||||
tm.assert_extension_array_equal(
|
||||
a, pd.array([True, False, None], dtype="boolean")
|
||||
)
|
||||
|
||||
def test_kleene_xor(self):
|
||||
a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
||||
b = pd.array([True, False, None] * 3, dtype="boolean")
|
||||
result = a ^ b
|
||||
expected = pd.array(
|
||||
[False, True, None, True, False, None, None, None, None], dtype="boolean"
|
||||
)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = b ^ a
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# ensure we haven't mutated anything inplace
|
||||
tm.assert_extension_array_equal(
|
||||
a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
||||
)
|
||||
tm.assert_extension_array_equal(
|
||||
b, pd.array([True, False, None] * 3, dtype="boolean")
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"other, expected",
|
||||
[
|
||||
(pd.NA, [None, None, None]),
|
||||
(True, [False, True, None]),
|
||||
(np.bool_(True), [False, True, None]),
|
||||
(np.bool_(False), [True, False, None]),
|
||||
],
|
||||
)
|
||||
def test_kleene_xor_scalar(self, other, expected):
|
||||
a = pd.array([True, False, None], dtype="boolean")
|
||||
result = a ^ other
|
||||
expected = pd.array(expected, dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = other ^ a
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# ensure we haven't mutated anything inplace
|
||||
tm.assert_extension_array_equal(
|
||||
a, pd.array([True, False, None], dtype="boolean")
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize("other", [True, False, pd.NA, [True, False, None] * 3])
|
||||
def test_no_masked_assumptions(self, other, all_logical_operators):
|
||||
# The logical operations should not assume that masked values are False!
|
||||
a = pd.arrays.BooleanArray(
|
||||
np.array([True, True, True, False, False, False, True, False, True]),
|
||||
np.array([False] * 6 + [True, True, True]),
|
||||
)
|
||||
b = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
||||
if isinstance(other, list):
|
||||
other = pd.array(other, dtype="boolean")
|
||||
|
||||
result = getattr(a, all_logical_operators)(other)
|
||||
expected = getattr(b, all_logical_operators)(other)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
if isinstance(other, BooleanArray):
|
||||
other._data[other._mask] = True
|
||||
a._data[a._mask] = False
|
||||
|
||||
result = getattr(a, all_logical_operators)(other)
|
||||
expected = getattr(b, all_logical_operators)(other)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("operation", [kleene_or, kleene_xor, kleene_and])
|
||||
def test_error_both_scalar(operation):
|
||||
msg = r"Either `left` or `right` need to be a np\.ndarray."
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
# masks need to be non-None, otherwise it ends up in an infinite recursion
|
||||
operation(True, True, np.zeros(1), np.zeros(1))
|
@ -0,0 +1,27 @@
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestUnaryOps:
|
||||
def test_invert(self):
|
||||
a = pd.array([True, False, None], dtype="boolean")
|
||||
expected = pd.array([False, True, None], dtype="boolean")
|
||||
tm.assert_extension_array_equal(~a, expected)
|
||||
|
||||
expected = pd.Series(expected, index=["a", "b", "c"], name="name")
|
||||
result = ~pd.Series(a, index=["a", "b", "c"], name="name")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
df = pd.DataFrame({"A": a, "B": [True, False, False]}, index=["a", "b", "c"])
|
||||
result = ~df
|
||||
expected = pd.DataFrame(
|
||||
{"A": expected, "B": [False, True, True]}, index=["a", "b", "c"]
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_abs(self):
|
||||
# matching numpy behavior, abs is the identity function
|
||||
arr = pd.array([True, False, None], dtype="boolean")
|
||||
result = abs(arr)
|
||||
|
||||
tm.assert_extension_array_equal(result, arr)
|
@ -0,0 +1,60 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data():
|
||||
return pd.array(
|
||||
[True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False],
|
||||
dtype="boolean",
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"values, exp_any, exp_all, exp_any_noskip, exp_all_noskip",
|
||||
[
|
||||
([True, pd.NA], True, True, True, pd.NA),
|
||||
([False, pd.NA], False, False, pd.NA, False),
|
||||
([pd.NA], False, True, pd.NA, pd.NA),
|
||||
([], False, True, False, True),
|
||||
# GH-33253: all True / all False values buggy with skipna=False
|
||||
([True, True], True, True, True, True),
|
||||
([False, False], False, False, False, False),
|
||||
],
|
||||
)
|
||||
def test_any_all(values, exp_any, exp_all, exp_any_noskip, exp_all_noskip):
|
||||
# the methods return numpy scalars
|
||||
exp_any = pd.NA if exp_any is pd.NA else np.bool_(exp_any)
|
||||
exp_all = pd.NA if exp_all is pd.NA else np.bool_(exp_all)
|
||||
exp_any_noskip = pd.NA if exp_any_noskip is pd.NA else np.bool_(exp_any_noskip)
|
||||
exp_all_noskip = pd.NA if exp_all_noskip is pd.NA else np.bool_(exp_all_noskip)
|
||||
|
||||
for con in [pd.array, pd.Series]:
|
||||
a = con(values, dtype="boolean")
|
||||
assert a.any() is exp_any
|
||||
assert a.all() is exp_all
|
||||
assert a.any(skipna=False) is exp_any_noskip
|
||||
assert a.all(skipna=False) is exp_all_noskip
|
||||
|
||||
assert np.any(a.any()) is exp_any
|
||||
assert np.all(a.all()) is exp_all
|
||||
|
||||
|
||||
@pytest.mark.parametrize("dropna", [True, False])
|
||||
def test_reductions_return_types(dropna, data, all_numeric_reductions):
|
||||
op = all_numeric_reductions
|
||||
s = pd.Series(data)
|
||||
if dropna:
|
||||
s = s.dropna()
|
||||
|
||||
if op == "sum":
|
||||
assert isinstance(getattr(s, op)(), np.int_)
|
||||
elif op == "prod":
|
||||
assert isinstance(getattr(s, op)(), np.int_)
|
||||
elif op in ("min", "max"):
|
||||
assert isinstance(getattr(s, op)(), np.bool_)
|
||||
else:
|
||||
# "mean", "std", "var", "median", "kurt", "skew"
|
||||
assert isinstance(getattr(s, op)(), np.float64)
|
@ -0,0 +1,13 @@
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def test_repr():
|
||||
df = pd.DataFrame({"A": pd.array([True, False, None], dtype="boolean")})
|
||||
expected = " A\n0 True\n1 False\n2 <NA>"
|
||||
assert repr(df) == expected
|
||||
|
||||
expected = "0 True\n1 False\n2 <NA>\nName: A, dtype: boolean"
|
||||
assert repr(df.A) == expected
|
||||
|
||||
expected = "<BooleanArray>\n[True, False, <NA>]\nLength: 3, dtype: boolean"
|
||||
assert repr(df.A.array) == expected
|
@ -0,0 +1,8 @@
|
||||
from pandas import Categorical
|
||||
|
||||
|
||||
class TestCategorical:
|
||||
def setup_method(self, method):
|
||||
self.factor = Categorical(
|
||||
["a", "b", "b", "a", "a", "c", "c", "c"], ordered=True
|
||||
)
|
@ -0,0 +1,7 @@
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture(params=[True, False])
|
||||
def allow_fill(request):
|
||||
"""Boolean 'allow_fill' parameter for Categorical.take"""
|
||||
return request.param
|
@ -0,0 +1,83 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.mark.parametrize("ordered", [True, False])
|
||||
@pytest.mark.parametrize("categories", [["b", "a", "c"], ["a", "b", "c", "d"]])
|
||||
def test_factorize(categories, ordered):
|
||||
cat = pd.Categorical(
|
||||
["b", "b", "a", "c", None], categories=categories, ordered=ordered
|
||||
)
|
||||
codes, uniques = pd.factorize(cat)
|
||||
expected_codes = np.array([0, 0, 1, 2, -1], dtype=np.intp)
|
||||
expected_uniques = pd.Categorical(
|
||||
["b", "a", "c"], categories=categories, ordered=ordered
|
||||
)
|
||||
|
||||
tm.assert_numpy_array_equal(codes, expected_codes)
|
||||
tm.assert_categorical_equal(uniques, expected_uniques)
|
||||
|
||||
|
||||
def test_factorized_sort():
|
||||
cat = pd.Categorical(["b", "b", None, "a"])
|
||||
codes, uniques = pd.factorize(cat, sort=True)
|
||||
expected_codes = np.array([1, 1, -1, 0], dtype=np.intp)
|
||||
expected_uniques = pd.Categorical(["a", "b"])
|
||||
|
||||
tm.assert_numpy_array_equal(codes, expected_codes)
|
||||
tm.assert_categorical_equal(uniques, expected_uniques)
|
||||
|
||||
|
||||
def test_factorized_sort_ordered():
|
||||
cat = pd.Categorical(
|
||||
["b", "b", None, "a"], categories=["c", "b", "a"], ordered=True
|
||||
)
|
||||
|
||||
codes, uniques = pd.factorize(cat, sort=True)
|
||||
expected_codes = np.array([0, 0, -1, 1], dtype=np.intp)
|
||||
expected_uniques = pd.Categorical(
|
||||
["b", "a"], categories=["c", "b", "a"], ordered=True
|
||||
)
|
||||
|
||||
tm.assert_numpy_array_equal(codes, expected_codes)
|
||||
tm.assert_categorical_equal(uniques, expected_uniques)
|
||||
|
||||
|
||||
def test_isin_cats():
|
||||
# GH2003
|
||||
cat = pd.Categorical(["a", "b", np.nan])
|
||||
|
||||
result = cat.isin(["a", np.nan])
|
||||
expected = np.array([True, False, True], dtype=bool)
|
||||
tm.assert_numpy_array_equal(expected, result)
|
||||
|
||||
result = cat.isin(["a", "c"])
|
||||
expected = np.array([True, False, False], dtype=bool)
|
||||
tm.assert_numpy_array_equal(expected, result)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("empty", [[], pd.Series(dtype=object), np.array([])])
|
||||
def test_isin_empty(empty):
|
||||
s = pd.Categorical(["a", "b"])
|
||||
expected = np.array([False, False], dtype=bool)
|
||||
|
||||
result = s.isin(empty)
|
||||
tm.assert_numpy_array_equal(expected, result)
|
||||
|
||||
|
||||
def test_diff():
|
||||
s = pd.Series([1, 2, 3], dtype="category")
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
result = s.diff()
|
||||
expected = pd.Series([np.nan, 1, 1])
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
expected = expected.to_frame(name="A")
|
||||
df = s.to_frame(name="A")
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
result = df.diff()
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
@ -0,0 +1,365 @@
|
||||
import re
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.compat import PYPY
|
||||
|
||||
from pandas import (
|
||||
Categorical,
|
||||
CategoricalDtype,
|
||||
Index,
|
||||
NaT,
|
||||
Series,
|
||||
date_range,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.api.types import is_scalar
|
||||
|
||||
|
||||
class TestCategoricalAnalytics:
|
||||
@pytest.mark.parametrize("aggregation", ["min", "max"])
|
||||
def test_min_max_not_ordered_raises(self, aggregation):
|
||||
# unordered cats have no min/max
|
||||
cat = Categorical(["a", "b", "c", "d"], ordered=False)
|
||||
msg = f"Categorical is not ordered for operation {aggregation}"
|
||||
agg_func = getattr(cat, aggregation)
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
agg_func()
|
||||
|
||||
ufunc = np.minimum if aggregation == "min" else np.maximum
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
ufunc.reduce(cat)
|
||||
|
||||
def test_min_max_ordered(self, index_or_series_or_array):
|
||||
cat = Categorical(["a", "b", "c", "d"], ordered=True)
|
||||
obj = index_or_series_or_array(cat)
|
||||
_min = obj.min()
|
||||
_max = obj.max()
|
||||
assert _min == "a"
|
||||
assert _max == "d"
|
||||
|
||||
assert np.minimum.reduce(obj) == "a"
|
||||
assert np.maximum.reduce(obj) == "d"
|
||||
# TODO: raises if we pass axis=0 (on Index and Categorical, not Series)
|
||||
|
||||
cat = Categorical(
|
||||
["a", "b", "c", "d"], categories=["d", "c", "b", "a"], ordered=True
|
||||
)
|
||||
obj = index_or_series_or_array(cat)
|
||||
_min = obj.min()
|
||||
_max = obj.max()
|
||||
assert _min == "d"
|
||||
assert _max == "a"
|
||||
assert np.minimum.reduce(obj) == "d"
|
||||
assert np.maximum.reduce(obj) == "a"
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"categories,expected",
|
||||
[
|
||||
(list("ABC"), np.NaN),
|
||||
([1, 2, 3], np.NaN),
|
||||
pytest.param(
|
||||
Series(date_range("2020-01-01", periods=3), dtype="category"),
|
||||
NaT,
|
||||
marks=pytest.mark.xfail(
|
||||
reason="https://github.com/pandas-dev/pandas/issues/29962"
|
||||
),
|
||||
),
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize("aggregation", ["min", "max"])
|
||||
def test_min_max_ordered_empty(self, categories, expected, aggregation):
|
||||
# GH 30227
|
||||
cat = Categorical([], categories=categories, ordered=True)
|
||||
|
||||
agg_func = getattr(cat, aggregation)
|
||||
result = agg_func()
|
||||
assert result is expected
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"values, categories",
|
||||
[(["a", "b", "c", np.nan], list("cba")), ([1, 2, 3, np.nan], [3, 2, 1])],
|
||||
)
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
@pytest.mark.parametrize("function", ["min", "max"])
|
||||
def test_min_max_with_nan(self, values, categories, function, skipna):
|
||||
# GH 25303
|
||||
cat = Categorical(values, categories=categories, ordered=True)
|
||||
result = getattr(cat, function)(skipna=skipna)
|
||||
|
||||
if skipna is False:
|
||||
assert result is np.nan
|
||||
else:
|
||||
expected = categories[0] if function == "min" else categories[2]
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.parametrize("function", ["min", "max"])
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_min_max_only_nan(self, function, skipna):
|
||||
# https://github.com/pandas-dev/pandas/issues/33450
|
||||
cat = Categorical([np.nan], categories=[1, 2], ordered=True)
|
||||
result = getattr(cat, function)(skipna=skipna)
|
||||
assert result is np.nan
|
||||
|
||||
@pytest.mark.parametrize("method", ["min", "max"])
|
||||
def test_deprecate_numeric_only_min_max(self, method):
|
||||
# GH 25303
|
||||
cat = Categorical(
|
||||
[np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True
|
||||
)
|
||||
with tm.assert_produces_warning(expected_warning=FutureWarning):
|
||||
getattr(cat, method)(numeric_only=True)
|
||||
|
||||
@pytest.mark.parametrize("method", ["min", "max"])
|
||||
def test_numpy_min_max_raises(self, method):
|
||||
cat = Categorical(["a", "b", "c", "b"], ordered=False)
|
||||
msg = (
|
||||
f"Categorical is not ordered for operation {method}\n"
|
||||
"you can use .as_ordered() to change the Categorical to an ordered one"
|
||||
)
|
||||
method = getattr(np, method)
|
||||
with pytest.raises(TypeError, match=re.escape(msg)):
|
||||
method(cat)
|
||||
|
||||
@pytest.mark.parametrize("kwarg", ["axis", "out", "keepdims"])
|
||||
@pytest.mark.parametrize("method", ["min", "max"])
|
||||
def test_numpy_min_max_unsupported_kwargs_raises(self, method, kwarg):
|
||||
cat = Categorical(["a", "b", "c", "b"], ordered=True)
|
||||
msg = (
|
||||
f"the '{kwarg}' parameter is not supported in the pandas implementation "
|
||||
f"of {method}"
|
||||
)
|
||||
if kwarg == "axis":
|
||||
msg = r"`axis` must be fewer than the number of dimensions \(1\)"
|
||||
kwargs = {kwarg: 42}
|
||||
method = getattr(np, method)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
method(cat, **kwargs)
|
||||
|
||||
@pytest.mark.parametrize("method, expected", [("min", "a"), ("max", "c")])
|
||||
def test_numpy_min_max_axis_equals_none(self, method, expected):
|
||||
cat = Categorical(["a", "b", "c", "b"], ordered=True)
|
||||
method = getattr(np, method)
|
||||
result = method(cat, axis=None)
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"values,categories,exp_mode",
|
||||
[
|
||||
([1, 1, 2, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5]),
|
||||
([1, 1, 1, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5, 1]),
|
||||
([1, 2, 3, 4, 5], [5, 4, 3, 2, 1], [5, 4, 3, 2, 1]),
|
||||
([np.nan, np.nan, np.nan, 4, 5], [5, 4, 3, 2, 1], [5, 4]),
|
||||
([np.nan, np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4]),
|
||||
([np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4]),
|
||||
],
|
||||
)
|
||||
def test_mode(self, values, categories, exp_mode):
|
||||
s = Categorical(values, categories=categories, ordered=True)
|
||||
msg = "Use Series.mode instead"
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
res = s.mode()
|
||||
exp = Categorical(exp_mode, categories=categories, ordered=True)
|
||||
tm.assert_categorical_equal(res, exp)
|
||||
|
||||
def test_searchsorted(self, ordered):
|
||||
# https://github.com/pandas-dev/pandas/issues/8420
|
||||
# https://github.com/pandas-dev/pandas/issues/14522
|
||||
|
||||
cat = Categorical(
|
||||
["cheese", "milk", "apple", "bread", "bread"],
|
||||
categories=["cheese", "milk", "apple", "bread"],
|
||||
ordered=ordered,
|
||||
)
|
||||
ser = Series(cat)
|
||||
|
||||
# Searching for single item argument, side='left' (default)
|
||||
res_cat = cat.searchsorted("apple")
|
||||
assert res_cat == 2
|
||||
assert is_scalar(res_cat)
|
||||
|
||||
res_ser = ser.searchsorted("apple")
|
||||
assert res_ser == 2
|
||||
assert is_scalar(res_ser)
|
||||
|
||||
# Searching for single item array, side='left' (default)
|
||||
res_cat = cat.searchsorted(["bread"])
|
||||
res_ser = ser.searchsorted(["bread"])
|
||||
exp = np.array([3], dtype=np.intp)
|
||||
tm.assert_numpy_array_equal(res_cat, exp)
|
||||
tm.assert_numpy_array_equal(res_ser, exp)
|
||||
|
||||
# Searching for several items array, side='right'
|
||||
res_cat = cat.searchsorted(["apple", "bread"], side="right")
|
||||
res_ser = ser.searchsorted(["apple", "bread"], side="right")
|
||||
exp = np.array([3, 5], dtype=np.intp)
|
||||
tm.assert_numpy_array_equal(res_cat, exp)
|
||||
tm.assert_numpy_array_equal(res_ser, exp)
|
||||
|
||||
# Searching for a single value that is not from the Categorical
|
||||
with pytest.raises(TypeError, match="cucumber"):
|
||||
cat.searchsorted("cucumber")
|
||||
with pytest.raises(TypeError, match="cucumber"):
|
||||
ser.searchsorted("cucumber")
|
||||
|
||||
# Searching for multiple values one of each is not from the Categorical
|
||||
msg = (
|
||||
"Cannot setitem on a Categorical with a new category, "
|
||||
"set the categories first"
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
cat.searchsorted(["bread", "cucumber"])
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
ser.searchsorted(["bread", "cucumber"])
|
||||
|
||||
def test_unique(self, ordered):
|
||||
# GH38140
|
||||
dtype = CategoricalDtype(["a", "b", "c"], ordered=ordered)
|
||||
|
||||
# categories are reordered based on value when ordered=False
|
||||
cat = Categorical(["a", "b", "c"], dtype=dtype)
|
||||
res = cat.unique()
|
||||
tm.assert_categorical_equal(res, cat)
|
||||
|
||||
cat = Categorical(["a", "b", "a", "a"], dtype=dtype)
|
||||
res = cat.unique()
|
||||
tm.assert_categorical_equal(res, Categorical(["a", "b"], dtype=dtype))
|
||||
|
||||
cat = Categorical(["c", "a", "b", "a", "a"], dtype=dtype)
|
||||
res = cat.unique()
|
||||
exp_cat = Categorical(["c", "a", "b"], dtype=dtype)
|
||||
tm.assert_categorical_equal(res, exp_cat)
|
||||
|
||||
# nan must be removed
|
||||
cat = Categorical(["b", np.nan, "b", np.nan, "a"], dtype=dtype)
|
||||
res = cat.unique()
|
||||
exp_cat = Categorical(["b", np.nan, "a"], dtype=dtype)
|
||||
tm.assert_categorical_equal(res, exp_cat)
|
||||
|
||||
def test_unique_index_series(self, ordered):
|
||||
# GH38140
|
||||
dtype = CategoricalDtype([3, 2, 1], ordered=ordered)
|
||||
|
||||
c = Categorical([3, 1, 2, 2, 1], dtype=dtype)
|
||||
# Categorical.unique sorts categories by appearance order
|
||||
# if ordered=False
|
||||
exp = Categorical([3, 1, 2], dtype=dtype)
|
||||
tm.assert_categorical_equal(c.unique(), exp)
|
||||
|
||||
tm.assert_index_equal(Index(c).unique(), Index(exp))
|
||||
tm.assert_categorical_equal(Series(c).unique(), exp)
|
||||
|
||||
c = Categorical([1, 1, 2, 2], dtype=dtype)
|
||||
exp = Categorical([1, 2], dtype=dtype)
|
||||
tm.assert_categorical_equal(c.unique(), exp)
|
||||
tm.assert_index_equal(Index(c).unique(), Index(exp))
|
||||
tm.assert_categorical_equal(Series(c).unique(), exp)
|
||||
|
||||
def test_shift(self):
|
||||
# GH 9416
|
||||
cat = Categorical(["a", "b", "c", "d", "a"])
|
||||
|
||||
# shift forward
|
||||
sp1 = cat.shift(1)
|
||||
xp1 = Categorical([np.nan, "a", "b", "c", "d"])
|
||||
tm.assert_categorical_equal(sp1, xp1)
|
||||
tm.assert_categorical_equal(cat[:-1], sp1[1:])
|
||||
|
||||
# shift back
|
||||
sn2 = cat.shift(-2)
|
||||
xp2 = Categorical(
|
||||
["c", "d", "a", np.nan, np.nan], categories=["a", "b", "c", "d"]
|
||||
)
|
||||
tm.assert_categorical_equal(sn2, xp2)
|
||||
tm.assert_categorical_equal(cat[2:], sn2[:-2])
|
||||
|
||||
# shift by zero
|
||||
tm.assert_categorical_equal(cat, cat.shift(0))
|
||||
|
||||
def test_nbytes(self):
|
||||
cat = Categorical([1, 2, 3])
|
||||
exp = 3 + 3 * 8 # 3 int8s for values + 3 int64s for categories
|
||||
assert cat.nbytes == exp
|
||||
|
||||
def test_memory_usage(self):
|
||||
cat = Categorical([1, 2, 3])
|
||||
|
||||
# .categories is an index, so we include the hashtable
|
||||
assert 0 < cat.nbytes <= cat.memory_usage()
|
||||
assert 0 < cat.nbytes <= cat.memory_usage(deep=True)
|
||||
|
||||
cat = Categorical(["foo", "foo", "bar"])
|
||||
assert cat.memory_usage(deep=True) > cat.nbytes
|
||||
|
||||
if not PYPY:
|
||||
# sys.getsizeof will call the .memory_usage with
|
||||
# deep=True, and add on some GC overhead
|
||||
diff = cat.memory_usage(deep=True) - sys.getsizeof(cat)
|
||||
assert abs(diff) < 100
|
||||
|
||||
def test_map(self):
|
||||
c = Categorical(list("ABABC"), categories=list("CBA"), ordered=True)
|
||||
result = c.map(lambda x: x.lower())
|
||||
exp = Categorical(list("ababc"), categories=list("cba"), ordered=True)
|
||||
tm.assert_categorical_equal(result, exp)
|
||||
|
||||
c = Categorical(list("ABABC"), categories=list("ABC"), ordered=False)
|
||||
result = c.map(lambda x: x.lower())
|
||||
exp = Categorical(list("ababc"), categories=list("abc"), ordered=False)
|
||||
tm.assert_categorical_equal(result, exp)
|
||||
|
||||
result = c.map(lambda x: 1)
|
||||
# GH 12766: Return an index not an array
|
||||
tm.assert_index_equal(result, Index(np.array([1] * 5, dtype=np.int64)))
|
||||
|
||||
@pytest.mark.parametrize("value", [1, "True", [1, 2, 3], 5.0])
|
||||
def test_validate_inplace_raises(self, value):
|
||||
cat = Categorical(["A", "B", "B", "C", "A"])
|
||||
msg = (
|
||||
'For argument "inplace" expected type bool, '
|
||||
f"received type {type(value).__name__}"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cat.set_ordered(value=True, inplace=value)
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cat.as_ordered(inplace=value)
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cat.as_unordered(inplace=value)
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
# issue #37643 inplace kwarg deprecated
|
||||
cat.set_categories(["X", "Y", "Z"], rename=True, inplace=value)
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
# issue #37643 inplace kwarg deprecated
|
||||
cat.rename_categories(["X", "Y", "Z"], inplace=value)
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
# issue #37643 inplace kwarg deprecated
|
||||
cat.reorder_categories(["X", "Y", "Z"], ordered=True, inplace=value)
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
# issue #37643 inplace kwarg deprecated
|
||||
cat.add_categories(new_categories=["D", "E", "F"], inplace=value)
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
# issue #37643 inplace kwarg deprecated
|
||||
cat.remove_categories(removals=["D", "E", "F"], inplace=value)
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
# issue #37643 inplace kwarg deprecated
|
||||
cat.remove_unused_categories(inplace=value)
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cat.sort_values(inplace=value)
|
@ -0,0 +1,561 @@
|
||||
import re
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
Categorical,
|
||||
CategoricalIndex,
|
||||
DataFrame,
|
||||
Index,
|
||||
Series,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays.categorical import recode_for_categories
|
||||
from pandas.tests.arrays.categorical.common import TestCategorical
|
||||
|
||||
|
||||
class TestCategoricalAPI:
|
||||
def test_ordered_api(self):
|
||||
# GH 9347
|
||||
cat1 = Categorical(list("acb"), ordered=False)
|
||||
tm.assert_index_equal(cat1.categories, Index(["a", "b", "c"]))
|
||||
assert not cat1.ordered
|
||||
|
||||
cat2 = Categorical(list("acb"), categories=list("bca"), ordered=False)
|
||||
tm.assert_index_equal(cat2.categories, Index(["b", "c", "a"]))
|
||||
assert not cat2.ordered
|
||||
|
||||
cat3 = Categorical(list("acb"), ordered=True)
|
||||
tm.assert_index_equal(cat3.categories, Index(["a", "b", "c"]))
|
||||
assert cat3.ordered
|
||||
|
||||
cat4 = Categorical(list("acb"), categories=list("bca"), ordered=True)
|
||||
tm.assert_index_equal(cat4.categories, Index(["b", "c", "a"]))
|
||||
assert cat4.ordered
|
||||
|
||||
def test_set_ordered(self):
|
||||
|
||||
cat = Categorical(["a", "b", "c", "a"], ordered=True)
|
||||
cat2 = cat.as_unordered()
|
||||
assert not cat2.ordered
|
||||
cat2 = cat.as_ordered()
|
||||
assert cat2.ordered
|
||||
cat2.as_unordered(inplace=True)
|
||||
assert not cat2.ordered
|
||||
cat2.as_ordered(inplace=True)
|
||||
assert cat2.ordered
|
||||
|
||||
assert cat2.set_ordered(True).ordered
|
||||
assert not cat2.set_ordered(False).ordered
|
||||
cat2.set_ordered(True, inplace=True)
|
||||
assert cat2.ordered
|
||||
cat2.set_ordered(False, inplace=True)
|
||||
assert not cat2.ordered
|
||||
|
||||
# removed in 0.19.0
|
||||
msg = "can't set attribute"
|
||||
with pytest.raises(AttributeError, match=msg):
|
||||
cat.ordered = True
|
||||
with pytest.raises(AttributeError, match=msg):
|
||||
cat.ordered = False
|
||||
|
||||
def test_rename_categories(self):
|
||||
cat = Categorical(["a", "b", "c", "a"])
|
||||
|
||||
# inplace=False: the old one must not be changed
|
||||
res = cat.rename_categories([1, 2, 3])
|
||||
tm.assert_numpy_array_equal(
|
||||
res.__array__(), np.array([1, 2, 3, 1], dtype=np.int64)
|
||||
)
|
||||
tm.assert_index_equal(res.categories, Index([1, 2, 3]))
|
||||
|
||||
exp_cat = np.array(["a", "b", "c", "a"], dtype=np.object_)
|
||||
tm.assert_numpy_array_equal(cat.__array__(), exp_cat)
|
||||
|
||||
exp_cat = Index(["a", "b", "c"])
|
||||
tm.assert_index_equal(cat.categories, exp_cat)
|
||||
|
||||
# GH18862 (let rename_categories take callables)
|
||||
result = cat.rename_categories(lambda x: x.upper())
|
||||
expected = Categorical(["A", "B", "C", "A"])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
# and now inplace
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
# issue #37643 inplace kwarg deprecated
|
||||
res = cat.rename_categories([1, 2, 3], inplace=True)
|
||||
|
||||
assert res is None
|
||||
tm.assert_numpy_array_equal(
|
||||
cat.__array__(), np.array([1, 2, 3, 1], dtype=np.int64)
|
||||
)
|
||||
tm.assert_index_equal(cat.categories, Index([1, 2, 3]))
|
||||
|
||||
@pytest.mark.parametrize("new_categories", [[1, 2, 3, 4], [1, 2]])
|
||||
def test_rename_categories_wrong_length_raises(self, new_categories):
|
||||
cat = Categorical(["a", "b", "c", "a"])
|
||||
msg = (
|
||||
"new categories need to have the same number of items as the "
|
||||
"old categories!"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cat.rename_categories(new_categories)
|
||||
|
||||
def test_rename_categories_series(self):
|
||||
# https://github.com/pandas-dev/pandas/issues/17981
|
||||
c = Categorical(["a", "b"])
|
||||
result = c.rename_categories(Series([0, 1], index=["a", "b"]))
|
||||
expected = Categorical([0, 1])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_rename_categories_dict(self):
|
||||
# GH 17336
|
||||
cat = Categorical(["a", "b", "c", "d"])
|
||||
res = cat.rename_categories({"a": 4, "b": 3, "c": 2, "d": 1})
|
||||
expected = Index([4, 3, 2, 1])
|
||||
tm.assert_index_equal(res.categories, expected)
|
||||
|
||||
# Test for inplace
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
# issue #37643 inplace kwarg deprecated
|
||||
res = cat.rename_categories({"a": 4, "b": 3, "c": 2, "d": 1}, inplace=True)
|
||||
|
||||
assert res is None
|
||||
tm.assert_index_equal(cat.categories, expected)
|
||||
|
||||
# Test for dicts of smaller length
|
||||
cat = Categorical(["a", "b", "c", "d"])
|
||||
res = cat.rename_categories({"a": 1, "c": 3})
|
||||
|
||||
expected = Index([1, "b", 3, "d"])
|
||||
tm.assert_index_equal(res.categories, expected)
|
||||
|
||||
# Test for dicts with bigger length
|
||||
cat = Categorical(["a", "b", "c", "d"])
|
||||
res = cat.rename_categories({"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6})
|
||||
expected = Index([1, 2, 3, 4])
|
||||
tm.assert_index_equal(res.categories, expected)
|
||||
|
||||
# Test for dicts with no items from old categories
|
||||
cat = Categorical(["a", "b", "c", "d"])
|
||||
res = cat.rename_categories({"f": 1, "g": 3})
|
||||
|
||||
expected = Index(["a", "b", "c", "d"])
|
||||
tm.assert_index_equal(res.categories, expected)
|
||||
|
||||
def test_reorder_categories(self):
|
||||
cat = Categorical(["a", "b", "c", "a"], ordered=True)
|
||||
old = cat.copy()
|
||||
new = Categorical(
|
||||
["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True
|
||||
)
|
||||
|
||||
# first inplace == False
|
||||
res = cat.reorder_categories(["c", "b", "a"])
|
||||
# cat must be the same as before
|
||||
tm.assert_categorical_equal(cat, old)
|
||||
# only res is changed
|
||||
tm.assert_categorical_equal(res, new)
|
||||
|
||||
# inplace == True
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
# issue #37643 inplace kwarg deprecated
|
||||
res = cat.reorder_categories(["c", "b", "a"], inplace=True)
|
||||
|
||||
assert res is None
|
||||
tm.assert_categorical_equal(cat, new)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"new_categories",
|
||||
[
|
||||
["a"], # not all "old" included in "new"
|
||||
["a", "b", "d"], # still not all "old" in "new"
|
||||
["a", "b", "c", "d"], # all "old" included in "new", but too long
|
||||
],
|
||||
)
|
||||
def test_reorder_categories_raises(self, new_categories):
|
||||
cat = Categorical(["a", "b", "c", "a"], ordered=True)
|
||||
msg = "items in new_categories are not the same as in old categories"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cat.reorder_categories(new_categories)
|
||||
|
||||
def test_add_categories(self):
|
||||
cat = Categorical(["a", "b", "c", "a"], ordered=True)
|
||||
old = cat.copy()
|
||||
new = Categorical(
|
||||
["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True
|
||||
)
|
||||
|
||||
# first inplace == False
|
||||
res = cat.add_categories("d")
|
||||
tm.assert_categorical_equal(cat, old)
|
||||
tm.assert_categorical_equal(res, new)
|
||||
|
||||
res = cat.add_categories(["d"])
|
||||
tm.assert_categorical_equal(cat, old)
|
||||
tm.assert_categorical_equal(res, new)
|
||||
|
||||
# inplace == True
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
# issue #37643 inplace kwarg deprecated
|
||||
res = cat.add_categories("d", inplace=True)
|
||||
|
||||
tm.assert_categorical_equal(cat, new)
|
||||
assert res is None
|
||||
|
||||
# GH 9927
|
||||
cat = Categorical(list("abc"), ordered=True)
|
||||
expected = Categorical(list("abc"), categories=list("abcde"), ordered=True)
|
||||
# test with Series, np.array, index, list
|
||||
res = cat.add_categories(Series(["d", "e"]))
|
||||
tm.assert_categorical_equal(res, expected)
|
||||
res = cat.add_categories(np.array(["d", "e"]))
|
||||
tm.assert_categorical_equal(res, expected)
|
||||
res = cat.add_categories(Index(["d", "e"]))
|
||||
tm.assert_categorical_equal(res, expected)
|
||||
res = cat.add_categories(["d", "e"])
|
||||
tm.assert_categorical_equal(res, expected)
|
||||
|
||||
def test_add_categories_existing_raises(self):
|
||||
# new is in old categories
|
||||
cat = Categorical(["a", "b", "c", "d"], ordered=True)
|
||||
msg = re.escape("new categories must not include old categories: {'d'}")
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cat.add_categories(["d"])
|
||||
|
||||
def test_set_categories(self):
|
||||
cat = Categorical(["a", "b", "c", "a"], ordered=True)
|
||||
exp_categories = Index(["c", "b", "a"])
|
||||
exp_values = np.array(["a", "b", "c", "a"], dtype=np.object_)
|
||||
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
# issue #37643 inplace kwarg deprecated
|
||||
res = cat.set_categories(["c", "b", "a"], inplace=True)
|
||||
|
||||
tm.assert_index_equal(cat.categories, exp_categories)
|
||||
tm.assert_numpy_array_equal(cat.__array__(), exp_values)
|
||||
assert res is None
|
||||
|
||||
res = cat.set_categories(["a", "b", "c"])
|
||||
# cat must be the same as before
|
||||
tm.assert_index_equal(cat.categories, exp_categories)
|
||||
tm.assert_numpy_array_equal(cat.__array__(), exp_values)
|
||||
# only res is changed
|
||||
exp_categories_back = Index(["a", "b", "c"])
|
||||
tm.assert_index_equal(res.categories, exp_categories_back)
|
||||
tm.assert_numpy_array_equal(res.__array__(), exp_values)
|
||||
|
||||
# not all "old" included in "new" -> all not included ones are now
|
||||
# np.nan
|
||||
cat = Categorical(["a", "b", "c", "a"], ordered=True)
|
||||
res = cat.set_categories(["a"])
|
||||
tm.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0], dtype=np.int8))
|
||||
|
||||
# still not all "old" in "new"
|
||||
res = cat.set_categories(["a", "b", "d"])
|
||||
tm.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0], dtype=np.int8))
|
||||
tm.assert_index_equal(res.categories, Index(["a", "b", "d"]))
|
||||
|
||||
# all "old" included in "new"
|
||||
cat = cat.set_categories(["a", "b", "c", "d"])
|
||||
exp_categories = Index(["a", "b", "c", "d"])
|
||||
tm.assert_index_equal(cat.categories, exp_categories)
|
||||
|
||||
# internals...
|
||||
c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True)
|
||||
tm.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0], dtype=np.int8))
|
||||
tm.assert_index_equal(c.categories, Index([1, 2, 3, 4]))
|
||||
|
||||
exp = np.array([1, 2, 3, 4, 1], dtype=np.int64)
|
||||
tm.assert_numpy_array_equal(np.asarray(c), exp)
|
||||
|
||||
# all "pointers" to '4' must be changed from 3 to 0,...
|
||||
c = c.set_categories([4, 3, 2, 1])
|
||||
|
||||
# positions are changed
|
||||
tm.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3], dtype=np.int8))
|
||||
|
||||
# categories are now in new order
|
||||
tm.assert_index_equal(c.categories, Index([4, 3, 2, 1]))
|
||||
|
||||
# output is the same
|
||||
exp = np.array([1, 2, 3, 4, 1], dtype=np.int64)
|
||||
tm.assert_numpy_array_equal(np.asarray(c), exp)
|
||||
assert c.min() == 4
|
||||
assert c.max() == 1
|
||||
|
||||
# set_categories should set the ordering if specified
|
||||
c2 = c.set_categories([4, 3, 2, 1], ordered=False)
|
||||
assert not c2.ordered
|
||||
|
||||
tm.assert_numpy_array_equal(np.asarray(c), np.asarray(c2))
|
||||
|
||||
# set_categories should pass thru the ordering
|
||||
c2 = c.set_ordered(False).set_categories([4, 3, 2, 1])
|
||||
assert not c2.ordered
|
||||
|
||||
tm.assert_numpy_array_equal(np.asarray(c), np.asarray(c2))
|
||||
|
||||
def test_to_dense_deprecated(self):
|
||||
cat = Categorical(["a", "b", "c", "a"], ordered=True)
|
||||
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
cat.to_dense()
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"values, categories, new_categories",
|
||||
[
|
||||
# No NaNs, same cats, same order
|
||||
(["a", "b", "a"], ["a", "b"], ["a", "b"]),
|
||||
# No NaNs, same cats, different order
|
||||
(["a", "b", "a"], ["a", "b"], ["b", "a"]),
|
||||
# Same, unsorted
|
||||
(["b", "a", "a"], ["a", "b"], ["a", "b"]),
|
||||
# No NaNs, same cats, different order
|
||||
(["b", "a", "a"], ["a", "b"], ["b", "a"]),
|
||||
# NaNs
|
||||
(["a", "b", "c"], ["a", "b"], ["a", "b"]),
|
||||
(["a", "b", "c"], ["a", "b"], ["b", "a"]),
|
||||
(["b", "a", "c"], ["a", "b"], ["a", "b"]),
|
||||
(["b", "a", "c"], ["a", "b"], ["a", "b"]),
|
||||
# Introduce NaNs
|
||||
(["a", "b", "c"], ["a", "b"], ["a"]),
|
||||
(["a", "b", "c"], ["a", "b"], ["b"]),
|
||||
(["b", "a", "c"], ["a", "b"], ["a"]),
|
||||
(["b", "a", "c"], ["a", "b"], ["a"]),
|
||||
# No overlap
|
||||
(["a", "b", "c"], ["a", "b"], ["d", "e"]),
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize("ordered", [True, False])
|
||||
def test_set_categories_many(self, values, categories, new_categories, ordered):
|
||||
c = Categorical(values, categories)
|
||||
expected = Categorical(values, new_categories, ordered)
|
||||
result = c.set_categories(new_categories, ordered=ordered)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_set_categories_rename_less(self):
|
||||
# GH 24675
|
||||
cat = Categorical(["A", "B"])
|
||||
result = cat.set_categories(["A"], rename=True)
|
||||
expected = Categorical(["A", np.nan])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_set_categories_private(self):
|
||||
cat = Categorical(["a", "b", "c"], categories=["a", "b", "c", "d"])
|
||||
cat._set_categories(["a", "c", "d", "e"])
|
||||
expected = Categorical(["a", "c", "d"], categories=list("acde"))
|
||||
tm.assert_categorical_equal(cat, expected)
|
||||
|
||||
# fastpath
|
||||
cat = Categorical(["a", "b", "c"], categories=["a", "b", "c", "d"])
|
||||
cat._set_categories(["a", "c", "d", "e"], fastpath=True)
|
||||
expected = Categorical(["a", "c", "d"], categories=list("acde"))
|
||||
tm.assert_categorical_equal(cat, expected)
|
||||
|
||||
def test_remove_categories(self):
|
||||
cat = Categorical(["a", "b", "c", "a"], ordered=True)
|
||||
old = cat.copy()
|
||||
new = Categorical(["a", "b", np.nan, "a"], categories=["a", "b"], ordered=True)
|
||||
|
||||
# first inplace == False
|
||||
res = cat.remove_categories("c")
|
||||
tm.assert_categorical_equal(cat, old)
|
||||
tm.assert_categorical_equal(res, new)
|
||||
|
||||
res = cat.remove_categories(["c"])
|
||||
tm.assert_categorical_equal(cat, old)
|
||||
tm.assert_categorical_equal(res, new)
|
||||
|
||||
# inplace == True
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
# issue #37643 inplace kwarg deprecated
|
||||
res = cat.remove_categories("c", inplace=True)
|
||||
|
||||
tm.assert_categorical_equal(cat, new)
|
||||
assert res is None
|
||||
|
||||
@pytest.mark.parametrize("removals", [["c"], ["c", np.nan], "c", ["c", "c"]])
|
||||
def test_remove_categories_raises(self, removals):
|
||||
cat = Categorical(["a", "b", "a"])
|
||||
message = re.escape("removals must all be in old categories: {'c'}")
|
||||
|
||||
with pytest.raises(ValueError, match=message):
|
||||
cat.remove_categories(removals)
|
||||
|
||||
def test_remove_unused_categories(self):
|
||||
c = Categorical(["a", "b", "c", "d", "a"], categories=["a", "b", "c", "d", "e"])
|
||||
exp_categories_all = Index(["a", "b", "c", "d", "e"])
|
||||
exp_categories_dropped = Index(["a", "b", "c", "d"])
|
||||
|
||||
tm.assert_index_equal(c.categories, exp_categories_all)
|
||||
|
||||
res = c.remove_unused_categories()
|
||||
tm.assert_index_equal(res.categories, exp_categories_dropped)
|
||||
tm.assert_index_equal(c.categories, exp_categories_all)
|
||||
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
# issue #37643 inplace kwarg deprecated
|
||||
res = c.remove_unused_categories(inplace=True)
|
||||
|
||||
tm.assert_index_equal(c.categories, exp_categories_dropped)
|
||||
assert res is None
|
||||
|
||||
# with NaN values (GH11599)
|
||||
c = Categorical(["a", "b", "c", np.nan], categories=["a", "b", "c", "d", "e"])
|
||||
res = c.remove_unused_categories()
|
||||
tm.assert_index_equal(res.categories, Index(np.array(["a", "b", "c"])))
|
||||
exp_codes = np.array([0, 1, 2, -1], dtype=np.int8)
|
||||
tm.assert_numpy_array_equal(res.codes, exp_codes)
|
||||
tm.assert_index_equal(c.categories, exp_categories_all)
|
||||
|
||||
val = ["F", np.nan, "D", "B", "D", "F", np.nan]
|
||||
cat = Categorical(values=val, categories=list("ABCDEFG"))
|
||||
out = cat.remove_unused_categories()
|
||||
tm.assert_index_equal(out.categories, Index(["B", "D", "F"]))
|
||||
exp_codes = np.array([2, -1, 1, 0, 1, 2, -1], dtype=np.int8)
|
||||
tm.assert_numpy_array_equal(out.codes, exp_codes)
|
||||
assert out.tolist() == val
|
||||
|
||||
alpha = list("abcdefghijklmnopqrstuvwxyz")
|
||||
val = np.random.choice(alpha[::2], 10000).astype("object")
|
||||
val[np.random.choice(len(val), 100)] = np.nan
|
||||
|
||||
cat = Categorical(values=val, categories=alpha)
|
||||
out = cat.remove_unused_categories()
|
||||
assert out.tolist() == val.tolist()
|
||||
|
||||
|
||||
class TestCategoricalAPIWithFactor(TestCategorical):
|
||||
def test_describe(self):
|
||||
# string type
|
||||
desc = self.factor.describe()
|
||||
assert self.factor.ordered
|
||||
exp_index = CategoricalIndex(
|
||||
["a", "b", "c"], name="categories", ordered=self.factor.ordered
|
||||
)
|
||||
expected = DataFrame(
|
||||
{"counts": [3, 2, 3], "freqs": [3 / 8.0, 2 / 8.0, 3 / 8.0]}, index=exp_index
|
||||
)
|
||||
tm.assert_frame_equal(desc, expected)
|
||||
|
||||
# check unused categories
|
||||
cat = self.factor.copy()
|
||||
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
# issue #37643 inplace kwarg deprecated
|
||||
cat.set_categories(["a", "b", "c", "d"], inplace=True)
|
||||
|
||||
desc = cat.describe()
|
||||
|
||||
exp_index = CategoricalIndex(
|
||||
list("abcd"), ordered=self.factor.ordered, name="categories"
|
||||
)
|
||||
expected = DataFrame(
|
||||
{"counts": [3, 2, 3, 0], "freqs": [3 / 8.0, 2 / 8.0, 3 / 8.0, 0]},
|
||||
index=exp_index,
|
||||
)
|
||||
tm.assert_frame_equal(desc, expected)
|
||||
|
||||
# check an integer one
|
||||
cat = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1])
|
||||
desc = cat.describe()
|
||||
exp_index = CategoricalIndex([1, 2, 3], ordered=cat.ordered, name="categories")
|
||||
expected = DataFrame(
|
||||
{"counts": [5, 3, 3], "freqs": [5 / 11.0, 3 / 11.0, 3 / 11.0]},
|
||||
index=exp_index,
|
||||
)
|
||||
tm.assert_frame_equal(desc, expected)
|
||||
|
||||
# https://github.com/pandas-dev/pandas/issues/3678
|
||||
# describe should work with NaN
|
||||
cat = Categorical([np.nan, 1, 2, 2])
|
||||
desc = cat.describe()
|
||||
expected = DataFrame(
|
||||
{"counts": [1, 2, 1], "freqs": [1 / 4.0, 2 / 4.0, 1 / 4.0]},
|
||||
index=CategoricalIndex(
|
||||
[1, 2, np.nan], categories=[1, 2], name="categories"
|
||||
),
|
||||
)
|
||||
tm.assert_frame_equal(desc, expected)
|
||||
|
||||
def test_set_categories_inplace(self):
|
||||
cat = self.factor.copy()
|
||||
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
# issue #37643 inplace kwarg deprecated
|
||||
cat.set_categories(["a", "b", "c", "d"], inplace=True)
|
||||
|
||||
tm.assert_index_equal(cat.categories, Index(["a", "b", "c", "d"]))
|
||||
|
||||
def test_codes_setter_deprecated(self):
|
||||
cat = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1])
|
||||
new_codes = cat._codes + 1
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
# GH#40606
|
||||
cat._codes = new_codes
|
||||
|
||||
assert cat._codes is new_codes
|
||||
|
||||
|
||||
class TestPrivateCategoricalAPI:
|
||||
def test_codes_immutable(self):
|
||||
|
||||
# Codes should be read only
|
||||
c = Categorical(["a", "b", "c", "a", np.nan])
|
||||
exp = np.array([0, 1, 2, 0, -1], dtype="int8")
|
||||
tm.assert_numpy_array_equal(c.codes, exp)
|
||||
|
||||
# Assignments to codes should raise
|
||||
with pytest.raises(AttributeError, match="can't set attribute"):
|
||||
c.codes = np.array([0, 1, 2, 0, 1], dtype="int8")
|
||||
|
||||
# changes in the codes array should raise
|
||||
codes = c.codes
|
||||
|
||||
with pytest.raises(ValueError, match="assignment destination is read-only"):
|
||||
codes[4] = 1
|
||||
|
||||
# But even after getting the codes, the original array should still be
|
||||
# writeable!
|
||||
c[4] = "a"
|
||||
exp = np.array([0, 1, 2, 0, 0], dtype="int8")
|
||||
tm.assert_numpy_array_equal(c.codes, exp)
|
||||
c._codes[4] = 2
|
||||
exp = np.array([0, 1, 2, 0, 2], dtype="int8")
|
||||
tm.assert_numpy_array_equal(c.codes, exp)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"codes, old, new, expected",
|
||||
[
|
||||
([0, 1], ["a", "b"], ["a", "b"], [0, 1]),
|
||||
([0, 1], ["b", "a"], ["b", "a"], [0, 1]),
|
||||
([0, 1], ["a", "b"], ["b", "a"], [1, 0]),
|
||||
([0, 1], ["b", "a"], ["a", "b"], [1, 0]),
|
||||
([0, 1, 0, 1], ["a", "b"], ["a", "b", "c"], [0, 1, 0, 1]),
|
||||
([0, 1, 2, 2], ["a", "b", "c"], ["a", "b"], [0, 1, -1, -1]),
|
||||
([0, 1, -1], ["a", "b", "c"], ["a", "b", "c"], [0, 1, -1]),
|
||||
([0, 1, -1], ["a", "b", "c"], ["b"], [-1, 0, -1]),
|
||||
([0, 1, -1], ["a", "b", "c"], ["d"], [-1, -1, -1]),
|
||||
([0, 1, -1], ["a", "b", "c"], [], [-1, -1, -1]),
|
||||
([-1, -1], [], ["a", "b"], [-1, -1]),
|
||||
([1, 0], ["b", "a"], ["a", "b"], [0, 1]),
|
||||
],
|
||||
)
|
||||
def test_recode_to_categories(self, codes, old, new, expected):
|
||||
codes = np.asanyarray(codes, dtype=np.int8)
|
||||
expected = np.asanyarray(expected, dtype=np.int8)
|
||||
old = Index(old)
|
||||
new = Index(new)
|
||||
result = recode_for_categories(codes, old, new)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
def test_recode_to_categories_large(self):
|
||||
N = 1000
|
||||
codes = np.arange(N)
|
||||
old = Index(codes)
|
||||
expected = np.arange(N - 1, -1, -1, dtype=np.int16)
|
||||
new = Index(expected)
|
||||
result = recode_for_categories(codes, old, new)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
@ -0,0 +1,89 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
Categorical,
|
||||
CategoricalDtype,
|
||||
NaT,
|
||||
Timestamp,
|
||||
array,
|
||||
to_datetime,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestAstype:
|
||||
def test_astype_str_int_categories_to_nullable_int(self):
|
||||
# GH#39616
|
||||
dtype = CategoricalDtype([str(i) for i in range(5)])
|
||||
codes = np.random.randint(5, size=20)
|
||||
arr = Categorical.from_codes(codes, dtype=dtype)
|
||||
|
||||
res = arr.astype("Int64")
|
||||
expected = array(codes, dtype="Int64")
|
||||
tm.assert_extension_array_equal(res, expected)
|
||||
|
||||
@pytest.mark.parametrize("ordered", [True, False])
|
||||
def test_astype(self, ordered):
|
||||
# string
|
||||
cat = Categorical(list("abbaaccc"), ordered=ordered)
|
||||
result = cat.astype(object)
|
||||
expected = np.array(cat)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
msg = r"Cannot cast object dtype to float64"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cat.astype(float)
|
||||
|
||||
# numeric
|
||||
cat = Categorical([0, 1, 2, 2, 1, 0, 1, 0, 2], ordered=ordered)
|
||||
result = cat.astype(object)
|
||||
expected = np.array(cat, dtype=object)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = cat.astype(int)
|
||||
expected = np.array(cat, dtype="int")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = cat.astype(float)
|
||||
expected = np.array(cat, dtype=float)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("dtype_ordered", [True, False])
|
||||
@pytest.mark.parametrize("cat_ordered", [True, False])
|
||||
def test_astype_category(self, dtype_ordered, cat_ordered):
|
||||
# GH#10696/GH#18593
|
||||
data = list("abcaacbab")
|
||||
cat = Categorical(data, categories=list("bac"), ordered=cat_ordered)
|
||||
|
||||
# standard categories
|
||||
dtype = CategoricalDtype(ordered=dtype_ordered)
|
||||
result = cat.astype(dtype)
|
||||
expected = Categorical(data, categories=cat.categories, ordered=dtype_ordered)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
# non-standard categories
|
||||
dtype = CategoricalDtype(list("adc"), dtype_ordered)
|
||||
result = cat.astype(dtype)
|
||||
expected = Categorical(data, dtype=dtype)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
if dtype_ordered is False:
|
||||
# dtype='category' can't specify ordered, so only test once
|
||||
result = cat.astype("category")
|
||||
expected = cat
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_astype_object_datetime_categories(self):
|
||||
# GH#40754
|
||||
cat = Categorical(to_datetime(["2021-03-27", NaT]))
|
||||
result = cat.astype(object)
|
||||
expected = np.array([Timestamp("2021-03-27 00:00:00"), NaT], dtype="object")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
def test_astype_object_timestamp_categories(self):
|
||||
# GH#18024
|
||||
cat = Categorical([Timestamp("2014-01-01")])
|
||||
result = cat.astype(object)
|
||||
expected = np.array([Timestamp("2014-01-01 00:00:00")], dtype="object")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
@ -0,0 +1,762 @@
|
||||
from datetime import (
|
||||
date,
|
||||
datetime,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.compat import (
|
||||
IS64,
|
||||
is_platform_windows,
|
||||
)
|
||||
|
||||
from pandas.core.dtypes.common import (
|
||||
is_float_dtype,
|
||||
is_integer_dtype,
|
||||
)
|
||||
from pandas.core.dtypes.dtypes import CategoricalDtype
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
Categorical,
|
||||
CategoricalIndex,
|
||||
DatetimeIndex,
|
||||
Index,
|
||||
Interval,
|
||||
IntervalIndex,
|
||||
MultiIndex,
|
||||
NaT,
|
||||
Series,
|
||||
Timestamp,
|
||||
date_range,
|
||||
period_range,
|
||||
timedelta_range,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.core.api import Int64Index
|
||||
|
||||
|
||||
class TestCategoricalConstructors:
|
||||
def test_categorical_scalar_deprecated(self):
|
||||
# GH#38433
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
Categorical("A", categories=["A", "B"])
|
||||
|
||||
def test_categorical_1d_only(self):
|
||||
# ndim > 1
|
||||
msg = "> 1 ndim Categorical are not supported at this time"
|
||||
with pytest.raises(NotImplementedError, match=msg):
|
||||
Categorical(np.array([list("abcd")]))
|
||||
|
||||
def test_validate_ordered(self):
|
||||
# see gh-14058
|
||||
exp_msg = "'ordered' must either be 'True' or 'False'"
|
||||
exp_err = TypeError
|
||||
|
||||
# This should be a boolean.
|
||||
ordered = np.array([0, 1, 2])
|
||||
|
||||
with pytest.raises(exp_err, match=exp_msg):
|
||||
Categorical([1, 2, 3], ordered=ordered)
|
||||
|
||||
with pytest.raises(exp_err, match=exp_msg):
|
||||
Categorical.from_codes(
|
||||
[0, 0, 1], categories=["a", "b", "c"], ordered=ordered
|
||||
)
|
||||
|
||||
def test_constructor_empty(self):
|
||||
# GH 17248
|
||||
c = Categorical([])
|
||||
expected = Index([])
|
||||
tm.assert_index_equal(c.categories, expected)
|
||||
|
||||
c = Categorical([], categories=[1, 2, 3])
|
||||
expected = Int64Index([1, 2, 3])
|
||||
tm.assert_index_equal(c.categories, expected)
|
||||
|
||||
def test_constructor_empty_boolean(self):
|
||||
# see gh-22702
|
||||
cat = Categorical([], categories=[True, False])
|
||||
categories = sorted(cat.categories.tolist())
|
||||
assert categories == [False, True]
|
||||
|
||||
def test_constructor_tuples(self):
|
||||
values = np.array([(1,), (1, 2), (1,), (1, 2)], dtype=object)
|
||||
result = Categorical(values)
|
||||
expected = Index([(1,), (1, 2)], tupleize_cols=False)
|
||||
tm.assert_index_equal(result.categories, expected)
|
||||
assert result.ordered is False
|
||||
|
||||
def test_constructor_tuples_datetimes(self):
|
||||
# numpy will auto reshape when all of the tuples are the
|
||||
# same len, so add an extra one with 2 items and slice it off
|
||||
values = np.array(
|
||||
[
|
||||
(Timestamp("2010-01-01"),),
|
||||
(Timestamp("2010-01-02"),),
|
||||
(Timestamp("2010-01-01"),),
|
||||
(Timestamp("2010-01-02"),),
|
||||
("a", "b"),
|
||||
],
|
||||
dtype=object,
|
||||
)[:-1]
|
||||
result = Categorical(values)
|
||||
expected = Index(
|
||||
[(Timestamp("2010-01-01"),), (Timestamp("2010-01-02"),)],
|
||||
tupleize_cols=False,
|
||||
)
|
||||
tm.assert_index_equal(result.categories, expected)
|
||||
|
||||
def test_constructor_unsortable(self):
|
||||
|
||||
# it works!
|
||||
arr = np.array([1, 2, 3, datetime.now()], dtype="O")
|
||||
factor = Categorical(arr, ordered=False)
|
||||
assert not factor.ordered
|
||||
|
||||
# this however will raise as cannot be sorted
|
||||
msg = (
|
||||
"'values' is not ordered, please explicitly specify the "
|
||||
"categories order by passing in a categories argument."
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
Categorical(arr, ordered=True)
|
||||
|
||||
def test_constructor_interval(self):
|
||||
result = Categorical(
|
||||
[Interval(1, 2), Interval(2, 3), Interval(3, 6)], ordered=True
|
||||
)
|
||||
ii = IntervalIndex([Interval(1, 2), Interval(2, 3), Interval(3, 6)])
|
||||
exp = Categorical(ii, ordered=True)
|
||||
tm.assert_categorical_equal(result, exp)
|
||||
tm.assert_index_equal(result.categories, ii)
|
||||
|
||||
def test_constructor(self):
|
||||
|
||||
exp_arr = np.array(["a", "b", "c", "a", "b", "c"], dtype=np.object_)
|
||||
c1 = Categorical(exp_arr)
|
||||
tm.assert_numpy_array_equal(c1.__array__(), exp_arr)
|
||||
c2 = Categorical(exp_arr, categories=["a", "b", "c"])
|
||||
tm.assert_numpy_array_equal(c2.__array__(), exp_arr)
|
||||
c2 = Categorical(exp_arr, categories=["c", "b", "a"])
|
||||
tm.assert_numpy_array_equal(c2.__array__(), exp_arr)
|
||||
|
||||
# categories must be unique
|
||||
msg = "Categorical categories must be unique"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical([1, 2], [1, 2, 2])
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical(["a", "b"], ["a", "b", "b"])
|
||||
|
||||
# The default should be unordered
|
||||
c1 = Categorical(["a", "b", "c", "a"])
|
||||
assert not c1.ordered
|
||||
|
||||
# Categorical as input
|
||||
c1 = Categorical(["a", "b", "c", "a"])
|
||||
c2 = Categorical(c1)
|
||||
tm.assert_categorical_equal(c1, c2)
|
||||
|
||||
c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"])
|
||||
c2 = Categorical(c1)
|
||||
tm.assert_categorical_equal(c1, c2)
|
||||
|
||||
c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"])
|
||||
c2 = Categorical(c1)
|
||||
tm.assert_categorical_equal(c1, c2)
|
||||
|
||||
c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"])
|
||||
c2 = Categorical(c1, categories=["a", "b", "c"])
|
||||
tm.assert_numpy_array_equal(c1.__array__(), c2.__array__())
|
||||
tm.assert_index_equal(c2.categories, Index(["a", "b", "c"]))
|
||||
|
||||
# Series of dtype category
|
||||
c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"])
|
||||
c2 = Categorical(Series(c1))
|
||||
tm.assert_categorical_equal(c1, c2)
|
||||
|
||||
c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"])
|
||||
c2 = Categorical(Series(c1))
|
||||
tm.assert_categorical_equal(c1, c2)
|
||||
|
||||
# Series
|
||||
c1 = Categorical(["a", "b", "c", "a"])
|
||||
c2 = Categorical(Series(["a", "b", "c", "a"]))
|
||||
tm.assert_categorical_equal(c1, c2)
|
||||
|
||||
c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"])
|
||||
c2 = Categorical(Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"])
|
||||
tm.assert_categorical_equal(c1, c2)
|
||||
|
||||
# This should result in integer categories, not float!
|
||||
cat = Categorical([1, 2, 3, np.nan], categories=[1, 2, 3])
|
||||
assert is_integer_dtype(cat.categories)
|
||||
|
||||
# https://github.com/pandas-dev/pandas/issues/3678
|
||||
cat = Categorical([np.nan, 1, 2, 3])
|
||||
assert is_integer_dtype(cat.categories)
|
||||
|
||||
# this should result in floats
|
||||
cat = Categorical([np.nan, 1, 2.0, 3])
|
||||
assert is_float_dtype(cat.categories)
|
||||
|
||||
cat = Categorical([np.nan, 1.0, 2.0, 3.0])
|
||||
assert is_float_dtype(cat.categories)
|
||||
|
||||
# This doesn't work -> this would probably need some kind of "remember
|
||||
# the original type" feature to try to cast the array interface result
|
||||
# to...
|
||||
|
||||
# vals = np.asarray(cat[cat.notna()])
|
||||
# assert is_integer_dtype(vals)
|
||||
|
||||
# corner cases
|
||||
cat = Categorical([1])
|
||||
assert len(cat.categories) == 1
|
||||
assert cat.categories[0] == 1
|
||||
assert len(cat.codes) == 1
|
||||
assert cat.codes[0] == 0
|
||||
|
||||
cat = Categorical(["a"])
|
||||
assert len(cat.categories) == 1
|
||||
assert cat.categories[0] == "a"
|
||||
assert len(cat.codes) == 1
|
||||
assert cat.codes[0] == 0
|
||||
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
# GH#38433
|
||||
cat = Categorical(1)
|
||||
assert len(cat.categories) == 1
|
||||
assert cat.categories[0] == 1
|
||||
assert len(cat.codes) == 1
|
||||
assert cat.codes[0] == 0
|
||||
# two arrays
|
||||
# - when the first is an integer dtype and the second is not
|
||||
# - when the resulting codes are all -1/NaN
|
||||
with tm.assert_produces_warning(None):
|
||||
Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"])
|
||||
|
||||
with tm.assert_produces_warning(None):
|
||||
Categorical([0, 1, 2, 0, 1, 2], categories=[3, 4, 5])
|
||||
|
||||
# the next one are from the old docs
|
||||
with tm.assert_produces_warning(None):
|
||||
Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3])
|
||||
cat = Categorical([1, 2], categories=[1, 2, 3])
|
||||
|
||||
# this is a legitimate constructor
|
||||
with tm.assert_produces_warning(None):
|
||||
Categorical(np.array([], dtype="int64"), categories=[3, 2, 1], ordered=True)
|
||||
|
||||
def test_constructor_with_existing_categories(self):
|
||||
# GH25318: constructing with pd.Series used to bogusly skip recoding
|
||||
# categories
|
||||
c0 = Categorical(["a", "b", "c", "a"])
|
||||
c1 = Categorical(["a", "b", "c", "a"], categories=["b", "c"])
|
||||
|
||||
c2 = Categorical(c0, categories=c1.categories)
|
||||
tm.assert_categorical_equal(c1, c2)
|
||||
|
||||
c3 = Categorical(Series(c0), categories=c1.categories)
|
||||
tm.assert_categorical_equal(c1, c3)
|
||||
|
||||
def test_constructor_not_sequence(self):
|
||||
# https://github.com/pandas-dev/pandas/issues/16022
|
||||
msg = r"^Parameter 'categories' must be list-like, was"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
Categorical(["a", "b"], categories="a")
|
||||
|
||||
def test_constructor_with_null(self):
|
||||
|
||||
# Cannot have NaN in categories
|
||||
msg = "Categorical categories cannot be null"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"])
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical([None, "a", "b", "c"], categories=[None, "a", "b", "c"])
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical(
|
||||
DatetimeIndex(["nat", "20160101"]),
|
||||
categories=[NaT, Timestamp("20160101")],
|
||||
)
|
||||
|
||||
def test_constructor_with_index(self):
|
||||
ci = CategoricalIndex(list("aabbca"), categories=list("cab"))
|
||||
tm.assert_categorical_equal(ci.values, Categorical(ci))
|
||||
|
||||
ci = CategoricalIndex(list("aabbca"), categories=list("cab"))
|
||||
tm.assert_categorical_equal(
|
||||
ci.values, Categorical(ci.astype(object), categories=ci.categories)
|
||||
)
|
||||
|
||||
def test_constructor_with_generator(self):
|
||||
# This was raising an Error in isna(single_val).any() because isna
|
||||
# returned a scalar for a generator
|
||||
|
||||
exp = Categorical([0, 1, 2])
|
||||
cat = Categorical(x for x in [0, 1, 2])
|
||||
tm.assert_categorical_equal(cat, exp)
|
||||
cat = Categorical(range(3))
|
||||
tm.assert_categorical_equal(cat, exp)
|
||||
|
||||
MultiIndex.from_product([range(5), ["a", "b", "c"]])
|
||||
|
||||
# check that categories accept generators and sequences
|
||||
cat = Categorical([0, 1, 2], categories=(x for x in [0, 1, 2]))
|
||||
tm.assert_categorical_equal(cat, exp)
|
||||
cat = Categorical([0, 1, 2], categories=range(3))
|
||||
tm.assert_categorical_equal(cat, exp)
|
||||
|
||||
def test_constructor_with_rangeindex(self):
|
||||
# RangeIndex is preserved in Categories
|
||||
rng = Index(range(3))
|
||||
|
||||
cat = Categorical(rng)
|
||||
tm.assert_index_equal(cat.categories, rng, exact=True)
|
||||
|
||||
cat = Categorical([1, 2, 0], categories=rng)
|
||||
tm.assert_index_equal(cat.categories, rng, exact=True)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtl",
|
||||
[
|
||||
date_range("1995-01-01 00:00:00", periods=5, freq="s"),
|
||||
date_range("1995-01-01 00:00:00", periods=5, freq="s", tz="US/Eastern"),
|
||||
timedelta_range("1 day", periods=5, freq="s"),
|
||||
],
|
||||
)
|
||||
def test_constructor_with_datetimelike(self, dtl):
|
||||
# see gh-12077
|
||||
# constructor with a datetimelike and NaT
|
||||
|
||||
s = Series(dtl)
|
||||
c = Categorical(s)
|
||||
|
||||
expected = type(dtl)(s)
|
||||
expected._data.freq = None
|
||||
|
||||
tm.assert_index_equal(c.categories, expected)
|
||||
tm.assert_numpy_array_equal(c.codes, np.arange(5, dtype="int8"))
|
||||
|
||||
# with NaT
|
||||
s2 = s.copy()
|
||||
s2.iloc[-1] = NaT
|
||||
c = Categorical(s2)
|
||||
|
||||
expected = type(dtl)(s2.dropna())
|
||||
expected._data.freq = None
|
||||
|
||||
tm.assert_index_equal(c.categories, expected)
|
||||
|
||||
exp = np.array([0, 1, 2, 3, -1], dtype=np.int8)
|
||||
tm.assert_numpy_array_equal(c.codes, exp)
|
||||
|
||||
result = repr(c)
|
||||
assert "NaT" in result
|
||||
|
||||
def test_constructor_from_index_series_datetimetz(self):
|
||||
idx = date_range("2015-01-01 10:00", freq="D", periods=3, tz="US/Eastern")
|
||||
idx = idx._with_freq(None) # freq not preserved in result.categories
|
||||
result = Categorical(idx)
|
||||
tm.assert_index_equal(result.categories, idx)
|
||||
|
||||
result = Categorical(Series(idx))
|
||||
tm.assert_index_equal(result.categories, idx)
|
||||
|
||||
def test_constructor_date_objects(self):
|
||||
# we dont cast date objects to timestamps, matching Index constructor
|
||||
v = date.today()
|
||||
|
||||
cat = Categorical([v, v])
|
||||
assert cat.categories.dtype == object
|
||||
assert type(cat.categories[0]) is date
|
||||
|
||||
def test_constructor_from_index_series_timedelta(self):
|
||||
idx = timedelta_range("1 days", freq="D", periods=3)
|
||||
idx = idx._with_freq(None) # freq not preserved in result.categories
|
||||
result = Categorical(idx)
|
||||
tm.assert_index_equal(result.categories, idx)
|
||||
|
||||
result = Categorical(Series(idx))
|
||||
tm.assert_index_equal(result.categories, idx)
|
||||
|
||||
def test_constructor_from_index_series_period(self):
|
||||
idx = period_range("2015-01-01", freq="D", periods=3)
|
||||
result = Categorical(idx)
|
||||
tm.assert_index_equal(result.categories, idx)
|
||||
|
||||
result = Categorical(Series(idx))
|
||||
tm.assert_index_equal(result.categories, idx)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"values",
|
||||
[
|
||||
np.array([1.0, 1.2, 1.8, np.nan]),
|
||||
np.array([1, 2, 3], dtype="int64"),
|
||||
["a", "b", "c", np.nan],
|
||||
[pd.Period("2014-01"), pd.Period("2014-02"), NaT],
|
||||
[Timestamp("2014-01-01"), Timestamp("2014-01-02"), NaT],
|
||||
[
|
||||
Timestamp("2014-01-01", tz="US/Eastern"),
|
||||
Timestamp("2014-01-02", tz="US/Eastern"),
|
||||
NaT,
|
||||
],
|
||||
],
|
||||
)
|
||||
def test_constructor_invariant(self, values):
|
||||
# GH 14190
|
||||
c = Categorical(values)
|
||||
c2 = Categorical(c)
|
||||
tm.assert_categorical_equal(c, c2)
|
||||
|
||||
@pytest.mark.parametrize("ordered", [True, False])
|
||||
def test_constructor_with_dtype(self, ordered):
|
||||
categories = ["b", "a", "c"]
|
||||
dtype = CategoricalDtype(categories, ordered=ordered)
|
||||
result = Categorical(["a", "b", "a", "c"], dtype=dtype)
|
||||
expected = Categorical(
|
||||
["a", "b", "a", "c"], categories=categories, ordered=ordered
|
||||
)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
assert result.ordered is ordered
|
||||
|
||||
def test_constructor_dtype_and_others_raises(self):
|
||||
dtype = CategoricalDtype(["a", "b"], ordered=True)
|
||||
msg = "Cannot specify `categories` or `ordered` together with `dtype`."
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical(["a", "b"], categories=["a", "b"], dtype=dtype)
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical(["a", "b"], ordered=True, dtype=dtype)
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical(["a", "b"], ordered=False, dtype=dtype)
|
||||
|
||||
@pytest.mark.parametrize("categories", [None, ["a", "b"], ["a", "c"]])
|
||||
@pytest.mark.parametrize("ordered", [True, False])
|
||||
def test_constructor_str_category(self, categories, ordered):
|
||||
result = Categorical(
|
||||
["a", "b"], categories=categories, ordered=ordered, dtype="category"
|
||||
)
|
||||
expected = Categorical(["a", "b"], categories=categories, ordered=ordered)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_constructor_str_unknown(self):
|
||||
with pytest.raises(ValueError, match="Unknown dtype"):
|
||||
Categorical([1, 2], dtype="foo")
|
||||
|
||||
def test_constructor_np_strs(self):
|
||||
# GH#31499 Hastable.map_locations needs to work on np.str_ objects
|
||||
cat = Categorical(["1", "0", "1"], [np.str_("0"), np.str_("1")])
|
||||
assert all(isinstance(x, np.str_) for x in cat.categories)
|
||||
|
||||
def test_constructor_from_categorical_with_dtype(self):
|
||||
dtype = CategoricalDtype(["a", "b", "c"], ordered=True)
|
||||
values = Categorical(["a", "b", "d"])
|
||||
result = Categorical(values, dtype=dtype)
|
||||
# We use dtype.categories, not values.categories
|
||||
expected = Categorical(
|
||||
["a", "b", "d"], categories=["a", "b", "c"], ordered=True
|
||||
)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_constructor_from_categorical_with_unknown_dtype(self):
|
||||
dtype = CategoricalDtype(None, ordered=True)
|
||||
values = Categorical(["a", "b", "d"])
|
||||
result = Categorical(values, dtype=dtype)
|
||||
# We use values.categories, not dtype.categories
|
||||
expected = Categorical(
|
||||
["a", "b", "d"], categories=["a", "b", "d"], ordered=True
|
||||
)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_constructor_from_categorical_string(self):
|
||||
values = Categorical(["a", "b", "d"])
|
||||
# use categories, ordered
|
||||
result = Categorical(
|
||||
values, categories=["a", "b", "c"], ordered=True, dtype="category"
|
||||
)
|
||||
expected = Categorical(
|
||||
["a", "b", "d"], categories=["a", "b", "c"], ordered=True
|
||||
)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
# No string
|
||||
result = Categorical(values, categories=["a", "b", "c"], ordered=True)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_constructor_with_categorical_categories(self):
|
||||
# GH17884
|
||||
expected = Categorical(["a", "b"], categories=["a", "b", "c"])
|
||||
|
||||
result = Categorical(["a", "b"], categories=Categorical(["a", "b", "c"]))
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
result = Categorical(["a", "b"], categories=CategoricalIndex(["a", "b", "c"]))
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("klass", [lambda x: np.array(x, dtype=object), list])
|
||||
def test_construction_with_null(self, klass, nulls_fixture):
|
||||
# https://github.com/pandas-dev/pandas/issues/31927
|
||||
values = klass(["a", nulls_fixture, "b"])
|
||||
result = Categorical(values)
|
||||
|
||||
dtype = CategoricalDtype(["a", "b"])
|
||||
codes = [0, -1, 1]
|
||||
expected = Categorical.from_codes(codes=codes, dtype=dtype)
|
||||
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_from_codes_nullable_int_categories(self, any_numeric_ea_dtype):
|
||||
# GH#39649
|
||||
cats = pd.array(range(5), dtype=any_numeric_ea_dtype)
|
||||
codes = np.random.randint(5, size=3)
|
||||
dtype = CategoricalDtype(cats)
|
||||
arr = Categorical.from_codes(codes, dtype=dtype)
|
||||
assert arr.categories.dtype == cats.dtype
|
||||
tm.assert_index_equal(arr.categories, Index(cats))
|
||||
|
||||
def test_from_codes_empty(self):
|
||||
cat = ["a", "b", "c"]
|
||||
result = Categorical.from_codes([], categories=cat)
|
||||
expected = Categorical([], categories=cat)
|
||||
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_from_codes_too_few_categories(self):
|
||||
dtype = CategoricalDtype(categories=[1, 2])
|
||||
msg = "codes need to be between "
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical.from_codes([1, 2], categories=dtype.categories)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical.from_codes([1, 2], dtype=dtype)
|
||||
|
||||
def test_from_codes_non_int_codes(self):
|
||||
dtype = CategoricalDtype(categories=[1, 2])
|
||||
msg = "codes need to be array-like integers"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical.from_codes(["a"], categories=dtype.categories)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical.from_codes(["a"], dtype=dtype)
|
||||
|
||||
def test_from_codes_non_unique_categories(self):
|
||||
with pytest.raises(ValueError, match="Categorical categories must be unique"):
|
||||
Categorical.from_codes([0, 1, 2], categories=["a", "a", "b"])
|
||||
|
||||
def test_from_codes_nan_cat_included(self):
|
||||
with pytest.raises(ValueError, match="Categorical categories cannot be null"):
|
||||
Categorical.from_codes([0, 1, 2], categories=["a", "b", np.nan])
|
||||
|
||||
def test_from_codes_too_negative(self):
|
||||
dtype = CategoricalDtype(categories=["a", "b", "c"])
|
||||
msg = r"codes need to be between -1 and len\(categories\)-1"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical.from_codes([-2, 1, 2], categories=dtype.categories)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical.from_codes([-2, 1, 2], dtype=dtype)
|
||||
|
||||
def test_from_codes(self):
|
||||
dtype = CategoricalDtype(categories=["a", "b", "c"])
|
||||
exp = Categorical(["a", "b", "c"], ordered=False)
|
||||
res = Categorical.from_codes([0, 1, 2], categories=dtype.categories)
|
||||
tm.assert_categorical_equal(exp, res)
|
||||
|
||||
res = Categorical.from_codes([0, 1, 2], dtype=dtype)
|
||||
tm.assert_categorical_equal(exp, res)
|
||||
|
||||
@pytest.mark.parametrize("klass", [Categorical, CategoricalIndex])
|
||||
def test_from_codes_with_categorical_categories(self, klass):
|
||||
# GH17884
|
||||
expected = Categorical(["a", "b"], categories=["a", "b", "c"])
|
||||
|
||||
result = Categorical.from_codes([0, 1], categories=klass(["a", "b", "c"]))
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("klass", [Categorical, CategoricalIndex])
|
||||
def test_from_codes_with_non_unique_categorical_categories(self, klass):
|
||||
with pytest.raises(ValueError, match="Categorical categories must be unique"):
|
||||
Categorical.from_codes([0, 1], klass(["a", "b", "a"]))
|
||||
|
||||
def test_from_codes_with_nan_code(self):
|
||||
# GH21767
|
||||
codes = [1, 2, np.nan]
|
||||
dtype = CategoricalDtype(categories=["a", "b", "c"])
|
||||
with pytest.raises(ValueError, match="codes need to be array-like integers"):
|
||||
Categorical.from_codes(codes, categories=dtype.categories)
|
||||
with pytest.raises(ValueError, match="codes need to be array-like integers"):
|
||||
Categorical.from_codes(codes, dtype=dtype)
|
||||
|
||||
@pytest.mark.parametrize("codes", [[1.0, 2.0, 0], [1.1, 2.0, 0]])
|
||||
def test_from_codes_with_float(self, codes):
|
||||
# GH21767
|
||||
# float codes should raise even if values are equal to integers
|
||||
dtype = CategoricalDtype(categories=["a", "b", "c"])
|
||||
|
||||
msg = "codes need to be array-like integers"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical.from_codes(codes, dtype.categories)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical.from_codes(codes, dtype=dtype)
|
||||
|
||||
def test_from_codes_with_dtype_raises(self):
|
||||
msg = "Cannot specify"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical.from_codes(
|
||||
[0, 1], categories=["a", "b"], dtype=CategoricalDtype(["a", "b"])
|
||||
)
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical.from_codes(
|
||||
[0, 1], ordered=True, dtype=CategoricalDtype(["a", "b"])
|
||||
)
|
||||
|
||||
def test_from_codes_neither(self):
|
||||
msg = "Both were None"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical.from_codes([0, 1])
|
||||
|
||||
def test_from_codes_with_nullable_int(self):
|
||||
codes = pd.array([0, 1], dtype="Int64")
|
||||
categories = ["a", "b"]
|
||||
|
||||
result = Categorical.from_codes(codes, categories=categories)
|
||||
expected = Categorical.from_codes(codes.to_numpy(int), categories=categories)
|
||||
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_from_codes_with_nullable_int_na_raises(self):
|
||||
codes = pd.array([0, None], dtype="Int64")
|
||||
categories = ["a", "b"]
|
||||
|
||||
msg = "codes cannot contain NA values"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Categorical.from_codes(codes, categories=categories)
|
||||
|
||||
@pytest.mark.parametrize("dtype", [None, "category"])
|
||||
def test_from_inferred_categories(self, dtype):
|
||||
cats = ["a", "b"]
|
||||
codes = np.array([0, 0, 1, 1], dtype="i8")
|
||||
result = Categorical._from_inferred_categories(cats, codes, dtype)
|
||||
expected = Categorical.from_codes(codes, cats)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("dtype", [None, "category"])
|
||||
def test_from_inferred_categories_sorts(self, dtype):
|
||||
cats = ["b", "a"]
|
||||
codes = np.array([0, 1, 1, 1], dtype="i8")
|
||||
result = Categorical._from_inferred_categories(cats, codes, dtype)
|
||||
expected = Categorical.from_codes([1, 0, 0, 0], ["a", "b"])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_from_inferred_categories_dtype(self):
|
||||
cats = ["a", "b", "d"]
|
||||
codes = np.array([0, 1, 0, 2], dtype="i8")
|
||||
dtype = CategoricalDtype(["c", "b", "a"], ordered=True)
|
||||
result = Categorical._from_inferred_categories(cats, codes, dtype)
|
||||
expected = Categorical(
|
||||
["a", "b", "a", "d"], categories=["c", "b", "a"], ordered=True
|
||||
)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_from_inferred_categories_coerces(self):
|
||||
cats = ["1", "2", "bad"]
|
||||
codes = np.array([0, 0, 1, 2], dtype="i8")
|
||||
dtype = CategoricalDtype([1, 2])
|
||||
result = Categorical._from_inferred_categories(cats, codes, dtype)
|
||||
expected = Categorical([1, 1, 2, np.nan])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("ordered", [None, True, False])
|
||||
def test_construction_with_ordered(self, ordered):
|
||||
# GH 9347, 9190
|
||||
cat = Categorical([0, 1, 2], ordered=ordered)
|
||||
assert cat.ordered == bool(ordered)
|
||||
|
||||
@pytest.mark.xfail(reason="Imaginary values not supported in Categorical")
|
||||
def test_constructor_imaginary(self):
|
||||
values = [1, 2, 3 + 1j]
|
||||
c1 = Categorical(values)
|
||||
tm.assert_index_equal(c1.categories, Index(values))
|
||||
tm.assert_numpy_array_equal(np.array(c1), np.array(values))
|
||||
|
||||
def test_constructor_string_and_tuples(self):
|
||||
# GH 21416
|
||||
c = Categorical(np.array(["c", ("a", "b"), ("b", "a"), "c"], dtype=object))
|
||||
expected_index = Index([("a", "b"), ("b", "a"), "c"])
|
||||
assert c.categories.equals(expected_index)
|
||||
|
||||
def test_interval(self):
|
||||
idx = pd.interval_range(0, 10, periods=10)
|
||||
cat = Categorical(idx, categories=idx)
|
||||
expected_codes = np.arange(10, dtype="int8")
|
||||
tm.assert_numpy_array_equal(cat.codes, expected_codes)
|
||||
tm.assert_index_equal(cat.categories, idx)
|
||||
|
||||
# infer categories
|
||||
cat = Categorical(idx)
|
||||
tm.assert_numpy_array_equal(cat.codes, expected_codes)
|
||||
tm.assert_index_equal(cat.categories, idx)
|
||||
|
||||
# list values
|
||||
cat = Categorical(list(idx))
|
||||
tm.assert_numpy_array_equal(cat.codes, expected_codes)
|
||||
tm.assert_index_equal(cat.categories, idx)
|
||||
|
||||
# list values, categories
|
||||
cat = Categorical(list(idx), categories=list(idx))
|
||||
tm.assert_numpy_array_equal(cat.codes, expected_codes)
|
||||
tm.assert_index_equal(cat.categories, idx)
|
||||
|
||||
# shuffled
|
||||
values = idx.take([1, 2, 0])
|
||||
cat = Categorical(values, categories=idx)
|
||||
tm.assert_numpy_array_equal(cat.codes, np.array([1, 2, 0], dtype="int8"))
|
||||
tm.assert_index_equal(cat.categories, idx)
|
||||
|
||||
# extra
|
||||
values = pd.interval_range(8, 11, periods=3)
|
||||
cat = Categorical(values, categories=idx)
|
||||
expected_codes = np.array([8, 9, -1], dtype="int8")
|
||||
tm.assert_numpy_array_equal(cat.codes, expected_codes)
|
||||
tm.assert_index_equal(cat.categories, idx)
|
||||
|
||||
# overlapping
|
||||
idx = IntervalIndex([Interval(0, 2), Interval(0, 1)])
|
||||
cat = Categorical(idx, categories=idx)
|
||||
expected_codes = np.array([0, 1], dtype="int8")
|
||||
tm.assert_numpy_array_equal(cat.codes, expected_codes)
|
||||
tm.assert_index_equal(cat.categories, idx)
|
||||
|
||||
def test_categorical_extension_array_nullable(self, nulls_fixture):
|
||||
# GH:
|
||||
arr = pd.arrays.StringArray._from_sequence([nulls_fixture] * 2)
|
||||
result = Categorical(arr)
|
||||
assert arr.dtype == result.categories.dtype
|
||||
expected = Categorical(Series([pd.NA, pd.NA], dtype=arr.dtype))
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_from_sequence_copy(self):
|
||||
cat = Categorical(np.arange(5).repeat(2))
|
||||
result = Categorical._from_sequence(cat, dtype=None, copy=False)
|
||||
|
||||
# more generally, we'd be OK with a view
|
||||
assert result._codes is cat._codes
|
||||
|
||||
result = Categorical._from_sequence(cat, dtype=None, copy=True)
|
||||
|
||||
assert not tm.shares_memory(result, cat)
|
||||
|
||||
@pytest.mark.xfail(
|
||||
not IS64 or is_platform_windows(),
|
||||
reason="Incorrectly raising in ensure_datetime64ns",
|
||||
)
|
||||
def test_constructor_datetime64_non_nano(self):
|
||||
categories = np.arange(10).view("M8[D]")
|
||||
values = categories[::2].copy()
|
||||
|
||||
cat = Categorical(values, categories=categories)
|
||||
assert (cat == values).all()
|
@ -0,0 +1,136 @@
|
||||
import pytest
|
||||
|
||||
from pandas.core.dtypes.dtypes import CategoricalDtype
|
||||
|
||||
from pandas import (
|
||||
Categorical,
|
||||
CategoricalIndex,
|
||||
Index,
|
||||
Series,
|
||||
Timestamp,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestCategoricalDtypes:
|
||||
def test_is_dtype_equal_deprecated(self):
|
||||
# GH#37545
|
||||
c1 = Categorical(list("aabca"), categories=list("abc"), ordered=False)
|
||||
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
c1.is_dtype_equal(c1)
|
||||
|
||||
def test_categories_match_up_to_permutation(self):
|
||||
|
||||
# test dtype comparisons between cats
|
||||
|
||||
c1 = Categorical(list("aabca"), categories=list("abc"), ordered=False)
|
||||
c2 = Categorical(list("aabca"), categories=list("cab"), ordered=False)
|
||||
c3 = Categorical(list("aabca"), categories=list("cab"), ordered=True)
|
||||
assert c1._categories_match_up_to_permutation(c1)
|
||||
assert c2._categories_match_up_to_permutation(c2)
|
||||
assert c3._categories_match_up_to_permutation(c3)
|
||||
assert c1._categories_match_up_to_permutation(c2)
|
||||
assert not c1._categories_match_up_to_permutation(c3)
|
||||
assert not c1._categories_match_up_to_permutation(Index(list("aabca")))
|
||||
assert not c1._categories_match_up_to_permutation(c1.astype(object))
|
||||
assert c1._categories_match_up_to_permutation(CategoricalIndex(c1))
|
||||
assert c1._categories_match_up_to_permutation(
|
||||
CategoricalIndex(c1, categories=list("cab"))
|
||||
)
|
||||
assert not c1._categories_match_up_to_permutation(
|
||||
CategoricalIndex(c1, ordered=True)
|
||||
)
|
||||
|
||||
# GH 16659
|
||||
s1 = Series(c1)
|
||||
s2 = Series(c2)
|
||||
s3 = Series(c3)
|
||||
assert c1._categories_match_up_to_permutation(s1)
|
||||
assert c2._categories_match_up_to_permutation(s2)
|
||||
assert c3._categories_match_up_to_permutation(s3)
|
||||
assert c1._categories_match_up_to_permutation(s2)
|
||||
assert not c1._categories_match_up_to_permutation(s3)
|
||||
assert not c1._categories_match_up_to_permutation(s1.astype(object))
|
||||
|
||||
def test_set_dtype_same(self):
|
||||
c = Categorical(["a", "b", "c"])
|
||||
result = c._set_dtype(CategoricalDtype(["a", "b", "c"]))
|
||||
tm.assert_categorical_equal(result, c)
|
||||
|
||||
def test_set_dtype_new_categories(self):
|
||||
c = Categorical(["a", "b", "c"])
|
||||
result = c._set_dtype(CategoricalDtype(list("abcd")))
|
||||
tm.assert_numpy_array_equal(result.codes, c.codes)
|
||||
tm.assert_index_equal(result.dtype.categories, Index(list("abcd")))
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"values, categories, new_categories",
|
||||
[
|
||||
# No NaNs, same cats, same order
|
||||
(["a", "b", "a"], ["a", "b"], ["a", "b"]),
|
||||
# No NaNs, same cats, different order
|
||||
(["a", "b", "a"], ["a", "b"], ["b", "a"]),
|
||||
# Same, unsorted
|
||||
(["b", "a", "a"], ["a", "b"], ["a", "b"]),
|
||||
# No NaNs, same cats, different order
|
||||
(["b", "a", "a"], ["a", "b"], ["b", "a"]),
|
||||
# NaNs
|
||||
(["a", "b", "c"], ["a", "b"], ["a", "b"]),
|
||||
(["a", "b", "c"], ["a", "b"], ["b", "a"]),
|
||||
(["b", "a", "c"], ["a", "b"], ["a", "b"]),
|
||||
(["b", "a", "c"], ["a", "b"], ["a", "b"]),
|
||||
# Introduce NaNs
|
||||
(["a", "b", "c"], ["a", "b"], ["a"]),
|
||||
(["a", "b", "c"], ["a", "b"], ["b"]),
|
||||
(["b", "a", "c"], ["a", "b"], ["a"]),
|
||||
(["b", "a", "c"], ["a", "b"], ["a"]),
|
||||
# No overlap
|
||||
(["a", "b", "c"], ["a", "b"], ["d", "e"]),
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize("ordered", [True, False])
|
||||
def test_set_dtype_many(self, values, categories, new_categories, ordered):
|
||||
c = Categorical(values, categories)
|
||||
expected = Categorical(values, new_categories, ordered)
|
||||
result = c._set_dtype(expected.dtype)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_set_dtype_no_overlap(self):
|
||||
c = Categorical(["a", "b", "c"], ["d", "e"])
|
||||
result = c._set_dtype(CategoricalDtype(["a", "b"]))
|
||||
expected = Categorical([None, None, None], categories=["a", "b"])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_codes_dtypes(self):
|
||||
|
||||
# GH 8453
|
||||
result = Categorical(["foo", "bar", "baz"])
|
||||
assert result.codes.dtype == "int8"
|
||||
|
||||
result = Categorical([f"foo{i:05d}" for i in range(400)])
|
||||
assert result.codes.dtype == "int16"
|
||||
|
||||
result = Categorical([f"foo{i:05d}" for i in range(40000)])
|
||||
assert result.codes.dtype == "int32"
|
||||
|
||||
# adding cats
|
||||
result = Categorical(["foo", "bar", "baz"])
|
||||
assert result.codes.dtype == "int8"
|
||||
result = result.add_categories([f"foo{i:05d}" for i in range(400)])
|
||||
assert result.codes.dtype == "int16"
|
||||
|
||||
# removing cats
|
||||
result = result.remove_categories([f"foo{i:05d}" for i in range(300)])
|
||||
assert result.codes.dtype == "int8"
|
||||
|
||||
def test_iter_python_types(self):
|
||||
# GH-19909
|
||||
cat = Categorical([1, 2])
|
||||
assert isinstance(list(cat)[0], int)
|
||||
assert isinstance(cat.tolist()[0], int)
|
||||
|
||||
def test_iter_python_types_datetime(self):
|
||||
cat = Categorical([Timestamp("2017-01-01"), Timestamp("2017-01-02")])
|
||||
assert isinstance(list(cat)[0], Timestamp)
|
||||
assert isinstance(cat.tolist()[0], Timestamp)
|
@ -0,0 +1,377 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
Categorical,
|
||||
CategoricalIndex,
|
||||
Index,
|
||||
Interval,
|
||||
IntervalIndex,
|
||||
PeriodIndex,
|
||||
Series,
|
||||
Timedelta,
|
||||
Timestamp,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
import pandas.core.common as com
|
||||
from pandas.tests.arrays.categorical.common import TestCategorical
|
||||
|
||||
|
||||
class TestCategoricalIndexingWithFactor(TestCategorical):
|
||||
def test_getitem(self):
|
||||
assert self.factor[0] == "a"
|
||||
assert self.factor[-1] == "c"
|
||||
|
||||
subf = self.factor[[0, 1, 2]]
|
||||
tm.assert_numpy_array_equal(subf._codes, np.array([0, 1, 1], dtype=np.int8))
|
||||
|
||||
subf = self.factor[np.asarray(self.factor) == "c"]
|
||||
tm.assert_numpy_array_equal(subf._codes, np.array([2, 2, 2], dtype=np.int8))
|
||||
|
||||
def test_setitem(self):
|
||||
|
||||
# int/positional
|
||||
c = self.factor.copy()
|
||||
c[0] = "b"
|
||||
assert c[0] == "b"
|
||||
c[-1] = "a"
|
||||
assert c[-1] == "a"
|
||||
|
||||
# boolean
|
||||
c = self.factor.copy()
|
||||
indexer = np.zeros(len(c), dtype="bool")
|
||||
indexer[0] = True
|
||||
indexer[-1] = True
|
||||
c[indexer] = "c"
|
||||
expected = Categorical(["c", "b", "b", "a", "a", "c", "c", "c"], ordered=True)
|
||||
|
||||
tm.assert_categorical_equal(c, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"other",
|
||||
[Categorical(["b", "a"]), Categorical(["b", "a"], categories=["b", "a"])],
|
||||
)
|
||||
def test_setitem_same_but_unordered(self, other):
|
||||
# GH-24142
|
||||
target = Categorical(["a", "b"], categories=["a", "b"])
|
||||
mask = np.array([True, False])
|
||||
target[mask] = other[mask]
|
||||
expected = Categorical(["b", "b"], categories=["a", "b"])
|
||||
tm.assert_categorical_equal(target, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"other",
|
||||
[
|
||||
Categorical(["b", "a"], categories=["b", "a", "c"]),
|
||||
Categorical(["b", "a"], categories=["a", "b", "c"]),
|
||||
Categorical(["a", "a"], categories=["a"]),
|
||||
Categorical(["b", "b"], categories=["b"]),
|
||||
],
|
||||
)
|
||||
def test_setitem_different_unordered_raises(self, other):
|
||||
# GH-24142
|
||||
target = Categorical(["a", "b"], categories=["a", "b"])
|
||||
mask = np.array([True, False])
|
||||
msg = "Cannot set a Categorical with another, without identical categories"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
target[mask] = other[mask]
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"other",
|
||||
[
|
||||
Categorical(["b", "a"]),
|
||||
Categorical(["b", "a"], categories=["b", "a"], ordered=True),
|
||||
Categorical(["b", "a"], categories=["a", "b", "c"], ordered=True),
|
||||
],
|
||||
)
|
||||
def test_setitem_same_ordered_raises(self, other):
|
||||
# Gh-24142
|
||||
target = Categorical(["a", "b"], categories=["a", "b"], ordered=True)
|
||||
mask = np.array([True, False])
|
||||
msg = "Cannot set a Categorical with another, without identical categories"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
target[mask] = other[mask]
|
||||
|
||||
def test_setitem_tuple(self):
|
||||
# GH#20439
|
||||
cat = Categorical([(0, 1), (0, 2), (0, 1)])
|
||||
|
||||
# This should not raise
|
||||
cat[1] = cat[0]
|
||||
assert cat[1] == (0, 1)
|
||||
|
||||
def test_setitem_listlike(self):
|
||||
|
||||
# GH#9469
|
||||
# properly coerce the input indexers
|
||||
np.random.seed(1)
|
||||
cat = Categorical(
|
||||
np.random.randint(0, 5, size=150000).astype(np.int8)
|
||||
).add_categories([-1000])
|
||||
indexer = np.array([100000]).astype(np.int64)
|
||||
cat[indexer] = -1000
|
||||
|
||||
# we are asserting the code result here
|
||||
# which maps to the -1000 category
|
||||
result = cat.codes[np.array([100000]).astype(np.int64)]
|
||||
tm.assert_numpy_array_equal(result, np.array([5], dtype="int8"))
|
||||
|
||||
|
||||
class TestCategoricalIndexing:
|
||||
def test_getitem_slice(self):
|
||||
cat = Categorical(["a", "b", "c", "d", "a", "b", "c"])
|
||||
sliced = cat[3]
|
||||
assert sliced == "d"
|
||||
|
||||
sliced = cat[3:5]
|
||||
expected = Categorical(["d", "a"], categories=["a", "b", "c", "d"])
|
||||
tm.assert_categorical_equal(sliced, expected)
|
||||
|
||||
def test_getitem_listlike(self):
|
||||
|
||||
# GH 9469
|
||||
# properly coerce the input indexers
|
||||
np.random.seed(1)
|
||||
c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8))
|
||||
result = c.codes[np.array([100000]).astype(np.int64)]
|
||||
expected = c[np.array([100000]).astype(np.int64)].codes
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
def test_periodindex(self):
|
||||
idx1 = PeriodIndex(
|
||||
["2014-01", "2014-01", "2014-02", "2014-02", "2014-03", "2014-03"], freq="M"
|
||||
)
|
||||
|
||||
cat1 = Categorical(idx1)
|
||||
str(cat1)
|
||||
exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.int8)
|
||||
exp_idx = PeriodIndex(["2014-01", "2014-02", "2014-03"], freq="M")
|
||||
tm.assert_numpy_array_equal(cat1._codes, exp_arr)
|
||||
tm.assert_index_equal(cat1.categories, exp_idx)
|
||||
|
||||
idx2 = PeriodIndex(
|
||||
["2014-03", "2014-03", "2014-02", "2014-01", "2014-03", "2014-01"], freq="M"
|
||||
)
|
||||
cat2 = Categorical(idx2, ordered=True)
|
||||
str(cat2)
|
||||
exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype=np.int8)
|
||||
exp_idx2 = PeriodIndex(["2014-01", "2014-02", "2014-03"], freq="M")
|
||||
tm.assert_numpy_array_equal(cat2._codes, exp_arr)
|
||||
tm.assert_index_equal(cat2.categories, exp_idx2)
|
||||
|
||||
idx3 = PeriodIndex(
|
||||
[
|
||||
"2013-12",
|
||||
"2013-11",
|
||||
"2013-10",
|
||||
"2013-09",
|
||||
"2013-08",
|
||||
"2013-07",
|
||||
"2013-05",
|
||||
],
|
||||
freq="M",
|
||||
)
|
||||
cat3 = Categorical(idx3, ordered=True)
|
||||
exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype=np.int8)
|
||||
exp_idx = PeriodIndex(
|
||||
[
|
||||
"2013-05",
|
||||
"2013-07",
|
||||
"2013-08",
|
||||
"2013-09",
|
||||
"2013-10",
|
||||
"2013-11",
|
||||
"2013-12",
|
||||
],
|
||||
freq="M",
|
||||
)
|
||||
tm.assert_numpy_array_equal(cat3._codes, exp_arr)
|
||||
tm.assert_index_equal(cat3.categories, exp_idx)
|
||||
|
||||
def test_categories_assignments(self):
|
||||
cat = Categorical(["a", "b", "c", "a"])
|
||||
exp = np.array([1, 2, 3, 1], dtype=np.int64)
|
||||
cat.categories = [1, 2, 3]
|
||||
tm.assert_numpy_array_equal(cat.__array__(), exp)
|
||||
tm.assert_index_equal(cat.categories, Index([1, 2, 3]))
|
||||
|
||||
@pytest.mark.parametrize("new_categories", [[1, 2, 3, 4], [1, 2]])
|
||||
def test_categories_assignments_wrong_length_raises(self, new_categories):
|
||||
cat = Categorical(["a", "b", "c", "a"])
|
||||
msg = (
|
||||
"new categories need to have the same number of items "
|
||||
"as the old categories!"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cat.categories = new_categories
|
||||
|
||||
# Combinations of sorted/unique:
|
||||
@pytest.mark.parametrize(
|
||||
"idx_values", [[1, 2, 3, 4], [1, 3, 2, 4], [1, 3, 3, 4], [1, 2, 2, 4]]
|
||||
)
|
||||
# Combinations of missing/unique
|
||||
@pytest.mark.parametrize("key_values", [[1, 2], [1, 5], [1, 1], [5, 5]])
|
||||
@pytest.mark.parametrize("key_class", [Categorical, CategoricalIndex])
|
||||
@pytest.mark.parametrize("dtype", [None, "category", "key"])
|
||||
def test_get_indexer_non_unique(self, idx_values, key_values, key_class, dtype):
|
||||
# GH 21448
|
||||
key = key_class(key_values, categories=range(1, 5))
|
||||
|
||||
if dtype == "key":
|
||||
dtype = key.dtype
|
||||
|
||||
# Test for flat index and CategoricalIndex with same/different cats:
|
||||
idx = Index(idx_values, dtype=dtype)
|
||||
expected, exp_miss = idx.get_indexer_non_unique(key_values)
|
||||
result, res_miss = idx.get_indexer_non_unique(key)
|
||||
|
||||
tm.assert_numpy_array_equal(expected, result)
|
||||
tm.assert_numpy_array_equal(exp_miss, res_miss)
|
||||
|
||||
exp_unique = idx.unique().get_indexer(key_values)
|
||||
res_unique = idx.unique().get_indexer(key)
|
||||
tm.assert_numpy_array_equal(res_unique, exp_unique)
|
||||
|
||||
def test_where_unobserved_nan(self):
|
||||
ser = Series(Categorical(["a", "b"]))
|
||||
result = ser.where([True, False])
|
||||
expected = Series(Categorical(["a", None], categories=["a", "b"]))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# all NA
|
||||
ser = Series(Categorical(["a", "b"]))
|
||||
result = ser.where([False, False])
|
||||
expected = Series(Categorical([None, None], categories=["a", "b"]))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_where_unobserved_categories(self):
|
||||
ser = Series(Categorical(["a", "b", "c"], categories=["d", "c", "b", "a"]))
|
||||
result = ser.where([True, True, False], other="b")
|
||||
expected = Series(Categorical(["a", "b", "b"], categories=ser.cat.categories))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_where_other_categorical(self):
|
||||
ser = Series(Categorical(["a", "b", "c"], categories=["d", "c", "b", "a"]))
|
||||
other = Categorical(["b", "c", "a"], categories=["a", "c", "b", "d"])
|
||||
result = ser.where([True, False, True], other)
|
||||
expected = Series(Categorical(["a", "c", "c"], dtype=ser.dtype))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_where_new_category_raises(self):
|
||||
ser = Series(Categorical(["a", "b", "c"]))
|
||||
msg = "Cannot setitem on a Categorical with a new category"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
ser.where([True, False, True], "d")
|
||||
|
||||
def test_where_ordered_differs_rasies(self):
|
||||
ser = Series(
|
||||
Categorical(["a", "b", "c"], categories=["d", "c", "b", "a"], ordered=True)
|
||||
)
|
||||
other = Categorical(
|
||||
["b", "c", "a"], categories=["a", "c", "b", "d"], ordered=True
|
||||
)
|
||||
with pytest.raises(TypeError, match="without identical categories"):
|
||||
ser.where([True, False, True], other)
|
||||
|
||||
|
||||
class TestContains:
|
||||
def test_contains(self):
|
||||
# GH#21508
|
||||
cat = Categorical(list("aabbca"), categories=list("cab"))
|
||||
|
||||
assert "b" in cat
|
||||
assert "z" not in cat
|
||||
assert np.nan not in cat
|
||||
with pytest.raises(TypeError, match="unhashable type: 'list'"):
|
||||
assert [1] in cat
|
||||
|
||||
# assert codes NOT in index
|
||||
assert 0 not in cat
|
||||
assert 1 not in cat
|
||||
|
||||
cat = Categorical(list("aabbca") + [np.nan], categories=list("cab"))
|
||||
assert np.nan in cat
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"item, expected",
|
||||
[
|
||||
(Interval(0, 1), True),
|
||||
(1.5, True),
|
||||
(Interval(0.5, 1.5), False),
|
||||
("a", False),
|
||||
(Timestamp(1), False),
|
||||
(Timedelta(1), False),
|
||||
],
|
||||
ids=str,
|
||||
)
|
||||
def test_contains_interval(self, item, expected):
|
||||
# GH#23705
|
||||
cat = Categorical(IntervalIndex.from_breaks(range(3)))
|
||||
result = item in cat
|
||||
assert result is expected
|
||||
|
||||
def test_contains_list(self):
|
||||
# GH#21729
|
||||
cat = Categorical([1, 2, 3])
|
||||
|
||||
assert "a" not in cat
|
||||
|
||||
with pytest.raises(TypeError, match="unhashable type"):
|
||||
["a"] in cat
|
||||
|
||||
with pytest.raises(TypeError, match="unhashable type"):
|
||||
["a", "b"] in cat
|
||||
|
||||
|
||||
@pytest.mark.parametrize("index", [True, False])
|
||||
def test_mask_with_boolean(index):
|
||||
ser = Series(range(3))
|
||||
idx = Categorical([True, False, True])
|
||||
if index:
|
||||
idx = CategoricalIndex(idx)
|
||||
|
||||
assert com.is_bool_indexer(idx)
|
||||
result = ser[idx]
|
||||
expected = ser[idx.astype("object")]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("index", [True, False])
|
||||
def test_mask_with_boolean_na_treated_as_false(index):
|
||||
# https://github.com/pandas-dev/pandas/issues/31503
|
||||
ser = Series(range(3))
|
||||
idx = Categorical([True, False, None])
|
||||
if index:
|
||||
idx = CategoricalIndex(idx)
|
||||
|
||||
result = ser[idx]
|
||||
expected = ser[idx.fillna(False)]
|
||||
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def non_coercible_categorical(monkeypatch):
|
||||
"""
|
||||
Monkeypatch Categorical.__array__ to ensure no implicit conversion.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
When Categorical.__array__ is called.
|
||||
"""
|
||||
# TODO(Categorical): identify other places where this may be
|
||||
# useful and move to a conftest.py
|
||||
def array(self, dtype=None):
|
||||
raise ValueError("I cannot be converted.")
|
||||
|
||||
with monkeypatch.context() as m:
|
||||
m.setattr(Categorical, "__array__", array)
|
||||
yield
|
||||
|
||||
|
||||
def test_series_at(non_coercible_categorical):
|
||||
arr = Categorical(["a", "b", "c"])
|
||||
ser = Series(arr)
|
||||
result = ser.at[0]
|
||||
assert result == "a"
|
@ -0,0 +1,213 @@
|
||||
import collections
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.core.dtypes.dtypes import CategoricalDtype
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
Categorical,
|
||||
DataFrame,
|
||||
Index,
|
||||
Series,
|
||||
isna,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestCategoricalMissing:
|
||||
def test_isna(self):
|
||||
exp = np.array([False, False, True])
|
||||
cat = Categorical(["a", "b", np.nan])
|
||||
res = cat.isna()
|
||||
|
||||
tm.assert_numpy_array_equal(res, exp)
|
||||
|
||||
def test_na_flags_int_categories(self):
|
||||
# #1457
|
||||
|
||||
categories = list(range(10))
|
||||
labels = np.random.randint(0, 10, 20)
|
||||
labels[::5] = -1
|
||||
|
||||
cat = Categorical(labels, categories, fastpath=True)
|
||||
repr(cat)
|
||||
|
||||
tm.assert_numpy_array_equal(isna(cat), labels == -1)
|
||||
|
||||
def test_nan_handling(self):
|
||||
|
||||
# Nans are represented as -1 in codes
|
||||
c = Categorical(["a", "b", np.nan, "a"])
|
||||
tm.assert_index_equal(c.categories, Index(["a", "b"]))
|
||||
tm.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0], dtype=np.int8))
|
||||
c[1] = np.nan
|
||||
tm.assert_index_equal(c.categories, Index(["a", "b"]))
|
||||
tm.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0], dtype=np.int8))
|
||||
|
||||
# Adding nan to categories should make assigned nan point to the
|
||||
# category!
|
||||
c = Categorical(["a", "b", np.nan, "a"])
|
||||
tm.assert_index_equal(c.categories, Index(["a", "b"]))
|
||||
tm.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0], dtype=np.int8))
|
||||
|
||||
def test_set_dtype_nans(self):
|
||||
c = Categorical(["a", "b", np.nan])
|
||||
result = c._set_dtype(CategoricalDtype(["a", "c"]))
|
||||
tm.assert_numpy_array_equal(result.codes, np.array([0, -1, -1], dtype="int8"))
|
||||
|
||||
def test_set_item_nan(self):
|
||||
cat = Categorical([1, 2, 3])
|
||||
cat[1] = np.nan
|
||||
|
||||
exp = Categorical([1, np.nan, 3], categories=[1, 2, 3])
|
||||
tm.assert_categorical_equal(cat, exp)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"fillna_kwargs, msg",
|
||||
[
|
||||
(
|
||||
{"value": 1, "method": "ffill"},
|
||||
"Cannot specify both 'value' and 'method'.",
|
||||
),
|
||||
({}, "Must specify a fill 'value' or 'method'."),
|
||||
({"method": "bad"}, "Invalid fill method. Expecting .* bad"),
|
||||
(
|
||||
{"value": Series([1, 2, 3, 4, "a"])},
|
||||
"Cannot setitem on a Categorical with a new category",
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_fillna_raises(self, fillna_kwargs, msg):
|
||||
# https://github.com/pandas-dev/pandas/issues/19682
|
||||
# https://github.com/pandas-dev/pandas/issues/13628
|
||||
cat = Categorical([1, 2, 3, None, None])
|
||||
|
||||
if len(fillna_kwargs) == 1 and "value" in fillna_kwargs:
|
||||
err = TypeError
|
||||
else:
|
||||
err = ValueError
|
||||
|
||||
with pytest.raises(err, match=msg):
|
||||
cat.fillna(**fillna_kwargs)
|
||||
|
||||
@pytest.mark.parametrize("named", [True, False])
|
||||
def test_fillna_iterable_category(self, named):
|
||||
# https://github.com/pandas-dev/pandas/issues/21097
|
||||
if named:
|
||||
Point = collections.namedtuple("Point", "x y")
|
||||
else:
|
||||
Point = lambda *args: args # tuple
|
||||
cat = Categorical(np.array([Point(0, 0), Point(0, 1), None], dtype=object))
|
||||
result = cat.fillna(Point(0, 0))
|
||||
expected = Categorical([Point(0, 0), Point(0, 1), Point(0, 0)])
|
||||
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
# Case where the Point is not among our categories; we want ValueError,
|
||||
# not NotImplementedError GH#41914
|
||||
cat = Categorical(np.array([Point(1, 0), Point(0, 1), None], dtype=object))
|
||||
msg = "Cannot setitem on a Categorical with a new category"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
cat.fillna(Point(0, 0))
|
||||
|
||||
def test_fillna_array(self):
|
||||
# accept Categorical or ndarray value if it holds appropriate values
|
||||
cat = Categorical(["A", "B", "C", None, None])
|
||||
|
||||
other = cat.fillna("C")
|
||||
result = cat.fillna(other)
|
||||
tm.assert_categorical_equal(result, other)
|
||||
assert isna(cat[-1]) # didn't modify original inplace
|
||||
|
||||
other = np.array(["A", "B", "C", "B", "A"])
|
||||
result = cat.fillna(other)
|
||||
expected = Categorical(["A", "B", "C", "B", "A"], dtype=cat.dtype)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
assert isna(cat[-1]) # didn't modify original inplace
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"values, expected",
|
||||
[
|
||||
([1, 2, 3], np.array([False, False, False])),
|
||||
([1, 2, np.nan], np.array([False, False, True])),
|
||||
([1, 2, np.inf], np.array([False, False, True])),
|
||||
([1, 2, pd.NA], np.array([False, False, True])),
|
||||
],
|
||||
)
|
||||
def test_use_inf_as_na(self, values, expected):
|
||||
# https://github.com/pandas-dev/pandas/issues/33594
|
||||
with pd.option_context("mode.use_inf_as_na", True):
|
||||
cat = Categorical(values)
|
||||
result = cat.isna()
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = Series(cat).isna()
|
||||
expected = Series(expected)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = DataFrame(cat).isna()
|
||||
expected = DataFrame(expected)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"values, expected",
|
||||
[
|
||||
([1, 2, 3], np.array([False, False, False])),
|
||||
([1, 2, np.nan], np.array([False, False, True])),
|
||||
([1, 2, np.inf], np.array([False, False, True])),
|
||||
([1, 2, pd.NA], np.array([False, False, True])),
|
||||
],
|
||||
)
|
||||
def test_use_inf_as_na_outside_context(self, values, expected):
|
||||
# https://github.com/pandas-dev/pandas/issues/33594
|
||||
# Using isna directly for Categorical will fail in general here
|
||||
cat = Categorical(values)
|
||||
|
||||
with pd.option_context("mode.use_inf_as_na", True):
|
||||
result = isna(cat)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = isna(Series(cat))
|
||||
expected = Series(expected)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = isna(DataFrame(cat))
|
||||
expected = DataFrame(expected)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"a1, a2, categories",
|
||||
[
|
||||
(["a", "b", "c"], [np.nan, "a", "b"], ["a", "b", "c"]),
|
||||
([1, 2, 3], [np.nan, 1, 2], [1, 2, 3]),
|
||||
],
|
||||
)
|
||||
def test_compare_categorical_with_missing(self, a1, a2, categories):
|
||||
# GH 28384
|
||||
cat_type = CategoricalDtype(categories)
|
||||
|
||||
# !=
|
||||
result = Series(a1, dtype=cat_type) != Series(a2, dtype=cat_type)
|
||||
expected = Series(a1) != Series(a2)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# ==
|
||||
result = Series(a1, dtype=cat_type) == Series(a2, dtype=cat_type)
|
||||
expected = Series(a1) == Series(a2)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"na_value, dtype",
|
||||
[
|
||||
(pd.NaT, "datetime64[ns]"),
|
||||
(None, "float64"),
|
||||
(np.nan, "float64"),
|
||||
(pd.NA, "float64"),
|
||||
],
|
||||
)
|
||||
def test_categorical_only_missing_values_no_cast(self, na_value, dtype):
|
||||
# GH#44900
|
||||
result = Categorical([na_value, na_value])
|
||||
tm.assert_index_equal(result.categories, Index([], dtype=dtype))
|
@ -0,0 +1,399 @@
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
Categorical,
|
||||
DataFrame,
|
||||
Series,
|
||||
date_range,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.tests.arrays.categorical.common import TestCategorical
|
||||
|
||||
|
||||
class TestCategoricalOpsWithFactor(TestCategorical):
|
||||
def test_categories_none_comparisons(self):
|
||||
factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"], ordered=True)
|
||||
tm.assert_categorical_equal(factor, self.factor)
|
||||
|
||||
def test_comparisons(self):
|
||||
result = self.factor[self.factor == "a"]
|
||||
expected = self.factor[np.asarray(self.factor) == "a"]
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
result = self.factor[self.factor != "a"]
|
||||
expected = self.factor[np.asarray(self.factor) != "a"]
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
result = self.factor[self.factor < "c"]
|
||||
expected = self.factor[np.asarray(self.factor) < "c"]
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
result = self.factor[self.factor > "a"]
|
||||
expected = self.factor[np.asarray(self.factor) > "a"]
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
result = self.factor[self.factor >= "b"]
|
||||
expected = self.factor[np.asarray(self.factor) >= "b"]
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
result = self.factor[self.factor <= "b"]
|
||||
expected = self.factor[np.asarray(self.factor) <= "b"]
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
n = len(self.factor)
|
||||
|
||||
other = self.factor[np.random.permutation(n)]
|
||||
result = self.factor == other
|
||||
expected = np.asarray(self.factor) == np.asarray(other)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = self.factor == "d"
|
||||
expected = np.zeros(len(self.factor), dtype=bool)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
# comparisons with categoricals
|
||||
cat_rev = Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True)
|
||||
cat_rev_base = Categorical(
|
||||
["b", "b", "b"], categories=["c", "b", "a"], ordered=True
|
||||
)
|
||||
cat = Categorical(["a", "b", "c"], ordered=True)
|
||||
cat_base = Categorical(["b", "b", "b"], categories=cat.categories, ordered=True)
|
||||
|
||||
# comparisons need to take categories ordering into account
|
||||
res_rev = cat_rev > cat_rev_base
|
||||
exp_rev = np.array([True, False, False])
|
||||
tm.assert_numpy_array_equal(res_rev, exp_rev)
|
||||
|
||||
res_rev = cat_rev < cat_rev_base
|
||||
exp_rev = np.array([False, False, True])
|
||||
tm.assert_numpy_array_equal(res_rev, exp_rev)
|
||||
|
||||
res = cat > cat_base
|
||||
exp = np.array([False, False, True])
|
||||
tm.assert_numpy_array_equal(res, exp)
|
||||
|
||||
# Only categories with same categories can be compared
|
||||
msg = "Categoricals can only be compared if 'categories' are the same"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
cat > cat_rev
|
||||
|
||||
cat_rev_base2 = Categorical(["b", "b", "b"], categories=["c", "b", "a", "d"])
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
cat_rev > cat_rev_base2
|
||||
|
||||
# Only categories with same ordering information can be compared
|
||||
cat_unorderd = cat.set_ordered(False)
|
||||
assert not (cat > cat).any()
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
cat > cat_unorderd
|
||||
|
||||
# comparison (in both directions) with Series will raise
|
||||
s = Series(["b", "b", "b"])
|
||||
msg = (
|
||||
"Cannot compare a Categorical for op __gt__ with type "
|
||||
r"<class 'numpy\.ndarray'>"
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
cat > s
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
cat_rev > s
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
s < cat
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
s < cat_rev
|
||||
|
||||
# comparison with numpy.array will raise in both direction, but only on
|
||||
# newer numpy versions
|
||||
a = np.array(["b", "b", "b"])
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
cat > a
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
cat_rev > a
|
||||
|
||||
# Make sure that unequal comparison take the categories order in
|
||||
# account
|
||||
cat_rev = Categorical(list("abc"), categories=list("cba"), ordered=True)
|
||||
exp = np.array([True, False, False])
|
||||
res = cat_rev > "b"
|
||||
tm.assert_numpy_array_equal(res, exp)
|
||||
|
||||
# check that zero-dim array gets unboxed
|
||||
res = cat_rev > np.array("b")
|
||||
tm.assert_numpy_array_equal(res, exp)
|
||||
|
||||
|
||||
class TestCategoricalOps:
|
||||
def test_compare_frame(self):
|
||||
# GH#24282 check that Categorical.__cmp__(DataFrame) defers to frame
|
||||
data = ["a", "b", 2, "a"]
|
||||
cat = Categorical(data)
|
||||
|
||||
df = DataFrame(cat)
|
||||
|
||||
result = cat == df.T
|
||||
expected = DataFrame([[True, True, True, True]])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = cat[::-1] != df.T
|
||||
expected = DataFrame([[False, True, True, False]])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_compare_frame_raises(self, comparison_op):
|
||||
# alignment raises unless we transpose
|
||||
op = comparison_op
|
||||
cat = Categorical(["a", "b", 2, "a"])
|
||||
df = DataFrame(cat)
|
||||
msg = "Unable to coerce to Series, length must be 1: given 4"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
op(cat, df)
|
||||
|
||||
def test_datetime_categorical_comparison(self):
|
||||
dt_cat = Categorical(date_range("2014-01-01", periods=3), ordered=True)
|
||||
tm.assert_numpy_array_equal(dt_cat > dt_cat[0], np.array([False, True, True]))
|
||||
tm.assert_numpy_array_equal(dt_cat[0] < dt_cat, np.array([False, True, True]))
|
||||
|
||||
def test_reflected_comparison_with_scalars(self):
|
||||
# GH8658
|
||||
cat = Categorical([1, 2, 3], ordered=True)
|
||||
tm.assert_numpy_array_equal(cat > cat[0], np.array([False, True, True]))
|
||||
tm.assert_numpy_array_equal(cat[0] < cat, np.array([False, True, True]))
|
||||
|
||||
def test_comparison_with_unknown_scalars(self):
|
||||
# https://github.com/pandas-dev/pandas/issues/9836#issuecomment-92123057
|
||||
# and following comparisons with scalars not in categories should raise
|
||||
# for unequal comps, but not for equal/not equal
|
||||
cat = Categorical([1, 2, 3], ordered=True)
|
||||
|
||||
msg = "Invalid comparison between dtype=category and int"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
cat < 4
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
cat > 4
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
4 < cat
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
4 > cat
|
||||
|
||||
tm.assert_numpy_array_equal(cat == 4, np.array([False, False, False]))
|
||||
tm.assert_numpy_array_equal(cat != 4, np.array([True, True, True]))
|
||||
|
||||
def test_comparison_with_tuple(self):
|
||||
cat = Categorical(np.array(["foo", (0, 1), 3, (0, 1)], dtype=object))
|
||||
|
||||
result = cat == "foo"
|
||||
expected = np.array([True, False, False, False], dtype=bool)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = cat == (0, 1)
|
||||
expected = np.array([False, True, False, True], dtype=bool)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = cat != (0, 1)
|
||||
tm.assert_numpy_array_equal(result, ~expected)
|
||||
|
||||
def test_comparison_of_ordered_categorical_with_nan_to_scalar(
|
||||
self, compare_operators_no_eq_ne
|
||||
):
|
||||
# https://github.com/pandas-dev/pandas/issues/26504
|
||||
# BUG: fix ordered categorical comparison with missing values (#26504 )
|
||||
# and following comparisons with scalars in categories with missing
|
||||
# values should be evaluated as False
|
||||
|
||||
cat = Categorical([1, 2, 3, None], categories=[1, 2, 3], ordered=True)
|
||||
scalar = 2
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", RuntimeWarning)
|
||||
expected = getattr(np.array(cat), compare_operators_no_eq_ne)(scalar)
|
||||
actual = getattr(cat, compare_operators_no_eq_ne)(scalar)
|
||||
tm.assert_numpy_array_equal(actual, expected)
|
||||
|
||||
def test_comparison_of_ordered_categorical_with_nan_to_listlike(
|
||||
self, compare_operators_no_eq_ne
|
||||
):
|
||||
# https://github.com/pandas-dev/pandas/issues/26504
|
||||
# and following comparisons of missing values in ordered Categorical
|
||||
# with listlike should be evaluated as False
|
||||
|
||||
cat = Categorical([1, 2, 3, None], categories=[1, 2, 3], ordered=True)
|
||||
other = Categorical([2, 2, 2, 2], categories=[1, 2, 3], ordered=True)
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", RuntimeWarning)
|
||||
expected = getattr(np.array(cat), compare_operators_no_eq_ne)(2)
|
||||
actual = getattr(cat, compare_operators_no_eq_ne)(other)
|
||||
tm.assert_numpy_array_equal(actual, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"data,reverse,base",
|
||||
[(list("abc"), list("cba"), list("bbb")), ([1, 2, 3], [3, 2, 1], [2, 2, 2])],
|
||||
)
|
||||
def test_comparisons(self, data, reverse, base):
|
||||
cat_rev = Series(Categorical(data, categories=reverse, ordered=True))
|
||||
cat_rev_base = Series(Categorical(base, categories=reverse, ordered=True))
|
||||
cat = Series(Categorical(data, ordered=True))
|
||||
cat_base = Series(
|
||||
Categorical(base, categories=cat.cat.categories, ordered=True)
|
||||
)
|
||||
s = Series(base)
|
||||
a = np.array(base)
|
||||
|
||||
# comparisons need to take categories ordering into account
|
||||
res_rev = cat_rev > cat_rev_base
|
||||
exp_rev = Series([True, False, False])
|
||||
tm.assert_series_equal(res_rev, exp_rev)
|
||||
|
||||
res_rev = cat_rev < cat_rev_base
|
||||
exp_rev = Series([False, False, True])
|
||||
tm.assert_series_equal(res_rev, exp_rev)
|
||||
|
||||
res = cat > cat_base
|
||||
exp = Series([False, False, True])
|
||||
tm.assert_series_equal(res, exp)
|
||||
|
||||
scalar = base[1]
|
||||
res = cat > scalar
|
||||
exp = Series([False, False, True])
|
||||
exp2 = cat.values > scalar
|
||||
tm.assert_series_equal(res, exp)
|
||||
tm.assert_numpy_array_equal(res.values, exp2)
|
||||
res_rev = cat_rev > scalar
|
||||
exp_rev = Series([True, False, False])
|
||||
exp_rev2 = cat_rev.values > scalar
|
||||
tm.assert_series_equal(res_rev, exp_rev)
|
||||
tm.assert_numpy_array_equal(res_rev.values, exp_rev2)
|
||||
|
||||
# Only categories with same categories can be compared
|
||||
msg = "Categoricals can only be compared if 'categories' are the same"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
cat > cat_rev
|
||||
|
||||
# categorical cannot be compared to Series or numpy array, and also
|
||||
# not the other way around
|
||||
msg = (
|
||||
"Cannot compare a Categorical for op __gt__ with type "
|
||||
r"<class 'numpy\.ndarray'>"
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
cat > s
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
cat_rev > s
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
cat > a
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
cat_rev > a
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
s < cat
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
s < cat_rev
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
a < cat
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
a < cat_rev
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"ctor",
|
||||
[
|
||||
lambda *args, **kwargs: Categorical(*args, **kwargs),
|
||||
lambda *args, **kwargs: Series(Categorical(*args, **kwargs)),
|
||||
],
|
||||
)
|
||||
def test_unordered_different_order_equal(self, ctor):
|
||||
# https://github.com/pandas-dev/pandas/issues/16014
|
||||
c1 = ctor(["a", "b"], categories=["a", "b"], ordered=False)
|
||||
c2 = ctor(["a", "b"], categories=["b", "a"], ordered=False)
|
||||
assert (c1 == c2).all()
|
||||
|
||||
c1 = ctor(["a", "b"], categories=["a", "b"], ordered=False)
|
||||
c2 = ctor(["b", "a"], categories=["b", "a"], ordered=False)
|
||||
assert (c1 != c2).all()
|
||||
|
||||
c1 = ctor(["a", "a"], categories=["a", "b"], ordered=False)
|
||||
c2 = ctor(["b", "b"], categories=["b", "a"], ordered=False)
|
||||
assert (c1 != c2).all()
|
||||
|
||||
c1 = ctor(["a", "a"], categories=["a", "b"], ordered=False)
|
||||
c2 = ctor(["a", "b"], categories=["b", "a"], ordered=False)
|
||||
result = c1 == c2
|
||||
tm.assert_numpy_array_equal(np.array(result), np.array([True, False]))
|
||||
|
||||
def test_unordered_different_categories_raises(self):
|
||||
c1 = Categorical(["a", "b"], categories=["a", "b"], ordered=False)
|
||||
c2 = Categorical(["a", "c"], categories=["c", "a"], ordered=False)
|
||||
|
||||
with pytest.raises(TypeError, match=("Categoricals can only be compared")):
|
||||
c1 == c2
|
||||
|
||||
def test_compare_different_lengths(self):
|
||||
c1 = Categorical([], categories=["a", "b"])
|
||||
c2 = Categorical([], categories=["a"])
|
||||
|
||||
msg = "Categoricals can only be compared if 'categories' are the same."
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
c1 == c2
|
||||
|
||||
def test_compare_unordered_different_order(self):
|
||||
# https://github.com/pandas-dev/pandas/issues/16603#issuecomment-
|
||||
# 349290078
|
||||
a = Categorical(["a"], categories=["a", "b"])
|
||||
b = Categorical(["b"], categories=["b", "a"])
|
||||
assert not a.equals(b)
|
||||
|
||||
def test_numeric_like_ops(self):
|
||||
|
||||
df = DataFrame({"value": np.random.randint(0, 10000, 100)})
|
||||
labels = [f"{i} - {i + 499}" for i in range(0, 10000, 500)]
|
||||
cat_labels = Categorical(labels, labels)
|
||||
|
||||
df = df.sort_values(by=["value"], ascending=True)
|
||||
df["value_group"] = pd.cut(
|
||||
df.value, range(0, 10500, 500), right=False, labels=cat_labels
|
||||
)
|
||||
|
||||
# numeric ops should not succeed
|
||||
for op, str_rep in [
|
||||
("__add__", r"\+"),
|
||||
("__sub__", "-"),
|
||||
("__mul__", r"\*"),
|
||||
("__truediv__", "/"),
|
||||
]:
|
||||
msg = f"Series cannot perform the operation {str_rep}|unsupported operand"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
getattr(df, op)(df)
|
||||
|
||||
# reduction ops should not succeed (unless specifically defined, e.g.
|
||||
# min/max)
|
||||
s = df["value_group"]
|
||||
for op in ["kurt", "skew", "var", "std", "mean", "sum", "median"]:
|
||||
msg = f"does not support reduction '{op}'"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
getattr(s, op)(numeric_only=False)
|
||||
|
||||
# mad technically works because it takes always the numeric data
|
||||
|
||||
# numpy ops
|
||||
s = Series(Categorical([1, 2, 3, 4]))
|
||||
with pytest.raises(TypeError, match="does not support reduction 'sum'"):
|
||||
np.sum(s)
|
||||
|
||||
# numeric ops on a Series
|
||||
for op, str_rep in [
|
||||
("__add__", r"\+"),
|
||||
("__sub__", "-"),
|
||||
("__mul__", r"\*"),
|
||||
("__truediv__", "/"),
|
||||
]:
|
||||
msg = f"Series cannot perform the operation {str_rep}|unsupported operand"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
getattr(s, op)(2)
|
||||
|
||||
# invalid ufunc
|
||||
msg = "Object with dtype category cannot perform the numpy op log"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
np.log(s)
|
@ -0,0 +1,72 @@
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import Categorical
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"to_replace,value,expected,flip_categories",
|
||||
[
|
||||
# one-to-one
|
||||
(1, 2, [2, 2, 3], False),
|
||||
(1, 4, [4, 2, 3], False),
|
||||
(4, 1, [1, 2, 3], False),
|
||||
(5, 6, [1, 2, 3], False),
|
||||
# many-to-one
|
||||
([1], 2, [2, 2, 3], False),
|
||||
([1, 2], 3, [3, 3, 3], False),
|
||||
([1, 2], 4, [4, 4, 3], False),
|
||||
((1, 2, 4), 5, [5, 5, 3], False),
|
||||
((5, 6), 2, [1, 2, 3], False),
|
||||
([1], [2], [2, 2, 3], False),
|
||||
([1, 4], [5, 2], [5, 2, 3], False),
|
||||
# check_categorical sorts categories, which crashes on mixed dtypes
|
||||
(3, "4", [1, 2, "4"], False),
|
||||
([1, 2, "3"], "5", ["5", "5", 3], True),
|
||||
],
|
||||
)
|
||||
def test_replace_categorical_series(to_replace, value, expected, flip_categories):
|
||||
# GH 31720
|
||||
|
||||
ser = pd.Series([1, 2, 3], dtype="category")
|
||||
result = ser.replace(to_replace, value)
|
||||
expected = pd.Series(expected, dtype="category")
|
||||
ser.replace(to_replace, value, inplace=True)
|
||||
|
||||
if flip_categories:
|
||||
expected = expected.cat.set_categories(expected.cat.categories[::-1])
|
||||
|
||||
tm.assert_series_equal(expected, result, check_category_order=False)
|
||||
tm.assert_series_equal(expected, ser, check_category_order=False)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"to_replace, value, result, expected_error_msg",
|
||||
[
|
||||
("b", "c", ["a", "c"], "Categorical.categories are different"),
|
||||
("c", "d", ["a", "b"], None),
|
||||
# https://github.com/pandas-dev/pandas/issues/33288
|
||||
("a", "a", ["a", "b"], None),
|
||||
("b", None, ["a", None], "Categorical.categories length are different"),
|
||||
],
|
||||
)
|
||||
def test_replace_categorical(to_replace, value, result, expected_error_msg):
|
||||
# GH#26988
|
||||
cat = Categorical(["a", "b"])
|
||||
expected = Categorical(result)
|
||||
with tm.assert_produces_warning(FutureWarning, match="Series.replace"):
|
||||
# GH#44929 replace->_replace
|
||||
result = cat.replace(to_replace, value)
|
||||
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
if to_replace == "b": # the "c" test is supposed to be unchanged
|
||||
with pytest.raises(AssertionError, match=expected_error_msg):
|
||||
# ensure non-inplace call does not affect original
|
||||
tm.assert_categorical_equal(cat, expected)
|
||||
|
||||
with tm.assert_produces_warning(FutureWarning, match="Series.replace"):
|
||||
# GH#44929 replace->_replace
|
||||
cat.replace(to_replace, value, inplace=True)
|
||||
|
||||
tm.assert_categorical_equal(cat, expected)
|
@ -0,0 +1,534 @@
|
||||
import numpy as np
|
||||
|
||||
from pandas import (
|
||||
Categorical,
|
||||
CategoricalIndex,
|
||||
Series,
|
||||
date_range,
|
||||
option_context,
|
||||
period_range,
|
||||
timedelta_range,
|
||||
)
|
||||
from pandas.tests.arrays.categorical.common import TestCategorical
|
||||
|
||||
|
||||
class TestCategoricalReprWithFactor(TestCategorical):
|
||||
def test_print(self):
|
||||
expected = [
|
||||
"['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']",
|
||||
"Categories (3, object): ['a' < 'b' < 'c']",
|
||||
]
|
||||
expected = "\n".join(expected)
|
||||
actual = repr(self.factor)
|
||||
assert actual == expected
|
||||
|
||||
|
||||
class TestCategoricalRepr:
|
||||
def test_big_print(self):
|
||||
factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ["a", "b", "c"], fastpath=True)
|
||||
expected = [
|
||||
"['a', 'b', 'c', 'a', 'b', ..., 'b', 'c', 'a', 'b', 'c']",
|
||||
"Length: 600",
|
||||
"Categories (3, object): ['a', 'b', 'c']",
|
||||
]
|
||||
expected = "\n".join(expected)
|
||||
|
||||
actual = repr(factor)
|
||||
|
||||
assert actual == expected
|
||||
|
||||
def test_empty_print(self):
|
||||
factor = Categorical([], ["a", "b", "c"])
|
||||
expected = "[], Categories (3, object): ['a', 'b', 'c']"
|
||||
actual = repr(factor)
|
||||
assert actual == expected
|
||||
|
||||
assert expected == actual
|
||||
factor = Categorical([], ["a", "b", "c"], ordered=True)
|
||||
expected = "[], Categories (3, object): ['a' < 'b' < 'c']"
|
||||
actual = repr(factor)
|
||||
assert expected == actual
|
||||
|
||||
factor = Categorical([], [])
|
||||
expected = "[], Categories (0, object): []"
|
||||
assert expected == repr(factor)
|
||||
|
||||
def test_print_none_width(self):
|
||||
# GH10087
|
||||
a = Series(Categorical([1, 2, 3, 4]))
|
||||
exp = (
|
||||
"0 1\n1 2\n2 3\n3 4\n"
|
||||
"dtype: category\nCategories (4, int64): [1, 2, 3, 4]"
|
||||
)
|
||||
|
||||
with option_context("display.width", None):
|
||||
assert exp == repr(a)
|
||||
|
||||
def test_unicode_print(self):
|
||||
c = Categorical(["aaaaa", "bb", "cccc"] * 20)
|
||||
expected = """\
|
||||
['aaaaa', 'bb', 'cccc', 'aaaaa', 'bb', ..., 'bb', 'cccc', 'aaaaa', 'bb', 'cccc']
|
||||
Length: 60
|
||||
Categories (3, object): ['aaaaa', 'bb', 'cccc']"""
|
||||
|
||||
assert repr(c) == expected
|
||||
|
||||
c = Categorical(["ああああ", "いいいいい", "ううううううう"] * 20)
|
||||
expected = """\
|
||||
['ああああ', 'いいいいい', 'ううううううう', 'ああああ', 'いいいいい', ..., 'いいいいい', 'ううううううう', 'ああああ', 'いいいいい', 'ううううううう']
|
||||
Length: 60
|
||||
Categories (3, object): ['ああああ', 'いいいいい', 'ううううううう']""" # noqa:E501
|
||||
|
||||
assert repr(c) == expected
|
||||
|
||||
# unicode option should not affect to Categorical, as it doesn't care
|
||||
# the repr width
|
||||
with option_context("display.unicode.east_asian_width", True):
|
||||
|
||||
c = Categorical(["ああああ", "いいいいい", "ううううううう"] * 20)
|
||||
expected = """['ああああ', 'いいいいい', 'ううううううう', 'ああああ', 'いいいいい', ..., 'いいいいい', 'ううううううう', 'ああああ', 'いいいいい', 'ううううううう']
|
||||
Length: 60
|
||||
Categories (3, object): ['ああああ', 'いいいいい', 'ううううううう']""" # noqa:E501
|
||||
|
||||
assert repr(c) == expected
|
||||
|
||||
def test_categorical_repr(self):
|
||||
c = Categorical([1, 2, 3])
|
||||
exp = """[1, 2, 3]
|
||||
Categories (3, int64): [1, 2, 3]"""
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3])
|
||||
exp = """[1, 2, 3, 1, 2, 3]
|
||||
Categories (3, int64): [1, 2, 3]"""
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical([1, 2, 3, 4, 5] * 10)
|
||||
exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5]
|
||||
Length: 50
|
||||
Categories (5, int64): [1, 2, 3, 4, 5]"""
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical(np.arange(20))
|
||||
exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19]
|
||||
Length: 20
|
||||
Categories (20, int64): [0, 1, 2, 3, ..., 16, 17, 18, 19]"""
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
def test_categorical_repr_ordered(self):
|
||||
c = Categorical([1, 2, 3], ordered=True)
|
||||
exp = """[1, 2, 3]
|
||||
Categories (3, int64): [1 < 2 < 3]"""
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True)
|
||||
exp = """[1, 2, 3, 1, 2, 3]
|
||||
Categories (3, int64): [1 < 2 < 3]"""
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical([1, 2, 3, 4, 5] * 10, ordered=True)
|
||||
exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5]
|
||||
Length: 50
|
||||
Categories (5, int64): [1 < 2 < 3 < 4 < 5]"""
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical(np.arange(20), ordered=True)
|
||||
exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19]
|
||||
Length: 20
|
||||
Categories (20, int64): [0 < 1 < 2 < 3 ... 16 < 17 < 18 < 19]"""
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
def test_categorical_repr_datetime(self):
|
||||
idx = date_range("2011-01-01 09:00", freq="H", periods=5)
|
||||
c = Categorical(idx)
|
||||
|
||||
exp = (
|
||||
"[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, "
|
||||
"2011-01-01 12:00:00, 2011-01-01 13:00:00]\n"
|
||||
"Categories (5, datetime64[ns]): [2011-01-01 09:00:00, "
|
||||
"2011-01-01 10:00:00, 2011-01-01 11:00:00,\n"
|
||||
" 2011-01-01 12:00:00, "
|
||||
"2011-01-01 13:00:00]"
|
||||
""
|
||||
)
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical(idx.append(idx), categories=idx)
|
||||
exp = (
|
||||
"[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, "
|
||||
"2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, "
|
||||
"2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, "
|
||||
"2011-01-01 13:00:00]\n"
|
||||
"Categories (5, datetime64[ns]): [2011-01-01 09:00:00, "
|
||||
"2011-01-01 10:00:00, 2011-01-01 11:00:00,\n"
|
||||
" 2011-01-01 12:00:00, "
|
||||
"2011-01-01 13:00:00]"
|
||||
)
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
idx = date_range("2011-01-01 09:00", freq="H", periods=5, tz="US/Eastern")
|
||||
c = Categorical(idx)
|
||||
exp = (
|
||||
"[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, "
|
||||
"2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, "
|
||||
"2011-01-01 13:00:00-05:00]\n"
|
||||
"Categories (5, datetime64[ns, US/Eastern]): "
|
||||
"[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n"
|
||||
" "
|
||||
"2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n"
|
||||
" "
|
||||
"2011-01-01 13:00:00-05:00]"
|
||||
)
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical(idx.append(idx), categories=idx)
|
||||
exp = (
|
||||
"[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, "
|
||||
"2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, "
|
||||
"2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, "
|
||||
"2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, "
|
||||
"2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]\n"
|
||||
"Categories (5, datetime64[ns, US/Eastern]): "
|
||||
"[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n"
|
||||
" "
|
||||
"2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n"
|
||||
" "
|
||||
"2011-01-01 13:00:00-05:00]"
|
||||
)
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
def test_categorical_repr_datetime_ordered(self):
|
||||
idx = date_range("2011-01-01 09:00", freq="H", periods=5)
|
||||
c = Categorical(idx, ordered=True)
|
||||
exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00]
|
||||
Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 <
|
||||
2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa:E501
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical(idx.append(idx), categories=idx, ordered=True)
|
||||
exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00]
|
||||
Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 <
|
||||
2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa:E501
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
idx = date_range("2011-01-01 09:00", freq="H", periods=5, tz="US/Eastern")
|
||||
c = Categorical(idx, ordered=True)
|
||||
exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]
|
||||
Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 <
|
||||
2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 <
|
||||
2011-01-01 13:00:00-05:00]""" # noqa:E501
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical(idx.append(idx), categories=idx, ordered=True)
|
||||
exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]
|
||||
Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 <
|
||||
2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 <
|
||||
2011-01-01 13:00:00-05:00]""" # noqa:E501
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
def test_categorical_repr_int_with_nan(self):
|
||||
c = Categorical([1, 2, np.nan])
|
||||
c_exp = """[1, 2, NaN]\nCategories (2, int64): [1, 2]"""
|
||||
assert repr(c) == c_exp
|
||||
|
||||
s = Series([1, 2, np.nan], dtype="object").astype("category")
|
||||
s_exp = """0 1\n1 2\n2 NaN
|
||||
dtype: category
|
||||
Categories (2, int64): [1, 2]"""
|
||||
assert repr(s) == s_exp
|
||||
|
||||
def test_categorical_repr_period(self):
|
||||
idx = period_range("2011-01-01 09:00", freq="H", periods=5)
|
||||
c = Categorical(idx)
|
||||
exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]
|
||||
Categories (5, period[H]): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00,
|
||||
2011-01-01 13:00]""" # noqa:E501
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical(idx.append(idx), categories=idx)
|
||||
exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]
|
||||
Categories (5, period[H]): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00,
|
||||
2011-01-01 13:00]""" # noqa:E501
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
idx = period_range("2011-01", freq="M", periods=5)
|
||||
c = Categorical(idx)
|
||||
exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05]
|
||||
Categories (5, period[M]): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]"""
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical(idx.append(idx), categories=idx)
|
||||
exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05]
|
||||
Categories (5, period[M]): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" # noqa:E501
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
def test_categorical_repr_period_ordered(self):
|
||||
idx = period_range("2011-01-01 09:00", freq="H", periods=5)
|
||||
c = Categorical(idx, ordered=True)
|
||||
exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]
|
||||
Categories (5, period[H]): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 <
|
||||
2011-01-01 13:00]""" # noqa:E501
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical(idx.append(idx), categories=idx, ordered=True)
|
||||
exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]
|
||||
Categories (5, period[H]): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 <
|
||||
2011-01-01 13:00]""" # noqa:E501
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
idx = period_range("2011-01", freq="M", periods=5)
|
||||
c = Categorical(idx, ordered=True)
|
||||
exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05]
|
||||
Categories (5, period[M]): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]"""
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical(idx.append(idx), categories=idx, ordered=True)
|
||||
exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05]
|
||||
Categories (5, period[M]): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" # noqa:E501
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
def test_categorical_repr_timedelta(self):
|
||||
idx = timedelta_range("1 days", periods=5)
|
||||
c = Categorical(idx)
|
||||
exp = """[1 days, 2 days, 3 days, 4 days, 5 days]
|
||||
Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]"""
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical(idx.append(idx), categories=idx)
|
||||
exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days]
|
||||
Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]"""
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
idx = timedelta_range("1 hours", periods=20)
|
||||
c = Categorical(idx)
|
||||
exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]
|
||||
Length: 20
|
||||
Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00,
|
||||
3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00,
|
||||
18 days 01:00:00, 19 days 01:00:00]""" # noqa:E501
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical(idx.append(idx), categories=idx)
|
||||
exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]
|
||||
Length: 40
|
||||
Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00,
|
||||
3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00,
|
||||
18 days 01:00:00, 19 days 01:00:00]""" # noqa:E501
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
def test_categorical_repr_timedelta_ordered(self):
|
||||
idx = timedelta_range("1 days", periods=5)
|
||||
c = Categorical(idx, ordered=True)
|
||||
exp = """[1 days, 2 days, 3 days, 4 days, 5 days]
|
||||
Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]"""
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical(idx.append(idx), categories=idx, ordered=True)
|
||||
exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days]
|
||||
Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]"""
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
idx = timedelta_range("1 hours", periods=20)
|
||||
c = Categorical(idx, ordered=True)
|
||||
exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]
|
||||
Length: 20
|
||||
Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 <
|
||||
3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 <
|
||||
18 days 01:00:00 < 19 days 01:00:00]""" # noqa:E501
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
c = Categorical(idx.append(idx), categories=idx, ordered=True)
|
||||
exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]
|
||||
Length: 40
|
||||
Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 <
|
||||
3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 <
|
||||
18 days 01:00:00 < 19 days 01:00:00]""" # noqa:E501
|
||||
|
||||
assert repr(c) == exp
|
||||
|
||||
def test_categorical_index_repr(self):
|
||||
idx = CategoricalIndex(Categorical([1, 2, 3]))
|
||||
exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=False, dtype='category')""" # noqa:E501
|
||||
assert repr(idx) == exp
|
||||
|
||||
i = CategoricalIndex(Categorical(np.arange(10)))
|
||||
exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, 4, 5, 6, 7, ...], ordered=False, dtype='category')""" # noqa:E501
|
||||
assert repr(i) == exp
|
||||
|
||||
def test_categorical_index_repr_ordered(self):
|
||||
i = CategoricalIndex(Categorical([1, 2, 3], ordered=True))
|
||||
exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=True, dtype='category')""" # noqa:E501
|
||||
assert repr(i) == exp
|
||||
|
||||
i = CategoricalIndex(Categorical(np.arange(10), ordered=True))
|
||||
exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, 4, 5, 6, 7, ...], ordered=True, dtype='category')""" # noqa:E501
|
||||
assert repr(i) == exp
|
||||
|
||||
def test_categorical_index_repr_datetime(self):
|
||||
idx = date_range("2011-01-01 09:00", freq="H", periods=5)
|
||||
i = CategoricalIndex(Categorical(idx))
|
||||
exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00',
|
||||
'2011-01-01 11:00:00', '2011-01-01 12:00:00',
|
||||
'2011-01-01 13:00:00'],
|
||||
categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=False, dtype='category')""" # noqa:E501
|
||||
|
||||
assert repr(i) == exp
|
||||
|
||||
idx = date_range("2011-01-01 09:00", freq="H", periods=5, tz="US/Eastern")
|
||||
i = CategoricalIndex(Categorical(idx))
|
||||
exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00',
|
||||
'2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00',
|
||||
'2011-01-01 13:00:00-05:00'],
|
||||
categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=False, dtype='category')""" # noqa:E501
|
||||
|
||||
assert repr(i) == exp
|
||||
|
||||
def test_categorical_index_repr_datetime_ordered(self):
|
||||
idx = date_range("2011-01-01 09:00", freq="H", periods=5)
|
||||
i = CategoricalIndex(Categorical(idx, ordered=True))
|
||||
exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00',
|
||||
'2011-01-01 11:00:00', '2011-01-01 12:00:00',
|
||||
'2011-01-01 13:00:00'],
|
||||
categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=True, dtype='category')""" # noqa:E501
|
||||
|
||||
assert repr(i) == exp
|
||||
|
||||
idx = date_range("2011-01-01 09:00", freq="H", periods=5, tz="US/Eastern")
|
||||
i = CategoricalIndex(Categorical(idx, ordered=True))
|
||||
exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00',
|
||||
'2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00',
|
||||
'2011-01-01 13:00:00-05:00'],
|
||||
categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" # noqa:E501
|
||||
|
||||
assert repr(i) == exp
|
||||
|
||||
i = CategoricalIndex(Categorical(idx.append(idx), ordered=True))
|
||||
exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00',
|
||||
'2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00',
|
||||
'2011-01-01 13:00:00-05:00', '2011-01-01 09:00:00-05:00',
|
||||
'2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00',
|
||||
'2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'],
|
||||
categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" # noqa:E501
|
||||
|
||||
assert repr(i) == exp
|
||||
|
||||
def test_categorical_index_repr_period(self):
|
||||
# test all length
|
||||
idx = period_range("2011-01-01 09:00", freq="H", periods=1)
|
||||
i = CategoricalIndex(Categorical(idx))
|
||||
exp = """CategoricalIndex(['2011-01-01 09:00'], categories=[2011-01-01 09:00], ordered=False, dtype='category')""" # noqa:E501
|
||||
assert repr(i) == exp
|
||||
|
||||
idx = period_range("2011-01-01 09:00", freq="H", periods=2)
|
||||
i = CategoricalIndex(Categorical(idx))
|
||||
exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00], ordered=False, dtype='category')""" # noqa:E501
|
||||
assert repr(i) == exp
|
||||
|
||||
idx = period_range("2011-01-01 09:00", freq="H", periods=3)
|
||||
i = CategoricalIndex(Categorical(idx))
|
||||
exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00], ordered=False, dtype='category')""" # noqa:E501
|
||||
assert repr(i) == exp
|
||||
|
||||
idx = period_range("2011-01-01 09:00", freq="H", periods=5)
|
||||
i = CategoricalIndex(Categorical(idx))
|
||||
exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00',
|
||||
'2011-01-01 12:00', '2011-01-01 13:00'],
|
||||
categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" # noqa:E501
|
||||
|
||||
assert repr(i) == exp
|
||||
|
||||
i = CategoricalIndex(Categorical(idx.append(idx)))
|
||||
exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00',
|
||||
'2011-01-01 12:00', '2011-01-01 13:00', '2011-01-01 09:00',
|
||||
'2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00',
|
||||
'2011-01-01 13:00'],
|
||||
categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" # noqa:E501
|
||||
|
||||
assert repr(i) == exp
|
||||
|
||||
idx = period_range("2011-01", freq="M", periods=5)
|
||||
i = CategoricalIndex(Categorical(idx))
|
||||
exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=False, dtype='category')""" # noqa:E501
|
||||
assert repr(i) == exp
|
||||
|
||||
def test_categorical_index_repr_period_ordered(self):
|
||||
idx = period_range("2011-01-01 09:00", freq="H", periods=5)
|
||||
i = CategoricalIndex(Categorical(idx, ordered=True))
|
||||
exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00',
|
||||
'2011-01-01 12:00', '2011-01-01 13:00'],
|
||||
categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=True, dtype='category')""" # noqa:E501
|
||||
|
||||
assert repr(i) == exp
|
||||
|
||||
idx = period_range("2011-01", freq="M", periods=5)
|
||||
i = CategoricalIndex(Categorical(idx, ordered=True))
|
||||
exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=True, dtype='category')""" # noqa:E501
|
||||
assert repr(i) == exp
|
||||
|
||||
def test_categorical_index_repr_timedelta(self):
|
||||
idx = timedelta_range("1 days", periods=5)
|
||||
i = CategoricalIndex(Categorical(idx))
|
||||
exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days 00:00:00, 2 days 00:00:00, 3 days 00:00:00, 4 days 00:00:00, 5 days 00:00:00], ordered=False, dtype='category')""" # noqa:E501
|
||||
assert repr(i) == exp
|
||||
|
||||
idx = timedelta_range("1 hours", periods=10)
|
||||
i = CategoricalIndex(Categorical(idx))
|
||||
exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00',
|
||||
'3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00',
|
||||
'6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00',
|
||||
'9 days 01:00:00'],
|
||||
categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, 5 days 01:00:00, 6 days 01:00:00, 7 days 01:00:00, ...], ordered=False, dtype='category')""" # noqa:E501
|
||||
|
||||
assert repr(i) == exp
|
||||
|
||||
def test_categorical_index_repr_timedelta_ordered(self):
|
||||
idx = timedelta_range("1 days", periods=5)
|
||||
i = CategoricalIndex(Categorical(idx, ordered=True))
|
||||
exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days 00:00:00, 2 days 00:00:00, 3 days 00:00:00, 4 days 00:00:00, 5 days 00:00:00], ordered=True, dtype='category')""" # noqa:E501
|
||||
assert repr(i) == exp
|
||||
|
||||
idx = timedelta_range("1 hours", periods=10)
|
||||
i = CategoricalIndex(Categorical(idx, ordered=True))
|
||||
exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00',
|
||||
'3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00',
|
||||
'6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00',
|
||||
'9 days 01:00:00'],
|
||||
categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, 5 days 01:00:00, 6 days 01:00:00, 7 days 01:00:00, ...], ordered=True, dtype='category')""" # noqa:E501
|
||||
|
||||
assert repr(i) == exp
|
||||
|
||||
def test_categorical_str_repr(self):
|
||||
# GH 33676
|
||||
result = repr(Categorical([1, "2", 3, 4]))
|
||||
expected = "[1, '2', 3, 4]\nCategories (4, object): [1, 3, 4, '2']"
|
||||
assert result == expected
|
@ -0,0 +1,129 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
Categorical,
|
||||
Index,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestCategoricalSort:
|
||||
def test_argsort(self):
|
||||
c = Categorical([5, 3, 1, 4, 2], ordered=True)
|
||||
|
||||
expected = np.array([2, 4, 1, 3, 0])
|
||||
tm.assert_numpy_array_equal(
|
||||
c.argsort(ascending=True), expected, check_dtype=False
|
||||
)
|
||||
|
||||
expected = expected[::-1]
|
||||
tm.assert_numpy_array_equal(
|
||||
c.argsort(ascending=False), expected, check_dtype=False
|
||||
)
|
||||
|
||||
def test_numpy_argsort(self):
|
||||
c = Categorical([5, 3, 1, 4, 2], ordered=True)
|
||||
|
||||
expected = np.array([2, 4, 1, 3, 0])
|
||||
tm.assert_numpy_array_equal(np.argsort(c), expected, check_dtype=False)
|
||||
|
||||
tm.assert_numpy_array_equal(
|
||||
np.argsort(c, kind="mergesort"), expected, check_dtype=False
|
||||
)
|
||||
|
||||
msg = "the 'axis' parameter is not supported"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
np.argsort(c, axis=0)
|
||||
|
||||
msg = "the 'order' parameter is not supported"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
np.argsort(c, order="C")
|
||||
|
||||
def test_sort_values(self):
|
||||
|
||||
# unordered cats are sortable
|
||||
cat = Categorical(["a", "b", "b", "a"], ordered=False)
|
||||
cat.sort_values()
|
||||
|
||||
cat = Categorical(["a", "c", "b", "d"], ordered=True)
|
||||
|
||||
# sort_values
|
||||
res = cat.sort_values()
|
||||
exp = np.array(["a", "b", "c", "d"], dtype=object)
|
||||
tm.assert_numpy_array_equal(res.__array__(), exp)
|
||||
tm.assert_index_equal(res.categories, cat.categories)
|
||||
|
||||
cat = Categorical(
|
||||
["a", "c", "b", "d"], categories=["a", "b", "c", "d"], ordered=True
|
||||
)
|
||||
res = cat.sort_values()
|
||||
exp = np.array(["a", "b", "c", "d"], dtype=object)
|
||||
tm.assert_numpy_array_equal(res.__array__(), exp)
|
||||
tm.assert_index_equal(res.categories, cat.categories)
|
||||
|
||||
res = cat.sort_values(ascending=False)
|
||||
exp = np.array(["d", "c", "b", "a"], dtype=object)
|
||||
tm.assert_numpy_array_equal(res.__array__(), exp)
|
||||
tm.assert_index_equal(res.categories, cat.categories)
|
||||
|
||||
# sort (inplace order)
|
||||
cat1 = cat.copy()
|
||||
orig_codes = cat1._codes
|
||||
cat1.sort_values(inplace=True)
|
||||
assert cat1._codes is orig_codes
|
||||
exp = np.array(["a", "b", "c", "d"], dtype=object)
|
||||
tm.assert_numpy_array_equal(cat1.__array__(), exp)
|
||||
tm.assert_index_equal(res.categories, cat.categories)
|
||||
|
||||
# reverse
|
||||
cat = Categorical(["a", "c", "c", "b", "d"], ordered=True)
|
||||
res = cat.sort_values(ascending=False)
|
||||
exp_val = np.array(["d", "c", "c", "b", "a"], dtype=object)
|
||||
exp_categories = Index(["a", "b", "c", "d"])
|
||||
tm.assert_numpy_array_equal(res.__array__(), exp_val)
|
||||
tm.assert_index_equal(res.categories, exp_categories)
|
||||
|
||||
def test_sort_values_na_position(self):
|
||||
# see gh-12882
|
||||
cat = Categorical([5, 2, np.nan, 2, np.nan], ordered=True)
|
||||
exp_categories = Index([2, 5])
|
||||
|
||||
exp = np.array([2.0, 2.0, 5.0, np.nan, np.nan])
|
||||
res = cat.sort_values() # default arguments
|
||||
tm.assert_numpy_array_equal(res.__array__(), exp)
|
||||
tm.assert_index_equal(res.categories, exp_categories)
|
||||
|
||||
exp = np.array([np.nan, np.nan, 2.0, 2.0, 5.0])
|
||||
res = cat.sort_values(ascending=True, na_position="first")
|
||||
tm.assert_numpy_array_equal(res.__array__(), exp)
|
||||
tm.assert_index_equal(res.categories, exp_categories)
|
||||
|
||||
exp = np.array([np.nan, np.nan, 5.0, 2.0, 2.0])
|
||||
res = cat.sort_values(ascending=False, na_position="first")
|
||||
tm.assert_numpy_array_equal(res.__array__(), exp)
|
||||
tm.assert_index_equal(res.categories, exp_categories)
|
||||
|
||||
exp = np.array([2.0, 2.0, 5.0, np.nan, np.nan])
|
||||
res = cat.sort_values(ascending=True, na_position="last")
|
||||
tm.assert_numpy_array_equal(res.__array__(), exp)
|
||||
tm.assert_index_equal(res.categories, exp_categories)
|
||||
|
||||
exp = np.array([5.0, 2.0, 2.0, np.nan, np.nan])
|
||||
res = cat.sort_values(ascending=False, na_position="last")
|
||||
tm.assert_numpy_array_equal(res.__array__(), exp)
|
||||
tm.assert_index_equal(res.categories, exp_categories)
|
||||
|
||||
cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True)
|
||||
res = cat.sort_values(ascending=False, na_position="last")
|
||||
exp_val = np.array(["d", "c", "b", "a", np.nan], dtype=object)
|
||||
exp_categories = Index(["a", "b", "c", "d"])
|
||||
tm.assert_numpy_array_equal(res.__array__(), exp_val)
|
||||
tm.assert_index_equal(res.categories, exp_categories)
|
||||
|
||||
cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True)
|
||||
res = cat.sort_values(ascending=False, na_position="first")
|
||||
exp_val = np.array([np.nan, "d", "c", "b", "a"], dtype=object)
|
||||
exp_categories = Index(["a", "b", "c", "d"])
|
||||
tm.assert_numpy_array_equal(res.__array__(), exp_val)
|
||||
tm.assert_index_equal(res.categories, exp_categories)
|
@ -0,0 +1,22 @@
|
||||
from pandas import Categorical
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestCategoricalSubclassing:
|
||||
def test_constructor(self):
|
||||
sc = tm.SubclassedCategorical(["a", "b", "c"])
|
||||
assert isinstance(sc, tm.SubclassedCategorical)
|
||||
tm.assert_categorical_equal(sc, Categorical(["a", "b", "c"]))
|
||||
|
||||
def test_from_codes(self):
|
||||
sc = tm.SubclassedCategorical.from_codes([1, 0, 2], ["a", "b", "c"])
|
||||
assert isinstance(sc, tm.SubclassedCategorical)
|
||||
exp = Categorical.from_codes([1, 0, 2], ["a", "b", "c"])
|
||||
tm.assert_categorical_equal(sc, exp)
|
||||
|
||||
def test_map(self):
|
||||
sc = tm.SubclassedCategorical(["a", "b", "c"])
|
||||
res = sc.map(lambda x: x.upper())
|
||||
assert isinstance(res, tm.SubclassedCategorical)
|
||||
exp = Categorical(["A", "B", "C"])
|
||||
tm.assert_categorical_equal(res, exp)
|
@ -0,0 +1,95 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
Categorical,
|
||||
Index,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestTake:
|
||||
# https://github.com/pandas-dev/pandas/issues/20664
|
||||
|
||||
def test_take_default_allow_fill(self):
|
||||
cat = Categorical(["a", "b"])
|
||||
with tm.assert_produces_warning(None):
|
||||
result = cat.take([0, -1])
|
||||
|
||||
assert result.equals(cat)
|
||||
|
||||
def test_take_positive_no_warning(self):
|
||||
cat = Categorical(["a", "b"])
|
||||
with tm.assert_produces_warning(None):
|
||||
cat.take([0, 0])
|
||||
|
||||
def test_take_bounds(self, allow_fill):
|
||||
# https://github.com/pandas-dev/pandas/issues/20664
|
||||
cat = Categorical(["a", "b", "a"])
|
||||
if allow_fill:
|
||||
msg = "indices are out-of-bounds"
|
||||
else:
|
||||
msg = "index 4 is out of bounds for( axis 0 with)? size 3"
|
||||
with pytest.raises(IndexError, match=msg):
|
||||
cat.take([4, 5], allow_fill=allow_fill)
|
||||
|
||||
def test_take_empty(self, allow_fill):
|
||||
# https://github.com/pandas-dev/pandas/issues/20664
|
||||
cat = Categorical([], categories=["a", "b"])
|
||||
if allow_fill:
|
||||
msg = "indices are out-of-bounds"
|
||||
else:
|
||||
msg = "cannot do a non-empty take from an empty axes"
|
||||
with pytest.raises(IndexError, match=msg):
|
||||
cat.take([0], allow_fill=allow_fill)
|
||||
|
||||
def test_positional_take(self, ordered):
|
||||
cat = Categorical(["a", "a", "b", "b"], categories=["b", "a"], ordered=ordered)
|
||||
result = cat.take([0, 1, 2], allow_fill=False)
|
||||
expected = Categorical(
|
||||
["a", "a", "b"], categories=cat.categories, ordered=ordered
|
||||
)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_positional_take_unobserved(self, ordered):
|
||||
cat = Categorical(["a", "b"], categories=["a", "b", "c"], ordered=ordered)
|
||||
result = cat.take([1, 0], allow_fill=False)
|
||||
expected = Categorical(["b", "a"], categories=cat.categories, ordered=ordered)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_take_allow_fill(self):
|
||||
# https://github.com/pandas-dev/pandas/issues/23296
|
||||
cat = Categorical(["a", "a", "b"])
|
||||
result = cat.take([0, -1, -1], allow_fill=True)
|
||||
expected = Categorical(["a", np.nan, np.nan], categories=["a", "b"])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_take_fill_with_negative_one(self):
|
||||
# -1 was a category
|
||||
cat = Categorical([-1, 0, 1])
|
||||
result = cat.take([0, -1, 1], allow_fill=True, fill_value=-1)
|
||||
expected = Categorical([-1, -1, 0], categories=[-1, 0, 1])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_take_fill_value(self):
|
||||
# https://github.com/pandas-dev/pandas/issues/23296
|
||||
cat = Categorical(["a", "b", "c"])
|
||||
result = cat.take([0, 1, -1], fill_value="a", allow_fill=True)
|
||||
expected = Categorical(["a", "b", "a"], categories=["a", "b", "c"])
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
def test_take_fill_value_new_raises(self):
|
||||
# https://github.com/pandas-dev/pandas/issues/23296
|
||||
cat = Categorical(["a", "b", "c"])
|
||||
xpr = r"Cannot setitem on a Categorical with a new category \(d\)"
|
||||
with pytest.raises(TypeError, match=xpr):
|
||||
cat.take([0, 1, -1], fill_value="d", allow_fill=True)
|
||||
|
||||
def test_take_nd_deprecated(self):
|
||||
cat = Categorical(["a", "b", "c"])
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
cat.take_nd([0, 1])
|
||||
|
||||
ci = Index(cat)
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
ci.take_nd([0, 1])
|
@ -0,0 +1,22 @@
|
||||
import pytest
|
||||
|
||||
from pandas.util._test_decorators import async_mark
|
||||
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestCategoricalWarnings:
|
||||
@async_mark()
|
||||
async def test_tab_complete_warning(self, ip):
|
||||
# https://github.com/pandas-dev/pandas/issues/16409
|
||||
pytest.importorskip("IPython", minversion="6.0.0")
|
||||
from IPython.core.completer import provisionalcompleter
|
||||
|
||||
code = "import pandas as pd; c = Categorical([])"
|
||||
await ip.run_code(code)
|
||||
|
||||
# GH 31324 newer jedi version raises Deprecation warning;
|
||||
# appears resolved 2021-02-02
|
||||
with tm.assert_produces_warning(None):
|
||||
with provisionalcompleter("ignore"):
|
||||
list(ip.Completer.completions("c.", 1))
|
@ -0,0 +1,156 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.core.dtypes.dtypes import DatetimeTZDtype
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import DatetimeArray
|
||||
from pandas.core.arrays.datetimes import _sequence_to_dt64ns
|
||||
|
||||
|
||||
class TestDatetimeArrayConstructor:
|
||||
def test_from_sequence_invalid_type(self):
|
||||
mi = pd.MultiIndex.from_product([np.arange(5), np.arange(5)])
|
||||
with pytest.raises(TypeError, match="Cannot create a DatetimeArray"):
|
||||
DatetimeArray._from_sequence(mi)
|
||||
|
||||
def test_only_1dim_accepted(self):
|
||||
arr = np.array([0, 1, 2, 3], dtype="M8[h]").astype("M8[ns]")
|
||||
|
||||
with pytest.raises(ValueError, match="Only 1-dimensional"):
|
||||
# 3-dim, we allow 2D to sneak in for ops purposes GH#29853
|
||||
DatetimeArray(arr.reshape(2, 2, 1))
|
||||
|
||||
with pytest.raises(ValueError, match="Only 1-dimensional"):
|
||||
# 0-dim
|
||||
DatetimeArray(arr[[0]].squeeze())
|
||||
|
||||
def test_freq_validation(self):
|
||||
# GH#24623 check that invalid instances cannot be created with the
|
||||
# public constructor
|
||||
arr = np.arange(5, dtype=np.int64) * 3600 * 10**9
|
||||
|
||||
msg = (
|
||||
"Inferred frequency H from passed values does not "
|
||||
"conform to passed frequency W-SUN"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
DatetimeArray(arr, freq="W")
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"meth",
|
||||
[
|
||||
DatetimeArray._from_sequence,
|
||||
_sequence_to_dt64ns,
|
||||
pd.to_datetime,
|
||||
pd.DatetimeIndex,
|
||||
],
|
||||
)
|
||||
def test_mixing_naive_tzaware_raises(self, meth):
|
||||
# GH#24569
|
||||
arr = np.array([pd.Timestamp("2000"), pd.Timestamp("2000", tz="CET")])
|
||||
|
||||
msg = (
|
||||
"Cannot mix tz-aware with tz-naive values|"
|
||||
"Tz-aware datetime.datetime cannot be converted "
|
||||
"to datetime64 unless utc=True"
|
||||
)
|
||||
|
||||
for obj in [arr, arr[::-1]]:
|
||||
# check that we raise regardless of whether naive is found
|
||||
# before aware or vice-versa
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
meth(obj)
|
||||
|
||||
def test_from_pandas_array(self):
|
||||
arr = pd.array(np.arange(5, dtype=np.int64)) * 3600 * 10**9
|
||||
|
||||
result = DatetimeArray._from_sequence(arr)._with_freq("infer")
|
||||
|
||||
expected = pd.date_range("1970-01-01", periods=5, freq="H")._data
|
||||
tm.assert_datetime_array_equal(result, expected)
|
||||
|
||||
def test_mismatched_timezone_raises(self):
|
||||
arr = DatetimeArray(
|
||||
np.array(["2000-01-01T06:00:00"], dtype="M8[ns]"),
|
||||
dtype=DatetimeTZDtype(tz="US/Central"),
|
||||
)
|
||||
dtype = DatetimeTZDtype(tz="US/Eastern")
|
||||
with pytest.raises(TypeError, match="Timezone of the array"):
|
||||
DatetimeArray(arr, dtype=dtype)
|
||||
|
||||
def test_non_array_raises(self):
|
||||
with pytest.raises(ValueError, match="list"):
|
||||
DatetimeArray([1, 2, 3])
|
||||
|
||||
def test_bool_dtype_raises(self):
|
||||
arr = np.array([1, 2, 3], dtype="bool")
|
||||
|
||||
with pytest.raises(
|
||||
ValueError, match="The dtype of 'values' is incorrect.*bool"
|
||||
):
|
||||
DatetimeArray(arr)
|
||||
|
||||
msg = r"dtype bool cannot be converted to datetime64\[ns\]"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
DatetimeArray._from_sequence(arr)
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
_sequence_to_dt64ns(arr)
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
pd.DatetimeIndex(arr)
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
pd.to_datetime(arr)
|
||||
|
||||
def test_incorrect_dtype_raises(self):
|
||||
with pytest.raises(ValueError, match="Unexpected value for 'dtype'."):
|
||||
DatetimeArray(np.array([1, 2, 3], dtype="i8"), dtype="category")
|
||||
|
||||
def test_freq_infer_raises(self):
|
||||
with pytest.raises(ValueError, match="Frequency inference"):
|
||||
DatetimeArray(np.array([1, 2, 3], dtype="i8"), freq="infer")
|
||||
|
||||
def test_copy(self):
|
||||
data = np.array([1, 2, 3], dtype="M8[ns]")
|
||||
arr = DatetimeArray(data, copy=False)
|
||||
assert arr._data is data
|
||||
|
||||
arr = DatetimeArray(data, copy=True)
|
||||
assert arr._data is not data
|
||||
|
||||
|
||||
class TestSequenceToDT64NS:
|
||||
def test_tz_dtype_mismatch_raises(self):
|
||||
arr = DatetimeArray._from_sequence(
|
||||
["2000"], dtype=DatetimeTZDtype(tz="US/Central")
|
||||
)
|
||||
with pytest.raises(TypeError, match="data is already tz-aware"):
|
||||
_sequence_to_dt64ns(arr, dtype=DatetimeTZDtype(tz="UTC"))
|
||||
|
||||
def test_tz_dtype_matches(self):
|
||||
arr = DatetimeArray._from_sequence(
|
||||
["2000"], dtype=DatetimeTZDtype(tz="US/Central")
|
||||
)
|
||||
result, _, _ = _sequence_to_dt64ns(arr, dtype=DatetimeTZDtype(tz="US/Central"))
|
||||
tm.assert_numpy_array_equal(arr._data, result)
|
||||
|
||||
@pytest.mark.parametrize("order", ["F", "C"])
|
||||
def test_2d(self, order):
|
||||
dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific")
|
||||
arr = np.array(dti, dtype=object).reshape(3, 2)
|
||||
if order == "F":
|
||||
arr = arr.T
|
||||
|
||||
res = _sequence_to_dt64ns(arr)
|
||||
expected = _sequence_to_dt64ns(arr.ravel())
|
||||
|
||||
tm.assert_numpy_array_equal(res[0].ravel(), expected[0])
|
||||
assert res[1] == expected[1]
|
||||
assert res[2] == expected[2]
|
||||
|
||||
res = DatetimeArray._from_sequence(arr)
|
||||
expected = DatetimeArray._from_sequence(arr.ravel()).reshape(arr.shape)
|
||||
tm.assert_datetime_array_equal(res, expected)
|
@ -0,0 +1,175 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.core.dtypes.dtypes import DatetimeTZDtype
|
||||
|
||||
import pandas as pd
|
||||
from pandas import NaT
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import DatetimeArray
|
||||
|
||||
|
||||
class TestReductions:
|
||||
@pytest.fixture
|
||||
def arr1d(self, tz_naive_fixture):
|
||||
tz = tz_naive_fixture
|
||||
dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
|
||||
arr = DatetimeArray._from_sequence(
|
||||
[
|
||||
"2000-01-03",
|
||||
"2000-01-03",
|
||||
"NaT",
|
||||
"2000-01-02",
|
||||
"2000-01-05",
|
||||
"2000-01-04",
|
||||
],
|
||||
dtype=dtype,
|
||||
)
|
||||
return arr
|
||||
|
||||
def test_min_max(self, arr1d):
|
||||
arr = arr1d
|
||||
tz = arr.tz
|
||||
|
||||
result = arr.min()
|
||||
expected = pd.Timestamp("2000-01-02", tz=tz)
|
||||
assert result == expected
|
||||
|
||||
result = arr.max()
|
||||
expected = pd.Timestamp("2000-01-05", tz=tz)
|
||||
assert result == expected
|
||||
|
||||
result = arr.min(skipna=False)
|
||||
assert result is NaT
|
||||
|
||||
result = arr.max(skipna=False)
|
||||
assert result is NaT
|
||||
|
||||
@pytest.mark.parametrize("tz", [None, "US/Central"])
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_min_max_empty(self, skipna, tz):
|
||||
dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
|
||||
arr = DatetimeArray._from_sequence([], dtype=dtype)
|
||||
result = arr.min(skipna=skipna)
|
||||
assert result is NaT
|
||||
|
||||
result = arr.max(skipna=skipna)
|
||||
assert result is NaT
|
||||
|
||||
@pytest.mark.parametrize("tz", [None, "US/Central"])
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_median_empty(self, skipna, tz):
|
||||
dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
|
||||
arr = DatetimeArray._from_sequence([], dtype=dtype)
|
||||
result = arr.median(skipna=skipna)
|
||||
assert result is NaT
|
||||
|
||||
arr = arr.reshape(0, 3)
|
||||
result = arr.median(axis=0, skipna=skipna)
|
||||
expected = type(arr)._from_sequence([NaT, NaT, NaT], dtype=arr.dtype)
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
result = arr.median(axis=1, skipna=skipna)
|
||||
expected = type(arr)._from_sequence([], dtype=arr.dtype)
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
def test_median(self, arr1d):
|
||||
arr = arr1d
|
||||
|
||||
result = arr.median()
|
||||
assert result == arr[0]
|
||||
result = arr.median(skipna=False)
|
||||
assert result is NaT
|
||||
|
||||
result = arr.dropna().median(skipna=False)
|
||||
assert result == arr[0]
|
||||
|
||||
result = arr.median(axis=0)
|
||||
assert result == arr[0]
|
||||
|
||||
def test_median_axis(self, arr1d):
|
||||
arr = arr1d
|
||||
assert arr.median(axis=0) == arr.median()
|
||||
assert arr.median(axis=0, skipna=False) is NaT
|
||||
|
||||
msg = r"abs\(axis\) must be less than ndim"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr.median(axis=1)
|
||||
|
||||
@pytest.mark.filterwarnings("ignore:All-NaN slice encountered:RuntimeWarning")
|
||||
def test_median_2d(self, arr1d):
|
||||
arr = arr1d.reshape(1, -1)
|
||||
|
||||
# axis = None
|
||||
assert arr.median() == arr1d.median()
|
||||
assert arr.median(skipna=False) is NaT
|
||||
|
||||
# axis = 0
|
||||
result = arr.median(axis=0)
|
||||
expected = arr1d
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
# Since column 3 is all-NaT, we get NaT there with or without skipna
|
||||
result = arr.median(axis=0, skipna=False)
|
||||
expected = arr1d
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
# axis = 1
|
||||
result = arr.median(axis=1)
|
||||
expected = type(arr)._from_sequence([arr1d.median()])
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
result = arr.median(axis=1, skipna=False)
|
||||
expected = type(arr)._from_sequence([NaT], dtype=arr.dtype)
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
def test_mean(self, arr1d):
|
||||
arr = arr1d
|
||||
|
||||
# manually verified result
|
||||
expected = arr[0] + 0.4 * pd.Timedelta(days=1)
|
||||
|
||||
result = arr.mean()
|
||||
assert result == expected
|
||||
result = arr.mean(skipna=False)
|
||||
assert result is NaT
|
||||
|
||||
result = arr.dropna().mean(skipna=False)
|
||||
assert result == expected
|
||||
|
||||
result = arr.mean(axis=0)
|
||||
assert result == expected
|
||||
|
||||
def test_mean_2d(self):
|
||||
dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific")
|
||||
dta = dti._data.reshape(3, 2)
|
||||
|
||||
result = dta.mean(axis=0)
|
||||
expected = dta[1]
|
||||
tm.assert_datetime_array_equal(result, expected)
|
||||
|
||||
result = dta.mean(axis=1)
|
||||
expected = dta[:, 0] + pd.Timedelta(hours=12)
|
||||
tm.assert_datetime_array_equal(result, expected)
|
||||
|
||||
result = dta.mean(axis=None)
|
||||
expected = dti.mean()
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_mean_empty(self, arr1d, skipna):
|
||||
arr = arr1d[:0]
|
||||
|
||||
assert arr.mean(skipna=skipna) is NaT
|
||||
|
||||
arr2d = arr.reshape(0, 3)
|
||||
result = arr2d.mean(axis=0, skipna=skipna)
|
||||
expected = DatetimeArray._from_sequence([NaT, NaT, NaT], dtype=arr.dtype)
|
||||
tm.assert_datetime_array_equal(result, expected)
|
||||
|
||||
result = arr2d.mean(axis=1, skipna=skipna)
|
||||
expected = arr # i.e. 1D, empty
|
||||
tm.assert_datetime_array_equal(result, expected)
|
||||
|
||||
result = arr2d.mean(axis=None, skipna=skipna)
|
||||
assert result is NaT
|
@ -0,0 +1,39 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas.core.arrays.floating import (
|
||||
Float32Dtype,
|
||||
Float64Dtype,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(params=[Float32Dtype, Float64Dtype])
|
||||
def dtype(request):
|
||||
return request.param()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data(dtype):
|
||||
return pd.array(
|
||||
list(np.arange(0.1, 0.9, 0.1))
|
||||
+ [pd.NA]
|
||||
+ list(np.arange(1, 9.8, 0.1))
|
||||
+ [pd.NA]
|
||||
+ [9.9, 10.0],
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data_missing(dtype):
|
||||
return pd.array([np.nan, 0.1], dtype=dtype)
|
||||
|
||||
|
||||
@pytest.fixture(params=["data", "data_missing"])
|
||||
def all_data(request, data, data_missing):
|
||||
"""Parametrized fixture giving 'data' and 'data_missing'"""
|
||||
if request.param == "data":
|
||||
return data
|
||||
elif request.param == "data_missing":
|
||||
return data_missing
|
@ -0,0 +1,203 @@
|
||||
import operator
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import FloatingArray
|
||||
|
||||
# Basic test for the arithmetic array ops
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"opname, exp",
|
||||
[
|
||||
("add", [1.1, 2.2, None, None, 5.5]),
|
||||
("mul", [0.1, 0.4, None, None, 2.5]),
|
||||
("sub", [0.9, 1.8, None, None, 4.5]),
|
||||
("truediv", [10.0, 10.0, None, None, 10.0]),
|
||||
("floordiv", [9.0, 9.0, None, None, 10.0]),
|
||||
("mod", [0.1, 0.2, None, None, 0.0]),
|
||||
],
|
||||
ids=["add", "mul", "sub", "div", "floordiv", "mod"],
|
||||
)
|
||||
def test_array_op(dtype, opname, exp):
|
||||
a = pd.array([1.0, 2.0, None, 4.0, 5.0], dtype=dtype)
|
||||
b = pd.array([0.1, 0.2, 0.3, None, 0.5], dtype=dtype)
|
||||
|
||||
op = getattr(operator, opname)
|
||||
|
||||
result = op(a, b)
|
||||
expected = pd.array(exp, dtype=dtype)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)])
|
||||
def test_divide_by_zero(dtype, zero, negative):
|
||||
# TODO pending NA/NaN discussion
|
||||
# https://github.com/pandas-dev/pandas/issues/32265/
|
||||
a = pd.array([0, 1, -1, None], dtype=dtype)
|
||||
result = a / zero
|
||||
expected = FloatingArray(
|
||||
np.array([np.nan, np.inf, -np.inf, np.nan], dtype=dtype.numpy_dtype),
|
||||
np.array([False, False, False, True]),
|
||||
)
|
||||
if negative:
|
||||
expected *= -1
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_pow_scalar(dtype):
|
||||
a = pd.array([-1, 0, 1, None, 2], dtype=dtype)
|
||||
result = a**0
|
||||
expected = pd.array([1, 1, 1, 1, 1], dtype=dtype)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = a**1
|
||||
expected = pd.array([-1, 0, 1, None, 2], dtype=dtype)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = a**pd.NA
|
||||
expected = pd.array([None, None, 1, None, None], dtype=dtype)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = a**np.nan
|
||||
# TODO np.nan should be converted to pd.NA / missing before operation?
|
||||
expected = FloatingArray(
|
||||
np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype=dtype.numpy_dtype),
|
||||
mask=a._mask,
|
||||
)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# reversed
|
||||
a = a[1:] # Can't raise integers to negative powers.
|
||||
|
||||
result = 0**a
|
||||
expected = pd.array([1, 0, None, 0], dtype=dtype)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = 1**a
|
||||
expected = pd.array([1, 1, 1, 1], dtype=dtype)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = pd.NA**a
|
||||
expected = pd.array([1, None, None, None], dtype=dtype)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = np.nan**a
|
||||
expected = FloatingArray(
|
||||
np.array([1, np.nan, np.nan, np.nan], dtype=dtype.numpy_dtype), mask=a._mask
|
||||
)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_pow_array(dtype):
|
||||
a = pd.array([0, 0, 0, 1, 1, 1, None, None, None], dtype=dtype)
|
||||
b = pd.array([0, 1, None, 0, 1, None, 0, 1, None], dtype=dtype)
|
||||
result = a**b
|
||||
expected = pd.array([1, 0, None, 1, 1, 1, 1, None, None], dtype=dtype)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_rpow_one_to_na():
|
||||
# https://github.com/pandas-dev/pandas/issues/22022
|
||||
# https://github.com/pandas-dev/pandas/issues/29997
|
||||
arr = pd.array([np.nan, np.nan], dtype="Float64")
|
||||
result = np.array([1.0, 2.0]) ** arr
|
||||
expected = pd.array([1.0, np.nan], dtype="Float64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("other", [0, 0.5])
|
||||
def test_arith_zero_dim_ndarray(other):
|
||||
arr = pd.array([1, None, 2], dtype="Float64")
|
||||
result = arr + np.array(other)
|
||||
expected = arr + other
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
|
||||
# Test generic characteristics / errors
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
def test_error_invalid_values(data, all_arithmetic_operators):
|
||||
|
||||
op = all_arithmetic_operators
|
||||
s = pd.Series(data)
|
||||
ops = getattr(s, op)
|
||||
|
||||
# invalid scalars
|
||||
msg = (
|
||||
r"(:?can only perform ops with numeric values)"
|
||||
r"|(:?FloatingArray cannot perform the operation mod)"
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
ops("foo")
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
ops(pd.Timestamp("20180101"))
|
||||
|
||||
# invalid array-likes
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
ops(pd.Series("foo", index=s.index))
|
||||
|
||||
msg = "|".join(
|
||||
[
|
||||
"can only perform ops with numeric values",
|
||||
"cannot perform .* with this index type: DatetimeArray",
|
||||
"Addition/subtraction of integers and integer-arrays "
|
||||
"with DatetimeArray is no longer supported. *",
|
||||
]
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
ops(pd.Series(pd.date_range("20180101", periods=len(s))))
|
||||
|
||||
|
||||
# Various
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
def test_cross_type_arithmetic():
|
||||
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"A": pd.array([1, 2, np.nan], dtype="Float64"),
|
||||
"B": pd.array([1, np.nan, 3], dtype="Float32"),
|
||||
"C": np.array([1, 2, 3], dtype="float64"),
|
||||
}
|
||||
)
|
||||
|
||||
result = df.A + df.C
|
||||
expected = pd.Series([2, 4, np.nan], dtype="Float64")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = (df.A + df.C) * 3 == 12
|
||||
expected = pd.Series([False, True, None], dtype="boolean")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = df.A + df.B
|
||||
expected = pd.Series([2, np.nan, np.nan], dtype="Float64")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"source, neg_target, abs_target",
|
||||
[
|
||||
([1.1, 2.2, 3.3], [-1.1, -2.2, -3.3], [1.1, 2.2, 3.3]),
|
||||
([1.1, 2.2, None], [-1.1, -2.2, None], [1.1, 2.2, None]),
|
||||
([-1.1, 0.0, 1.1], [1.1, 0.0, -1.1], [1.1, 0.0, 1.1]),
|
||||
],
|
||||
)
|
||||
def test_unary_float_operators(float_ea_dtype, source, neg_target, abs_target):
|
||||
# GH38794
|
||||
dtype = float_ea_dtype
|
||||
arr = pd.array(source, dtype=dtype)
|
||||
neg_result, pos_result, abs_result = -arr, +arr, abs(arr)
|
||||
neg_target = pd.array(neg_target, dtype=dtype)
|
||||
abs_target = pd.array(abs_target, dtype=dtype)
|
||||
|
||||
tm.assert_extension_array_equal(neg_result, neg_target)
|
||||
tm.assert_extension_array_equal(pos_result, arr)
|
||||
assert not tm.shares_memory(pos_result, arr)
|
||||
tm.assert_extension_array_equal(abs_result, abs_target)
|
@ -0,0 +1,118 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
def test_astype():
|
||||
# with missing values
|
||||
arr = pd.array([0.1, 0.2, None], dtype="Float64")
|
||||
|
||||
with pytest.raises(ValueError, match="cannot convert to 'int64'-dtype NumPy"):
|
||||
arr.astype("int64")
|
||||
|
||||
with pytest.raises(ValueError, match="cannot convert to 'bool'-dtype NumPy"):
|
||||
arr.astype("bool")
|
||||
|
||||
result = arr.astype("float64")
|
||||
expected = np.array([0.1, 0.2, np.nan], dtype="float64")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
# no missing values
|
||||
arr = pd.array([0.0, 1.0, 0.5], dtype="Float64")
|
||||
result = arr.astype("int64")
|
||||
expected = np.array([0, 1, 0], dtype="int64")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = arr.astype("bool")
|
||||
expected = np.array([False, True, True], dtype="bool")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_astype_to_floating_array():
|
||||
# astype to FloatingArray
|
||||
arr = pd.array([0.0, 1.0, None], dtype="Float64")
|
||||
|
||||
result = arr.astype("Float64")
|
||||
tm.assert_extension_array_equal(result, arr)
|
||||
result = arr.astype(pd.Float64Dtype())
|
||||
tm.assert_extension_array_equal(result, arr)
|
||||
result = arr.astype("Float32")
|
||||
expected = pd.array([0.0, 1.0, None], dtype="Float32")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_astype_to_boolean_array():
|
||||
# astype to BooleanArray
|
||||
arr = pd.array([0.0, 1.0, None], dtype="Float64")
|
||||
|
||||
result = arr.astype("boolean")
|
||||
expected = pd.array([False, True, None], dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
result = arr.astype(pd.BooleanDtype())
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_astype_to_integer_array():
|
||||
# astype to IntegerArray
|
||||
arr = pd.array([0.0, 1.5, None], dtype="Float64")
|
||||
|
||||
result = arr.astype("Int64")
|
||||
expected = pd.array([0, 1, None], dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_astype_str():
|
||||
a = pd.array([0.1, 0.2, None], dtype="Float64")
|
||||
expected = np.array(["0.1", "0.2", "<NA>"], dtype=object)
|
||||
|
||||
tm.assert_numpy_array_equal(a.astype(str), expected)
|
||||
tm.assert_numpy_array_equal(a.astype("str"), expected)
|
||||
|
||||
|
||||
def test_astype_copy():
|
||||
arr = pd.array([0.1, 0.2, None], dtype="Float64")
|
||||
orig = pd.array([0.1, 0.2, None], dtype="Float64")
|
||||
|
||||
# copy=True -> ensure both data and mask are actual copies
|
||||
result = arr.astype("Float64", copy=True)
|
||||
assert result is not arr
|
||||
assert not tm.shares_memory(result, arr)
|
||||
result[0] = 10
|
||||
tm.assert_extension_array_equal(arr, orig)
|
||||
result[0] = pd.NA
|
||||
tm.assert_extension_array_equal(arr, orig)
|
||||
|
||||
# copy=False
|
||||
result = arr.astype("Float64", copy=False)
|
||||
assert result is arr
|
||||
assert np.shares_memory(result._data, arr._data)
|
||||
assert np.shares_memory(result._mask, arr._mask)
|
||||
result[0] = 10
|
||||
assert arr[0] == 10
|
||||
result[0] = pd.NA
|
||||
assert arr[0] is pd.NA
|
||||
|
||||
# astype to different dtype -> always needs a copy -> even with copy=False
|
||||
# we need to ensure that also the mask is actually copied
|
||||
arr = pd.array([0.1, 0.2, None], dtype="Float64")
|
||||
orig = pd.array([0.1, 0.2, None], dtype="Float64")
|
||||
|
||||
result = arr.astype("Float32", copy=False)
|
||||
assert not tm.shares_memory(result, arr)
|
||||
result[0] = 10
|
||||
tm.assert_extension_array_equal(arr, orig)
|
||||
result[0] = pd.NA
|
||||
tm.assert_extension_array_equal(arr, orig)
|
||||
|
||||
|
||||
def test_astype_object(dtype):
|
||||
arr = pd.array([1.0, pd.NA], dtype=dtype)
|
||||
|
||||
result = arr.astype(object)
|
||||
expected = np.array([1.0, pd.NA], dtype=object)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
# check exact element types
|
||||
assert isinstance(result[0], float)
|
||||
assert result[1] is pd.NA
|
@ -0,0 +1,65 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import FloatingArray
|
||||
from pandas.tests.arrays.masked_shared import (
|
||||
ComparisonOps,
|
||||
NumericOps,
|
||||
)
|
||||
|
||||
|
||||
class TestComparisonOps(NumericOps, ComparisonOps):
|
||||
@pytest.mark.parametrize("other", [True, False, pd.NA, -1.0, 0.0, 1])
|
||||
def test_scalar(self, other, comparison_op, dtype):
|
||||
ComparisonOps.test_scalar(self, other, comparison_op, dtype)
|
||||
|
||||
def test_compare_with_integerarray(self, comparison_op):
|
||||
op = comparison_op
|
||||
a = pd.array([0, 1, None] * 3, dtype="Int64")
|
||||
b = pd.array([0] * 3 + [1] * 3 + [None] * 3, dtype="Float64")
|
||||
other = b.astype("Int64")
|
||||
expected = op(a, other)
|
||||
result = op(a, b)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
expected = op(other, a)
|
||||
result = op(b, a)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_equals():
|
||||
# GH-30652
|
||||
# equals is generally tested in /tests/extension/base/methods, but this
|
||||
# specifically tests that two arrays of the same class but different dtype
|
||||
# do not evaluate equal
|
||||
a1 = pd.array([1, 2, None], dtype="Float64")
|
||||
a2 = pd.array([1, 2, None], dtype="Float32")
|
||||
assert a1.equals(a2) is False
|
||||
|
||||
|
||||
def test_equals_nan_vs_na():
|
||||
# GH#44382
|
||||
|
||||
mask = np.zeros(3, dtype=bool)
|
||||
data = np.array([1.0, np.nan, 3.0], dtype=np.float64)
|
||||
|
||||
left = FloatingArray(data, mask)
|
||||
assert left.equals(left)
|
||||
tm.assert_extension_array_equal(left, left)
|
||||
|
||||
assert left.equals(left.copy())
|
||||
assert left.equals(FloatingArray(data.copy(), mask.copy()))
|
||||
|
||||
mask2 = np.array([False, True, False], dtype=bool)
|
||||
data2 = np.array([1.0, 2.0, 3.0], dtype=np.float64)
|
||||
right = FloatingArray(data2, mask2)
|
||||
assert right.equals(right)
|
||||
tm.assert_extension_array_equal(right, right)
|
||||
|
||||
assert not left.equals(right)
|
||||
|
||||
# with mask[1] = True, the only difference is data[1], which should
|
||||
# not matter for equals
|
||||
mask[1] = True
|
||||
assert left.equals(right)
|
@ -0,0 +1,21 @@
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"to_concat_dtypes, result_dtype",
|
||||
[
|
||||
(["Float64", "Float64"], "Float64"),
|
||||
(["Float32", "Float64"], "Float64"),
|
||||
(["Float32", "Float32"], "Float32"),
|
||||
],
|
||||
)
|
||||
def test_concat_series(to_concat_dtypes, result_dtype):
|
||||
|
||||
result = pd.concat([pd.Series([1, 2, pd.NA], dtype=t) for t in to_concat_dtypes])
|
||||
expected = pd.concat([pd.Series([1, 2, pd.NA], dtype=object)] * 2).astype(
|
||||
result_dtype
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
@ -0,0 +1,197 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.compat import np_version_under1p20
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import FloatingArray
|
||||
from pandas.core.arrays.floating import (
|
||||
Float32Dtype,
|
||||
Float64Dtype,
|
||||
)
|
||||
|
||||
|
||||
def test_uses_pandas_na():
|
||||
a = pd.array([1, None], dtype=Float64Dtype())
|
||||
assert a[1] is pd.NA
|
||||
|
||||
|
||||
def test_floating_array_constructor():
|
||||
values = np.array([1, 2, 3, 4], dtype="float64")
|
||||
mask = np.array([False, False, False, True], dtype="bool")
|
||||
|
||||
result = FloatingArray(values, mask)
|
||||
expected = pd.array([1, 2, 3, np.nan], dtype="Float64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
tm.assert_numpy_array_equal(result._data, values)
|
||||
tm.assert_numpy_array_equal(result._mask, mask)
|
||||
|
||||
msg = r".* should be .* numpy array. Use the 'pd.array' function instead"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
FloatingArray(values.tolist(), mask)
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
FloatingArray(values, mask.tolist())
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
FloatingArray(values.astype(int), mask)
|
||||
|
||||
msg = r"__init__\(\) missing 1 required positional argument: 'mask'"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
FloatingArray(values)
|
||||
|
||||
|
||||
def test_floating_array_disallows_float16():
|
||||
# GH#44715
|
||||
arr = np.array([1, 2], dtype=np.float16)
|
||||
mask = np.array([False, False])
|
||||
|
||||
msg = "FloatingArray does not support np.float16 dtype"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
FloatingArray(arr, mask)
|
||||
|
||||
|
||||
def test_floating_array_disallows_Float16_dtype(request):
|
||||
# GH#44715
|
||||
if np_version_under1p20:
|
||||
# https://github.com/numpy/numpy/issues/20512
|
||||
mark = pytest.mark.xfail(reason="numpy does not raise on np.dtype('Float16')")
|
||||
request.node.add_marker(mark)
|
||||
|
||||
with pytest.raises(TypeError, match="data type 'Float16' not understood"):
|
||||
pd.array([1.0, 2.0], dtype="Float16")
|
||||
|
||||
|
||||
def test_floating_array_constructor_copy():
|
||||
values = np.array([1, 2, 3, 4], dtype="float64")
|
||||
mask = np.array([False, False, False, True], dtype="bool")
|
||||
|
||||
result = FloatingArray(values, mask)
|
||||
assert result._data is values
|
||||
assert result._mask is mask
|
||||
|
||||
result = FloatingArray(values, mask, copy=True)
|
||||
assert result._data is not values
|
||||
assert result._mask is not mask
|
||||
|
||||
|
||||
def test_to_array():
|
||||
result = pd.array([0.1, 0.2, 0.3, 0.4])
|
||||
expected = pd.array([0.1, 0.2, 0.3, 0.4], dtype="Float64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"a, b",
|
||||
[
|
||||
([1, None], [1, pd.NA]),
|
||||
([None], [pd.NA]),
|
||||
([None, np.nan], [pd.NA, pd.NA]),
|
||||
([1, np.nan], [1, pd.NA]),
|
||||
([np.nan], [pd.NA]),
|
||||
],
|
||||
)
|
||||
def test_to_array_none_is_nan(a, b):
|
||||
result = pd.array(a, dtype="Float64")
|
||||
expected = pd.array(b, dtype="Float64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_to_array_mixed_integer_float():
|
||||
result = pd.array([1, 2.0])
|
||||
expected = pd.array([1.0, 2.0], dtype="Float64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = pd.array([1, None, 2.0])
|
||||
expected = pd.array([1.0, None, 2.0], dtype="Float64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"values",
|
||||
[
|
||||
["foo", "bar"],
|
||||
["1", "2"],
|
||||
"foo",
|
||||
1,
|
||||
1.0,
|
||||
pd.date_range("20130101", periods=2),
|
||||
np.array(["foo"]),
|
||||
[[1, 2], [3, 4]],
|
||||
[np.nan, {"a": 1}],
|
||||
# GH#44514 all-NA case used to get quietly swapped out before checking ndim
|
||||
np.array([pd.NA] * 6, dtype=object).reshape(3, 2),
|
||||
],
|
||||
)
|
||||
def test_to_array_error(values):
|
||||
# error in converting existing arrays to FloatingArray
|
||||
msg = "|".join(
|
||||
[
|
||||
"cannot be converted to a FloatingDtype",
|
||||
"values must be a 1D list-like",
|
||||
"Cannot pass scalar",
|
||||
]
|
||||
)
|
||||
with pytest.raises((TypeError, ValueError), match=msg):
|
||||
pd.array(values, dtype="Float64")
|
||||
|
||||
|
||||
def test_to_array_inferred_dtype():
|
||||
# if values has dtype -> respect it
|
||||
result = pd.array(np.array([1, 2], dtype="float32"))
|
||||
assert result.dtype == Float32Dtype()
|
||||
|
||||
# if values have no dtype -> always float64
|
||||
result = pd.array([1.0, 2.0])
|
||||
assert result.dtype == Float64Dtype()
|
||||
|
||||
|
||||
def test_to_array_dtype_keyword():
|
||||
result = pd.array([1, 2], dtype="Float32")
|
||||
assert result.dtype == Float32Dtype()
|
||||
|
||||
# if values has dtype -> override it
|
||||
result = pd.array(np.array([1, 2], dtype="float32"), dtype="Float64")
|
||||
assert result.dtype == Float64Dtype()
|
||||
|
||||
|
||||
def test_to_array_integer():
|
||||
result = pd.array([1, 2], dtype="Float64")
|
||||
expected = pd.array([1.0, 2.0], dtype="Float64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# for integer dtypes, the itemsize is not preserved
|
||||
# TODO can we specify "floating" in general?
|
||||
result = pd.array(np.array([1, 2], dtype="int32"), dtype="Float64")
|
||||
assert result.dtype == Float64Dtype()
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"bool_values, values, target_dtype, expected_dtype",
|
||||
[
|
||||
([False, True], [0, 1], Float64Dtype(), Float64Dtype()),
|
||||
([False, True], [0, 1], "Float64", Float64Dtype()),
|
||||
([False, True, np.nan], [0, 1, np.nan], Float64Dtype(), Float64Dtype()),
|
||||
],
|
||||
)
|
||||
def test_to_array_bool(bool_values, values, target_dtype, expected_dtype):
|
||||
result = pd.array(bool_values, dtype=target_dtype)
|
||||
assert result.dtype == expected_dtype
|
||||
expected = pd.array(values, dtype=target_dtype)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_series_from_float(data):
|
||||
# construct from our dtype & string dtype
|
||||
dtype = data.dtype
|
||||
|
||||
# from float
|
||||
expected = pd.Series(data)
|
||||
result = pd.Series(data.to_numpy(na_value=np.nan, dtype="float"), dtype=str(dtype))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# from list
|
||||
expected = pd.Series(data)
|
||||
result = pd.Series(np.array(data).tolist(), dtype=str(dtype))
|
||||
tm.assert_series_equal(result, expected)
|
@ -0,0 +1,192 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.compat import IS64
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.mark.parametrize("ufunc", [np.abs, np.sign])
|
||||
# np.sign emits a warning with nans, <https://github.com/numpy/numpy/issues/15127>
|
||||
@pytest.mark.filterwarnings("ignore:invalid value encountered in sign")
|
||||
def test_ufuncs_single(ufunc):
|
||||
a = pd.array([1, 2, -3, np.nan], dtype="Float64")
|
||||
result = ufunc(a)
|
||||
expected = pd.array(ufunc(a.astype(float)), dtype="Float64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
s = pd.Series(a)
|
||||
result = ufunc(s)
|
||||
expected = pd.Series(expected)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("ufunc", [np.log, np.exp, np.sin, np.cos, np.sqrt])
|
||||
def test_ufuncs_single_float(ufunc):
|
||||
a = pd.array([1.0, 0.2, 3.0, np.nan], dtype="Float64")
|
||||
with np.errstate(invalid="ignore"):
|
||||
result = ufunc(a)
|
||||
expected = pd.array(ufunc(a.astype(float)), dtype="Float64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
s = pd.Series(a)
|
||||
with np.errstate(invalid="ignore"):
|
||||
result = ufunc(s)
|
||||
expected = pd.Series(ufunc(s.astype(float)), dtype="Float64")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("ufunc", [np.add, np.subtract])
|
||||
def test_ufuncs_binary_float(ufunc):
|
||||
# two FloatingArrays
|
||||
a = pd.array([1, 0.2, -3, np.nan], dtype="Float64")
|
||||
result = ufunc(a, a)
|
||||
expected = pd.array(ufunc(a.astype(float), a.astype(float)), dtype="Float64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# FloatingArray with numpy array
|
||||
arr = np.array([1, 2, 3, 4])
|
||||
result = ufunc(a, arr)
|
||||
expected = pd.array(ufunc(a.astype(float), arr), dtype="Float64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = ufunc(arr, a)
|
||||
expected = pd.array(ufunc(arr, a.astype(float)), dtype="Float64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# FloatingArray with scalar
|
||||
result = ufunc(a, 1)
|
||||
expected = pd.array(ufunc(a.astype(float), 1), dtype="Float64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = ufunc(1, a)
|
||||
expected = pd.array(ufunc(1, a.astype(float)), dtype="Float64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("values", [[0, 1], [0, None]])
|
||||
def test_ufunc_reduce_raises(values):
|
||||
arr = pd.array(values, dtype="Float64")
|
||||
|
||||
res = np.add.reduce(arr)
|
||||
expected = arr.sum(skipna=False)
|
||||
tm.assert_almost_equal(res, expected)
|
||||
|
||||
|
||||
@pytest.mark.skipif(not IS64, reason="GH 36579: fail on 32-bit system")
|
||||
@pytest.mark.parametrize(
|
||||
"pandasmethname, kwargs",
|
||||
[
|
||||
("var", {"ddof": 0}),
|
||||
("var", {"ddof": 1}),
|
||||
("kurtosis", {}),
|
||||
("skew", {}),
|
||||
("sem", {}),
|
||||
],
|
||||
)
|
||||
def test_stat_method(pandasmethname, kwargs):
|
||||
s = pd.Series(data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, np.nan, np.nan], dtype="Float64")
|
||||
pandasmeth = getattr(s, pandasmethname)
|
||||
result = pandasmeth(**kwargs)
|
||||
s2 = pd.Series(data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6], dtype="float64")
|
||||
pandasmeth = getattr(s2, pandasmethname)
|
||||
expected = pandasmeth(**kwargs)
|
||||
assert expected == result
|
||||
|
||||
|
||||
def test_value_counts_na():
|
||||
arr = pd.array([0.1, 0.2, 0.1, pd.NA], dtype="Float64")
|
||||
result = arr.value_counts(dropna=False)
|
||||
idx = pd.Index([0.1, 0.2, pd.NA], dtype=arr.dtype)
|
||||
assert idx.dtype == arr.dtype
|
||||
expected = pd.Series([2, 1, 1], index=idx, dtype="Int64")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = arr.value_counts(dropna=True)
|
||||
expected = pd.Series([2, 1], index=idx[:-1], dtype="Int64")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_value_counts_empty():
|
||||
ser = pd.Series([], dtype="Float64")
|
||||
result = ser.value_counts()
|
||||
idx = pd.Index([], dtype="Float64")
|
||||
assert idx.dtype == "Float64"
|
||||
expected = pd.Series([], index=idx, dtype="Int64")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_value_counts_with_normalize():
|
||||
ser = pd.Series([0.1, 0.2, 0.1, pd.NA], dtype="Float64")
|
||||
result = ser.value_counts(normalize=True)
|
||||
expected = pd.Series([2, 1], index=ser[:2], dtype="Float64") / 3
|
||||
assert expected.index.dtype == ser.dtype
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
@pytest.mark.parametrize("min_count", [0, 4])
|
||||
def test_floating_array_sum(skipna, min_count, dtype):
|
||||
arr = pd.array([1, 2, 3, None], dtype=dtype)
|
||||
result = arr.sum(skipna=skipna, min_count=min_count)
|
||||
if skipna and min_count == 0:
|
||||
assert result == 6.0
|
||||
else:
|
||||
assert result is pd.NA
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"values, expected", [([1, 2, 3], 6.0), ([1, 2, 3, None], 6.0), ([None], 0.0)]
|
||||
)
|
||||
def test_floating_array_numpy_sum(values, expected):
|
||||
arr = pd.array(values, dtype="Float64")
|
||||
result = np.sum(arr)
|
||||
assert result == expected
|
||||
|
||||
|
||||
@pytest.mark.parametrize("op", ["sum", "min", "max", "prod"])
|
||||
def test_preserve_dtypes(op):
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"A": ["a", "b", "b"],
|
||||
"B": [1, None, 3],
|
||||
"C": pd.array([0.1, None, 3.0], dtype="Float64"),
|
||||
}
|
||||
)
|
||||
|
||||
# op
|
||||
result = getattr(df.C, op)()
|
||||
assert isinstance(result, np.float64)
|
||||
|
||||
# groupby
|
||||
result = getattr(df.groupby("A"), op)()
|
||||
|
||||
expected = pd.DataFrame(
|
||||
{"B": np.array([1.0, 3.0]), "C": pd.array([0.1, 3], dtype="Float64")},
|
||||
index=pd.Index(["a", "b"], name="A"),
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
@pytest.mark.parametrize("method", ["min", "max"])
|
||||
def test_floating_array_min_max(skipna, method, dtype):
|
||||
arr = pd.array([0.0, 1.0, None], dtype=dtype)
|
||||
func = getattr(arr, method)
|
||||
result = func(skipna=skipna)
|
||||
if skipna:
|
||||
assert result == (0 if method == "min" else 1)
|
||||
else:
|
||||
assert result is pd.NA
|
||||
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
@pytest.mark.parametrize("min_count", [0, 9])
|
||||
def test_floating_array_prod(skipna, min_count, dtype):
|
||||
arr = pd.array([1.0, 2.0, None], dtype=dtype)
|
||||
result = arr.prod(skipna=skipna, min_count=min_count)
|
||||
if skipna and min_count == 0:
|
||||
assert result == 2
|
||||
else:
|
||||
assert result is pd.NA
|
@ -0,0 +1,48 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas.core.arrays.floating import (
|
||||
Float32Dtype,
|
||||
Float64Dtype,
|
||||
)
|
||||
|
||||
|
||||
def test_dtypes(dtype):
|
||||
# smoke tests on auto dtype construction
|
||||
|
||||
np.dtype(dtype.type).kind == "f"
|
||||
assert dtype.name is not None
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtype, expected",
|
||||
[(Float32Dtype(), "Float32Dtype()"), (Float64Dtype(), "Float64Dtype()")],
|
||||
)
|
||||
def test_repr_dtype(dtype, expected):
|
||||
assert repr(dtype) == expected
|
||||
|
||||
|
||||
def test_repr_array():
|
||||
result = repr(pd.array([1.0, None, 3.0]))
|
||||
expected = "<FloatingArray>\n[1.0, <NA>, 3.0]\nLength: 3, dtype: Float64"
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_repr_array_long():
|
||||
data = pd.array([1.0, 2.0, None] * 1000)
|
||||
expected = """<FloatingArray>
|
||||
[ 1.0, 2.0, <NA>, 1.0, 2.0, <NA>, 1.0, 2.0, <NA>, 1.0,
|
||||
...
|
||||
<NA>, 1.0, 2.0, <NA>, 1.0, 2.0, <NA>, 1.0, 2.0, <NA>]
|
||||
Length: 3000, dtype: Float64"""
|
||||
result = repr(data)
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_frame_repr(data_missing):
|
||||
|
||||
df = pd.DataFrame({"A": data_missing})
|
||||
result = repr(df)
|
||||
expected = " A\n0 <NA>\n1 0.1"
|
||||
assert result == expected
|
@ -0,0 +1,132 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import FloatingArray
|
||||
|
||||
|
||||
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
|
||||
def test_to_numpy(box):
|
||||
con = pd.Series if box else pd.array
|
||||
|
||||
# default (with or without missing values) -> object dtype
|
||||
arr = con([0.1, 0.2, 0.3], dtype="Float64")
|
||||
result = arr.to_numpy()
|
||||
expected = np.array([0.1, 0.2, 0.3], dtype="object")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
arr = con([0.1, 0.2, None], dtype="Float64")
|
||||
result = arr.to_numpy()
|
||||
expected = np.array([0.1, 0.2, pd.NA], dtype="object")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
|
||||
def test_to_numpy_float(box):
|
||||
con = pd.Series if box else pd.array
|
||||
|
||||
# no missing values -> can convert to float, otherwise raises
|
||||
arr = con([0.1, 0.2, 0.3], dtype="Float64")
|
||||
result = arr.to_numpy(dtype="float64")
|
||||
expected = np.array([0.1, 0.2, 0.3], dtype="float64")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
arr = con([0.1, 0.2, None], dtype="Float64")
|
||||
with pytest.raises(ValueError, match="cannot convert to 'float64'-dtype"):
|
||||
result = arr.to_numpy(dtype="float64")
|
||||
|
||||
# need to explicitly specify na_value
|
||||
result = arr.to_numpy(dtype="float64", na_value=np.nan)
|
||||
expected = np.array([0.1, 0.2, np.nan], dtype="float64")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
|
||||
def test_to_numpy_int(box):
|
||||
con = pd.Series if box else pd.array
|
||||
|
||||
# no missing values -> can convert to int, otherwise raises
|
||||
arr = con([1.0, 2.0, 3.0], dtype="Float64")
|
||||
result = arr.to_numpy(dtype="int64")
|
||||
expected = np.array([1, 2, 3], dtype="int64")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
arr = con([1.0, 2.0, None], dtype="Float64")
|
||||
with pytest.raises(ValueError, match="cannot convert to 'int64'-dtype"):
|
||||
result = arr.to_numpy(dtype="int64")
|
||||
|
||||
# automatic casting (floors the values)
|
||||
arr = con([0.1, 0.9, 1.1], dtype="Float64")
|
||||
result = arr.to_numpy(dtype="int64")
|
||||
expected = np.array([0, 0, 1], dtype="int64")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
|
||||
def test_to_numpy_na_value(box):
|
||||
con = pd.Series if box else pd.array
|
||||
|
||||
arr = con([0.0, 1.0, None], dtype="Float64")
|
||||
result = arr.to_numpy(dtype=object, na_value=None)
|
||||
expected = np.array([0.0, 1.0, None], dtype="object")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = arr.to_numpy(dtype=bool, na_value=False)
|
||||
expected = np.array([False, True, False], dtype="bool")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = arr.to_numpy(dtype="int64", na_value=-99)
|
||||
expected = np.array([0, 1, -99], dtype="int64")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_to_numpy_na_value_with_nan():
|
||||
# array with both NaN and NA -> only fill NA with `na_value`
|
||||
arr = FloatingArray(np.array([0.0, np.nan, 0.0]), np.array([False, False, True]))
|
||||
result = arr.to_numpy(dtype="float64", na_value=-1)
|
||||
expected = np.array([0.0, np.nan, -1.0], dtype="float64")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("dtype", ["float64", "float32", "int32", "int64", "bool"])
|
||||
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
|
||||
def test_to_numpy_dtype(box, dtype):
|
||||
con = pd.Series if box else pd.array
|
||||
arr = con([0.0, 1.0], dtype="Float64")
|
||||
|
||||
result = arr.to_numpy(dtype=dtype)
|
||||
expected = np.array([0, 1], dtype=dtype)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("dtype", ["float64", "float32", "int32", "int64", "bool"])
|
||||
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
|
||||
def test_to_numpy_na_raises(box, dtype):
|
||||
con = pd.Series if box else pd.array
|
||||
arr = con([0.0, 1.0, None], dtype="Float64")
|
||||
with pytest.raises(ValueError, match=dtype):
|
||||
arr.to_numpy(dtype=dtype)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
|
||||
def test_to_numpy_string(box, dtype):
|
||||
con = pd.Series if box else pd.array
|
||||
arr = con([0.0, 1.0, None], dtype="Float64")
|
||||
|
||||
result = arr.to_numpy(dtype="str")
|
||||
expected = np.array([0.0, 1.0, pd.NA], dtype="<U32")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_to_numpy_copy():
|
||||
# to_numpy can be zero-copy if no missing values
|
||||
arr = pd.array([0.1, 0.2, 0.3], dtype="Float64")
|
||||
result = arr.to_numpy(dtype="float64")
|
||||
result[0] = 10
|
||||
tm.assert_extension_array_equal(arr, pd.array([10, 0.2, 0.3], dtype="Float64"))
|
||||
|
||||
arr = pd.array([0.1, 0.2, 0.3], dtype="Float64")
|
||||
result = arr.to_numpy(dtype="float64", copy=True)
|
||||
result[0] = 10
|
||||
tm.assert_extension_array_equal(arr, pd.array([0.1, 0.2, 0.3], dtype="Float64"))
|
@ -0,0 +1,52 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas.core.arrays.integer import (
|
||||
Int8Dtype,
|
||||
Int16Dtype,
|
||||
Int32Dtype,
|
||||
Int64Dtype,
|
||||
UInt8Dtype,
|
||||
UInt16Dtype,
|
||||
UInt32Dtype,
|
||||
UInt64Dtype,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(
|
||||
params=[
|
||||
Int8Dtype,
|
||||
Int16Dtype,
|
||||
Int32Dtype,
|
||||
Int64Dtype,
|
||||
UInt8Dtype,
|
||||
UInt16Dtype,
|
||||
UInt32Dtype,
|
||||
UInt64Dtype,
|
||||
]
|
||||
)
|
||||
def dtype(request):
|
||||
return request.param()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data(dtype):
|
||||
return pd.array(
|
||||
list(range(8)) + [np.nan] + list(range(10, 98)) + [np.nan] + [99, 100],
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data_missing(dtype):
|
||||
return pd.array([np.nan, 1], dtype=dtype)
|
||||
|
||||
|
||||
@pytest.fixture(params=["data", "data_missing"])
|
||||
def all_data(request, data, data_missing):
|
||||
"""Parametrized fixture giving 'data' and 'data_missing'"""
|
||||
if request.param == "data":
|
||||
return data
|
||||
elif request.param == "data_missing":
|
||||
return data_missing
|
@ -0,0 +1,303 @@
|
||||
import operator
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.compat import np_version_under1p20
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import FloatingArray
|
||||
import pandas.core.ops as ops
|
||||
|
||||
# Basic test for the arithmetic array ops
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"opname, exp",
|
||||
[("add", [1, 3, None, None, 9]), ("mul", [0, 2, None, None, 20])],
|
||||
ids=["add", "mul"],
|
||||
)
|
||||
def test_add_mul(dtype, opname, exp):
|
||||
a = pd.array([0, 1, None, 3, 4], dtype=dtype)
|
||||
b = pd.array([1, 2, 3, None, 5], dtype=dtype)
|
||||
|
||||
# array / array
|
||||
expected = pd.array(exp, dtype=dtype)
|
||||
|
||||
op = getattr(operator, opname)
|
||||
result = op(a, b)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
op = getattr(ops, "r" + opname)
|
||||
result = op(a, b)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_sub(dtype):
|
||||
a = pd.array([1, 2, 3, None, 5], dtype=dtype)
|
||||
b = pd.array([0, 1, None, 3, 4], dtype=dtype)
|
||||
|
||||
result = a - b
|
||||
expected = pd.array([1, 1, None, None, 1], dtype=dtype)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_div(dtype):
|
||||
a = pd.array([1, 2, 3, None, 5], dtype=dtype)
|
||||
b = pd.array([0, 1, None, 3, 4], dtype=dtype)
|
||||
|
||||
result = a / b
|
||||
expected = pd.array([np.inf, 2, None, None, 1.25], dtype="Float64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)])
|
||||
def test_divide_by_zero(zero, negative):
|
||||
# https://github.com/pandas-dev/pandas/issues/27398, GH#22793
|
||||
a = pd.array([0, 1, -1, None], dtype="Int64")
|
||||
result = a / zero
|
||||
expected = FloatingArray(
|
||||
np.array([np.nan, np.inf, -np.inf, 1], dtype="float64"),
|
||||
np.array([False, False, False, True]),
|
||||
)
|
||||
if negative:
|
||||
expected *= -1
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_floordiv(dtype):
|
||||
a = pd.array([1, 2, 3, None, 5], dtype=dtype)
|
||||
b = pd.array([0, 1, None, 3, 4], dtype=dtype)
|
||||
|
||||
result = a // b
|
||||
# Series op sets 1//0 to np.inf, which IntegerArray does not do (yet)
|
||||
expected = pd.array([0, 2, None, None, 1], dtype=dtype)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_mod(dtype):
|
||||
a = pd.array([1, 2, 3, None, 5], dtype=dtype)
|
||||
b = pd.array([0, 1, None, 3, 4], dtype=dtype)
|
||||
|
||||
result = a % b
|
||||
expected = pd.array([0, 0, None, None, 1], dtype=dtype)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_pow_scalar():
|
||||
a = pd.array([-1, 0, 1, None, 2], dtype="Int64")
|
||||
result = a**0
|
||||
expected = pd.array([1, 1, 1, 1, 1], dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = a**1
|
||||
expected = pd.array([-1, 0, 1, None, 2], dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = a**pd.NA
|
||||
expected = pd.array([None, None, 1, None, None], dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = a**np.nan
|
||||
expected = FloatingArray(
|
||||
np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype="float64"),
|
||||
np.array([False, False, False, True, False]),
|
||||
)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# reversed
|
||||
a = a[1:] # Can't raise integers to negative powers.
|
||||
|
||||
result = 0**a
|
||||
expected = pd.array([1, 0, None, 0], dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = 1**a
|
||||
expected = pd.array([1, 1, 1, 1], dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = pd.NA**a
|
||||
expected = pd.array([1, None, None, None], dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = np.nan**a
|
||||
expected = FloatingArray(
|
||||
np.array([1, np.nan, np.nan, np.nan], dtype="float64"),
|
||||
np.array([False, False, True, False]),
|
||||
)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_pow_array():
|
||||
a = pd.array([0, 0, 0, 1, 1, 1, None, None, None])
|
||||
b = pd.array([0, 1, None, 0, 1, None, 0, 1, None])
|
||||
result = a**b
|
||||
expected = pd.array([1, 0, None, 1, 1, 1, 1, None, None])
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_rpow_one_to_na():
|
||||
# https://github.com/pandas-dev/pandas/issues/22022
|
||||
# https://github.com/pandas-dev/pandas/issues/29997
|
||||
arr = pd.array([np.nan, np.nan], dtype="Int64")
|
||||
result = np.array([1.0, 2.0]) ** arr
|
||||
expected = pd.array([1.0, np.nan], dtype="Float64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("other", [0, 0.5])
|
||||
def test_numpy_zero_dim_ndarray(other):
|
||||
arr = pd.array([1, None, 2])
|
||||
result = arr + np.array(other)
|
||||
expected = arr + other
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
|
||||
# Test generic characteristics / errors
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
def test_error_invalid_values(data, all_arithmetic_operators):
|
||||
|
||||
op = all_arithmetic_operators
|
||||
s = pd.Series(data)
|
||||
ops = getattr(s, op)
|
||||
|
||||
# invalid scalars
|
||||
msg = (
|
||||
r"(:?can only perform ops with numeric values)"
|
||||
r"|(:?IntegerArray cannot perform the operation mod)"
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
ops("foo")
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
ops(pd.Timestamp("20180101"))
|
||||
|
||||
# invalid array-likes
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
ops(pd.Series("foo", index=s.index))
|
||||
|
||||
msg = "|".join(
|
||||
[
|
||||
"can only perform ops with numeric values",
|
||||
"cannot perform .* with this index type: DatetimeArray",
|
||||
"Addition/subtraction of integers and integer-arrays "
|
||||
"with DatetimeArray is no longer supported. *",
|
||||
]
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
ops(pd.Series(pd.date_range("20180101", periods=len(s))))
|
||||
|
||||
|
||||
# Various
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
# TODO test unsigned overflow
|
||||
|
||||
|
||||
def test_arith_coerce_scalar(data, all_arithmetic_operators):
|
||||
op = tm.get_op_from_name(all_arithmetic_operators)
|
||||
s = pd.Series(data)
|
||||
other = 0.01
|
||||
|
||||
result = op(s, other)
|
||||
expected = op(s.astype(float), other)
|
||||
expected = expected.astype("Float64")
|
||||
# rfloordiv results in nan instead of inf
|
||||
if all_arithmetic_operators == "__rfloordiv__" and np_version_under1p20:
|
||||
# for numpy 1.20 https://github.com/numpy/numpy/pull/16161
|
||||
# updated floordiv, now matches our behavior defined in core.ops
|
||||
mask = (
|
||||
((expected == np.inf) | (expected == -np.inf)).fillna(False).to_numpy(bool)
|
||||
)
|
||||
expected.array._data[mask] = np.nan
|
||||
# rmod results in NaN that wasn't NA in original nullable Series -> unmask it
|
||||
elif all_arithmetic_operators == "__rmod__":
|
||||
mask = (s == 0).fillna(False).to_numpy(bool)
|
||||
expected.array._mask[mask] = False
|
||||
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("other", [1.0, np.array(1.0)])
|
||||
def test_arithmetic_conversion(all_arithmetic_operators, other):
|
||||
# if we have a float operand we should have a float result
|
||||
# if that is equal to an integer
|
||||
op = tm.get_op_from_name(all_arithmetic_operators)
|
||||
|
||||
s = pd.Series([1, 2, 3], dtype="Int64")
|
||||
result = op(s, other)
|
||||
assert result.dtype == "Float64"
|
||||
|
||||
|
||||
def test_cross_type_arithmetic():
|
||||
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"A": pd.Series([1, 2, np.nan], dtype="Int64"),
|
||||
"B": pd.Series([1, np.nan, 3], dtype="UInt8"),
|
||||
"C": [1, 2, 3],
|
||||
}
|
||||
)
|
||||
|
||||
result = df.A + df.C
|
||||
expected = pd.Series([2, 4, np.nan], dtype="Int64")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = (df.A + df.C) * 3 == 12
|
||||
expected = pd.Series([False, True, None], dtype="boolean")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = df.A + df.B
|
||||
expected = pd.Series([2, np.nan, np.nan], dtype="Int64")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("op", ["mean"])
|
||||
def test_reduce_to_float(op):
|
||||
# some reduce ops always return float, even if the result
|
||||
# is a rounded number
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"A": ["a", "b", "b"],
|
||||
"B": [1, None, 3],
|
||||
"C": pd.array([1, None, 3], dtype="Int64"),
|
||||
}
|
||||
)
|
||||
|
||||
# op
|
||||
result = getattr(df.C, op)()
|
||||
assert isinstance(result, float)
|
||||
|
||||
# groupby
|
||||
result = getattr(df.groupby("A"), op)()
|
||||
|
||||
expected = pd.DataFrame(
|
||||
{"B": np.array([1.0, 3.0]), "C": pd.array([1, 3], dtype="Float64")},
|
||||
index=pd.Index(["a", "b"], name="A"),
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"source, neg_target, abs_target",
|
||||
[
|
||||
([1, 2, 3], [-1, -2, -3], [1, 2, 3]),
|
||||
([1, 2, None], [-1, -2, None], [1, 2, None]),
|
||||
([-1, 0, 1], [1, 0, -1], [1, 0, 1]),
|
||||
],
|
||||
)
|
||||
def test_unary_int_operators(any_signed_int_ea_dtype, source, neg_target, abs_target):
|
||||
dtype = any_signed_int_ea_dtype
|
||||
arr = pd.array(source, dtype=dtype)
|
||||
neg_result, pos_result, abs_result = -arr, +arr, abs(arr)
|
||||
neg_target = pd.array(neg_target, dtype=dtype)
|
||||
abs_target = pd.array(abs_target, dtype=dtype)
|
||||
|
||||
tm.assert_extension_array_equal(neg_result, neg_target)
|
||||
tm.assert_extension_array_equal(pos_result, arr)
|
||||
assert not tm.shares_memory(pos_result, arr)
|
||||
tm.assert_extension_array_equal(abs_result, abs_target)
|
@ -0,0 +1,38 @@
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas.tests.arrays.masked_shared import (
|
||||
ComparisonOps,
|
||||
NumericOps,
|
||||
)
|
||||
|
||||
|
||||
class TestComparisonOps(NumericOps, ComparisonOps):
|
||||
@pytest.mark.parametrize("other", [True, False, pd.NA, -1, 0, 1])
|
||||
def test_scalar(self, other, comparison_op, dtype):
|
||||
ComparisonOps.test_scalar(self, other, comparison_op, dtype)
|
||||
|
||||
def test_compare_to_int(self, dtype, comparison_op):
|
||||
# GH 28930
|
||||
op_name = f"__{comparison_op.__name__}__"
|
||||
s1 = pd.Series([1, None, 3], dtype=dtype)
|
||||
s2 = pd.Series([1, None, 3], dtype="float")
|
||||
|
||||
method = getattr(s1, op_name)
|
||||
result = method(2)
|
||||
|
||||
method = getattr(s2, op_name)
|
||||
expected = method(2).astype("boolean")
|
||||
expected[s2.isna()] = pd.NA
|
||||
|
||||
self.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_equals():
|
||||
# GH-30652
|
||||
# equals is generally tested in /tests/extension/base/methods, but this
|
||||
# specifically tests that two arrays of the same class but different dtype
|
||||
# do not evaluate equal
|
||||
a1 = pd.array([1, 2, None], dtype="Int64")
|
||||
a2 = pd.array([1, 2, None], dtype="Int32")
|
||||
assert a1.equals(a2) is False
|
@ -0,0 +1,65 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"to_concat_dtypes, result_dtype",
|
||||
[
|
||||
(["Int64", "Int64"], "Int64"),
|
||||
(["UInt64", "UInt64"], "UInt64"),
|
||||
(["Int8", "Int8"], "Int8"),
|
||||
(["Int8", "Int16"], "Int16"),
|
||||
(["UInt8", "Int8"], "Int16"),
|
||||
(["Int32", "UInt32"], "Int64"),
|
||||
(["Int64", "UInt64"], "Float64"),
|
||||
(["Int64", "boolean"], "Int64"),
|
||||
(["UInt8", "boolean"], "UInt8"),
|
||||
],
|
||||
)
|
||||
def test_concat_series(to_concat_dtypes, result_dtype):
|
||||
|
||||
result = pd.concat([pd.Series([0, 1, pd.NA], dtype=t) for t in to_concat_dtypes])
|
||||
expected = pd.concat([pd.Series([0, 1, pd.NA], dtype=object)] * 2).astype(
|
||||
result_dtype
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# order doesn't matter for result
|
||||
result = pd.concat(
|
||||
[pd.Series([0, 1, pd.NA], dtype=t) for t in to_concat_dtypes[::-1]]
|
||||
)
|
||||
expected = pd.concat([pd.Series([0, 1, pd.NA], dtype=object)] * 2).astype(
|
||||
result_dtype
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"to_concat_dtypes, result_dtype",
|
||||
[
|
||||
(["Int64", "int64"], "Int64"),
|
||||
(["UInt64", "uint64"], "UInt64"),
|
||||
(["Int8", "int8"], "Int8"),
|
||||
(["Int8", "int16"], "Int16"),
|
||||
(["UInt8", "int8"], "Int16"),
|
||||
(["Int32", "uint32"], "Int64"),
|
||||
(["Int64", "uint64"], "Float64"),
|
||||
(["Int64", "bool"], "Int64"),
|
||||
(["UInt8", "bool"], "UInt8"),
|
||||
],
|
||||
)
|
||||
def test_concat_series_with_numpy(to_concat_dtypes, result_dtype):
|
||||
|
||||
s1 = pd.Series([0, 1, pd.NA], dtype=to_concat_dtypes[0])
|
||||
s2 = pd.Series(np.array([0, 1], dtype=to_concat_dtypes[1]))
|
||||
result = pd.concat([s1, s2], ignore_index=True)
|
||||
expected = pd.Series([0, 1, pd.NA, 0, 1], dtype=object).astype(result_dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# order doesn't matter for result
|
||||
result = pd.concat([s2, s1], ignore_index=True)
|
||||
expected = pd.Series([0, 1, 0, 1, pd.NA], dtype=object).astype(result_dtype)
|
||||
tm.assert_series_equal(result, expected)
|
@ -0,0 +1,231 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.api.types import is_integer
|
||||
from pandas.core.arrays import IntegerArray
|
||||
from pandas.core.arrays.integer import (
|
||||
Int8Dtype,
|
||||
Int32Dtype,
|
||||
Int64Dtype,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(params=[pd.array, IntegerArray._from_sequence])
|
||||
def constructor(request):
|
||||
return request.param
|
||||
|
||||
|
||||
def test_uses_pandas_na():
|
||||
a = pd.array([1, None], dtype=Int64Dtype())
|
||||
assert a[1] is pd.NA
|
||||
|
||||
|
||||
def test_from_dtype_from_float(data):
|
||||
# construct from our dtype & string dtype
|
||||
dtype = data.dtype
|
||||
|
||||
# from float
|
||||
expected = pd.Series(data)
|
||||
result = pd.Series(data.to_numpy(na_value=np.nan, dtype="float"), dtype=str(dtype))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# from int / list
|
||||
expected = pd.Series(data)
|
||||
result = pd.Series(np.array(data).tolist(), dtype=str(dtype))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# from int / array
|
||||
expected = pd.Series(data).dropna().reset_index(drop=True)
|
||||
dropped = np.array(data.dropna()).astype(np.dtype(dtype.type))
|
||||
result = pd.Series(dropped, dtype=str(dtype))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_conversions(data_missing):
|
||||
# astype to object series
|
||||
df = pd.DataFrame({"A": data_missing})
|
||||
result = df["A"].astype("object")
|
||||
expected = pd.Series(np.array([np.nan, 1], dtype=object), name="A")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# convert to object ndarray
|
||||
# we assert that we are exactly equal
|
||||
# including type conversions of scalars
|
||||
result = df["A"].astype("object").values
|
||||
expected = np.array([pd.NA, 1], dtype=object)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
for r, e in zip(result, expected):
|
||||
if pd.isnull(r):
|
||||
assert pd.isnull(e)
|
||||
elif is_integer(r):
|
||||
assert r == e
|
||||
assert is_integer(e)
|
||||
else:
|
||||
assert r == e
|
||||
assert type(r) == type(e)
|
||||
|
||||
|
||||
def test_integer_array_constructor():
|
||||
values = np.array([1, 2, 3, 4], dtype="int64")
|
||||
mask = np.array([False, False, False, True], dtype="bool")
|
||||
|
||||
result = IntegerArray(values, mask)
|
||||
expected = pd.array([1, 2, 3, np.nan], dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
msg = r".* should be .* numpy array. Use the 'pd.array' function instead"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
IntegerArray(values.tolist(), mask)
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
IntegerArray(values, mask.tolist())
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
IntegerArray(values.astype(float), mask)
|
||||
msg = r"__init__\(\) missing 1 required positional argument: 'mask'"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
IntegerArray(values)
|
||||
|
||||
|
||||
def test_integer_array_constructor_copy():
|
||||
values = np.array([1, 2, 3, 4], dtype="int64")
|
||||
mask = np.array([False, False, False, True], dtype="bool")
|
||||
|
||||
result = IntegerArray(values, mask)
|
||||
assert result._data is values
|
||||
assert result._mask is mask
|
||||
|
||||
result = IntegerArray(values, mask, copy=True)
|
||||
assert result._data is not values
|
||||
assert result._mask is not mask
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"a, b",
|
||||
[
|
||||
([1, None], [1, np.nan]),
|
||||
([None], [np.nan]),
|
||||
([None, np.nan], [np.nan, np.nan]),
|
||||
([np.nan, np.nan], [np.nan, np.nan]),
|
||||
],
|
||||
)
|
||||
def test_to_integer_array_none_is_nan(a, b):
|
||||
result = pd.array(a, dtype="Int64")
|
||||
expected = pd.array(b, dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"values",
|
||||
[
|
||||
["foo", "bar"],
|
||||
"foo",
|
||||
1,
|
||||
1.0,
|
||||
pd.date_range("20130101", periods=2),
|
||||
np.array(["foo"]),
|
||||
[[1, 2], [3, 4]],
|
||||
[np.nan, {"a": 1}],
|
||||
],
|
||||
)
|
||||
def test_to_integer_array_error(values):
|
||||
# error in converting existing arrays to IntegerArrays
|
||||
msg = "|".join(
|
||||
[
|
||||
r"cannot be converted to an IntegerDtype",
|
||||
r"invalid literal for int\(\) with base 10:",
|
||||
r"values must be a 1D list-like",
|
||||
r"Cannot pass scalar",
|
||||
]
|
||||
)
|
||||
with pytest.raises((ValueError, TypeError), match=msg):
|
||||
pd.array(values, dtype="Int64")
|
||||
|
||||
with pytest.raises((ValueError, TypeError), match=msg):
|
||||
IntegerArray._from_sequence(values)
|
||||
|
||||
|
||||
def test_to_integer_array_inferred_dtype(constructor):
|
||||
# if values has dtype -> respect it
|
||||
result = constructor(np.array([1, 2], dtype="int8"))
|
||||
assert result.dtype == Int8Dtype()
|
||||
result = constructor(np.array([1, 2], dtype="int32"))
|
||||
assert result.dtype == Int32Dtype()
|
||||
|
||||
# if values have no dtype -> always int64
|
||||
result = constructor([1, 2])
|
||||
assert result.dtype == Int64Dtype()
|
||||
|
||||
|
||||
def test_to_integer_array_dtype_keyword(constructor):
|
||||
result = constructor([1, 2], dtype="Int8")
|
||||
assert result.dtype == Int8Dtype()
|
||||
|
||||
# if values has dtype -> override it
|
||||
result = constructor(np.array([1, 2], dtype="int8"), dtype="Int32")
|
||||
assert result.dtype == Int32Dtype()
|
||||
|
||||
|
||||
def test_to_integer_array_float():
|
||||
result = IntegerArray._from_sequence([1.0, 2.0])
|
||||
expected = pd.array([1, 2], dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
with pytest.raises(TypeError, match="cannot safely cast non-equivalent"):
|
||||
IntegerArray._from_sequence([1.5, 2.0])
|
||||
|
||||
# for float dtypes, the itemsize is not preserved
|
||||
result = IntegerArray._from_sequence(np.array([1.0, 2.0], dtype="float32"))
|
||||
assert result.dtype == Int64Dtype()
|
||||
|
||||
|
||||
def test_to_integer_array_str():
|
||||
result = IntegerArray._from_sequence(["1", "2", None])
|
||||
expected = pd.array([1, 2, np.nan], dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
with pytest.raises(
|
||||
ValueError, match=r"invalid literal for int\(\) with base 10: .*"
|
||||
):
|
||||
IntegerArray._from_sequence(["1", "2", ""])
|
||||
|
||||
with pytest.raises(
|
||||
ValueError, match=r"invalid literal for int\(\) with base 10: .*"
|
||||
):
|
||||
IntegerArray._from_sequence(["1.5", "2.0"])
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"bool_values, int_values, target_dtype, expected_dtype",
|
||||
[
|
||||
([False, True], [0, 1], Int64Dtype(), Int64Dtype()),
|
||||
([False, True], [0, 1], "Int64", Int64Dtype()),
|
||||
([False, True, np.nan], [0, 1, np.nan], Int64Dtype(), Int64Dtype()),
|
||||
],
|
||||
)
|
||||
def test_to_integer_array_bool(
|
||||
constructor, bool_values, int_values, target_dtype, expected_dtype
|
||||
):
|
||||
result = constructor(bool_values, dtype=target_dtype)
|
||||
assert result.dtype == expected_dtype
|
||||
expected = pd.array(int_values, dtype=target_dtype)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"values, to_dtype, result_dtype",
|
||||
[
|
||||
(np.array([1], dtype="int64"), None, Int64Dtype),
|
||||
(np.array([1, np.nan]), None, Int64Dtype),
|
||||
(np.array([1, np.nan]), "int8", Int8Dtype),
|
||||
],
|
||||
)
|
||||
def test_to_integer_array(values, to_dtype, result_dtype):
|
||||
# convert existing arrays to IntegerArrays
|
||||
result = IntegerArray._from_sequence(values, dtype=to_dtype)
|
||||
assert result.dtype == result_dtype()
|
||||
expected = pd.array(values, dtype=result_dtype())
|
||||
tm.assert_extension_array_equal(result, expected)
|
@ -0,0 +1,297 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.core.dtypes.generic import ABCIndex
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays.integer import (
|
||||
Int8Dtype,
|
||||
UInt32Dtype,
|
||||
)
|
||||
|
||||
|
||||
def test_dtypes(dtype):
|
||||
# smoke tests on auto dtype construction
|
||||
|
||||
if dtype.is_signed_integer:
|
||||
assert np.dtype(dtype.type).kind == "i"
|
||||
else:
|
||||
assert np.dtype(dtype.type).kind == "u"
|
||||
assert dtype.name is not None
|
||||
|
||||
|
||||
@pytest.mark.parametrize("op", ["sum", "min", "max", "prod"])
|
||||
def test_preserve_dtypes(op):
|
||||
# TODO(#22346): preserve Int64 dtype
|
||||
# for ops that enable (mean would actually work here
|
||||
# but generally it is a float return value)
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"A": ["a", "b", "b"],
|
||||
"B": [1, None, 3],
|
||||
"C": pd.array([1, None, 3], dtype="Int64"),
|
||||
}
|
||||
)
|
||||
|
||||
# op
|
||||
result = getattr(df.C, op)()
|
||||
if op in {"sum", "prod", "min", "max"}:
|
||||
assert isinstance(result, np.int64)
|
||||
else:
|
||||
assert isinstance(result, int)
|
||||
|
||||
# groupby
|
||||
result = getattr(df.groupby("A"), op)()
|
||||
|
||||
expected = pd.DataFrame(
|
||||
{"B": np.array([1.0, 3.0]), "C": pd.array([1, 3], dtype="Int64")},
|
||||
index=pd.Index(["a", "b"], name="A"),
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_astype_nansafe():
|
||||
# see gh-22343
|
||||
arr = pd.array([np.nan, 1, 2], dtype="Int8")
|
||||
msg = "cannot convert to 'uint32'-dtype NumPy array with missing values."
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr.astype("uint32")
|
||||
|
||||
|
||||
@pytest.mark.parametrize("dropna", [True, False])
|
||||
def test_construct_index(all_data, dropna):
|
||||
# ensure that we do not coerce to Float64Index, rather
|
||||
# keep as Index
|
||||
|
||||
all_data = all_data[:10]
|
||||
if dropna:
|
||||
other = np.array(all_data[~all_data.isna()])
|
||||
else:
|
||||
other = all_data
|
||||
|
||||
result = pd.Index(pd.array(other, dtype=all_data.dtype))
|
||||
expected = pd.Index(other, dtype=all_data.dtype)
|
||||
assert all_data.dtype == expected.dtype # dont coerce to object
|
||||
|
||||
tm.assert_index_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("dropna", [True, False])
|
||||
def test_astype_index(all_data, dropna):
|
||||
# as an int/uint index to Index
|
||||
|
||||
all_data = all_data[:10]
|
||||
if dropna:
|
||||
other = all_data[~all_data.isna()]
|
||||
else:
|
||||
other = all_data
|
||||
|
||||
dtype = all_data.dtype
|
||||
idx = pd.Index._with_infer(np.array(other))
|
||||
assert isinstance(idx, ABCIndex)
|
||||
|
||||
result = idx.astype(dtype)
|
||||
expected = idx.astype(object).astype(dtype)
|
||||
tm.assert_index_equal(result, expected)
|
||||
|
||||
|
||||
def test_astype(all_data):
|
||||
all_data = all_data[:10]
|
||||
|
||||
ints = all_data[~all_data.isna()]
|
||||
mixed = all_data
|
||||
dtype = Int8Dtype()
|
||||
|
||||
# coerce to same type - ints
|
||||
s = pd.Series(ints)
|
||||
result = s.astype(all_data.dtype)
|
||||
expected = pd.Series(ints)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# coerce to same other - ints
|
||||
s = pd.Series(ints)
|
||||
result = s.astype(dtype)
|
||||
expected = pd.Series(ints, dtype=dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# coerce to same numpy_dtype - ints
|
||||
s = pd.Series(ints)
|
||||
result = s.astype(all_data.dtype.numpy_dtype)
|
||||
expected = pd.Series(ints._data.astype(all_data.dtype.numpy_dtype))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# coerce to same type - mixed
|
||||
s = pd.Series(mixed)
|
||||
result = s.astype(all_data.dtype)
|
||||
expected = pd.Series(mixed)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# coerce to same other - mixed
|
||||
s = pd.Series(mixed)
|
||||
result = s.astype(dtype)
|
||||
expected = pd.Series(mixed, dtype=dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# coerce to same numpy_dtype - mixed
|
||||
s = pd.Series(mixed)
|
||||
msg = r"cannot convert to .*-dtype NumPy array with missing values.*"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
s.astype(all_data.dtype.numpy_dtype)
|
||||
|
||||
# coerce to object
|
||||
s = pd.Series(mixed)
|
||||
result = s.astype("object")
|
||||
expected = pd.Series(np.asarray(mixed))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_astype_copy():
|
||||
arr = pd.array([1, 2, 3, None], dtype="Int64")
|
||||
orig = pd.array([1, 2, 3, None], dtype="Int64")
|
||||
|
||||
# copy=True -> ensure both data and mask are actual copies
|
||||
result = arr.astype("Int64", copy=True)
|
||||
assert result is not arr
|
||||
assert not tm.shares_memory(result, arr)
|
||||
result[0] = 10
|
||||
tm.assert_extension_array_equal(arr, orig)
|
||||
result[0] = pd.NA
|
||||
tm.assert_extension_array_equal(arr, orig)
|
||||
|
||||
# copy=False
|
||||
result = arr.astype("Int64", copy=False)
|
||||
assert result is arr
|
||||
assert np.shares_memory(result._data, arr._data)
|
||||
assert np.shares_memory(result._mask, arr._mask)
|
||||
result[0] = 10
|
||||
assert arr[0] == 10
|
||||
result[0] = pd.NA
|
||||
assert arr[0] is pd.NA
|
||||
|
||||
# astype to different dtype -> always needs a copy -> even with copy=False
|
||||
# we need to ensure that also the mask is actually copied
|
||||
arr = pd.array([1, 2, 3, None], dtype="Int64")
|
||||
orig = pd.array([1, 2, 3, None], dtype="Int64")
|
||||
|
||||
result = arr.astype("Int32", copy=False)
|
||||
assert not tm.shares_memory(result, arr)
|
||||
result[0] = 10
|
||||
tm.assert_extension_array_equal(arr, orig)
|
||||
result[0] = pd.NA
|
||||
tm.assert_extension_array_equal(arr, orig)
|
||||
|
||||
|
||||
def test_astype_to_larger_numpy():
|
||||
a = pd.array([1, 2], dtype="Int32")
|
||||
result = a.astype("int64")
|
||||
expected = np.array([1, 2], dtype="int64")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
a = pd.array([1, 2], dtype="UInt32")
|
||||
result = a.astype("uint64")
|
||||
expected = np.array([1, 2], dtype="uint64")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("dtype", [Int8Dtype(), "Int8", UInt32Dtype(), "UInt32"])
|
||||
def test_astype_specific_casting(dtype):
|
||||
s = pd.Series([1, 2, 3], dtype="Int64")
|
||||
result = s.astype(dtype)
|
||||
expected = pd.Series([1, 2, 3], dtype=dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
s = pd.Series([1, 2, 3, None], dtype="Int64")
|
||||
result = s.astype(dtype)
|
||||
expected = pd.Series([1, 2, 3, None], dtype=dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_astype_floating():
|
||||
arr = pd.array([1, 2, None], dtype="Int64")
|
||||
result = arr.astype("Float64")
|
||||
expected = pd.array([1.0, 2.0, None], dtype="Float64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_astype_dt64():
|
||||
# GH#32435
|
||||
arr = pd.array([1, 2, 3, pd.NA]) * 10**9
|
||||
|
||||
result = arr.astype("datetime64[ns]")
|
||||
|
||||
expected = np.array([1, 2, 3, "NaT"], dtype="M8[s]").astype("M8[ns]")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_construct_cast_invalid(dtype):
|
||||
|
||||
msg = "cannot safely"
|
||||
arr = [1.2, 2.3, 3.7]
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
pd.array(arr, dtype=dtype)
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
pd.Series(arr).astype(dtype)
|
||||
|
||||
arr = [1.2, 2.3, 3.7, np.nan]
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
pd.array(arr, dtype=dtype)
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
pd.Series(arr).astype(dtype)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("in_series", [True, False])
|
||||
def test_to_numpy_na_nan(in_series):
|
||||
a = pd.array([0, 1, None], dtype="Int64")
|
||||
if in_series:
|
||||
a = pd.Series(a)
|
||||
|
||||
result = a.to_numpy(dtype="float64", na_value=np.nan)
|
||||
expected = np.array([0.0, 1.0, np.nan], dtype="float64")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = a.to_numpy(dtype="int64", na_value=-1)
|
||||
expected = np.array([0, 1, -1], dtype="int64")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = a.to_numpy(dtype="bool", na_value=False)
|
||||
expected = np.array([False, True, False], dtype="bool")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("in_series", [True, False])
|
||||
@pytest.mark.parametrize("dtype", ["int32", "int64", "bool"])
|
||||
def test_to_numpy_dtype(dtype, in_series):
|
||||
a = pd.array([0, 1], dtype="Int64")
|
||||
if in_series:
|
||||
a = pd.Series(a)
|
||||
|
||||
result = a.to_numpy(dtype=dtype)
|
||||
expected = np.array([0, 1], dtype=dtype)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("dtype", ["float64", "int64", "bool"])
|
||||
def test_to_numpy_na_raises(dtype):
|
||||
a = pd.array([0, 1, None], dtype="Int64")
|
||||
with pytest.raises(ValueError, match=dtype):
|
||||
a.to_numpy(dtype=dtype)
|
||||
|
||||
|
||||
def test_astype_str():
|
||||
a = pd.array([1, 2, None], dtype="Int64")
|
||||
expected = np.array(["1", "2", "<NA>"], dtype="<U21")
|
||||
|
||||
tm.assert_numpy_array_equal(a.astype(str), expected)
|
||||
tm.assert_numpy_array_equal(a.astype("str"), expected)
|
||||
|
||||
|
||||
def test_astype_boolean():
|
||||
# https://github.com/pandas-dev/pandas/issues/31102
|
||||
a = pd.array([1, 0, -1, 2, None], dtype="Int64")
|
||||
result = a.astype("boolean")
|
||||
expected = pd.array([True, False, True, True, None], dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
@ -0,0 +1,201 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import FloatingArray
|
||||
|
||||
|
||||
@pytest.mark.parametrize("ufunc", [np.abs, np.sign])
|
||||
# np.sign emits a warning with nans, <https://github.com/numpy/numpy/issues/15127>
|
||||
@pytest.mark.filterwarnings("ignore:invalid value encountered in sign")
|
||||
def test_ufuncs_single_int(ufunc):
|
||||
a = pd.array([1, 2, -3, np.nan])
|
||||
result = ufunc(a)
|
||||
expected = pd.array(ufunc(a.astype(float)), dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
s = pd.Series(a)
|
||||
result = ufunc(s)
|
||||
expected = pd.Series(pd.array(ufunc(a.astype(float)), dtype="Int64"))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("ufunc", [np.log, np.exp, np.sin, np.cos, np.sqrt])
|
||||
def test_ufuncs_single_float(ufunc):
|
||||
a = pd.array([1, 2, -3, np.nan])
|
||||
with np.errstate(invalid="ignore"):
|
||||
result = ufunc(a)
|
||||
expected = FloatingArray(ufunc(a.astype(float)), mask=a._mask)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
s = pd.Series(a)
|
||||
with np.errstate(invalid="ignore"):
|
||||
result = ufunc(s)
|
||||
expected = pd.Series(expected)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("ufunc", [np.add, np.subtract])
|
||||
def test_ufuncs_binary_int(ufunc):
|
||||
# two IntegerArrays
|
||||
a = pd.array([1, 2, -3, np.nan])
|
||||
result = ufunc(a, a)
|
||||
expected = pd.array(ufunc(a.astype(float), a.astype(float)), dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# IntegerArray with numpy array
|
||||
arr = np.array([1, 2, 3, 4])
|
||||
result = ufunc(a, arr)
|
||||
expected = pd.array(ufunc(a.astype(float), arr), dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = ufunc(arr, a)
|
||||
expected = pd.array(ufunc(arr, a.astype(float)), dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# IntegerArray with scalar
|
||||
result = ufunc(a, 1)
|
||||
expected = pd.array(ufunc(a.astype(float), 1), dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = ufunc(1, a)
|
||||
expected = pd.array(ufunc(1, a.astype(float)), dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_ufunc_binary_output():
|
||||
a = pd.array([1, 2, np.nan])
|
||||
result = np.modf(a)
|
||||
expected = np.modf(a.to_numpy(na_value=np.nan, dtype="float"))
|
||||
expected = (pd.array(expected[0]), pd.array(expected[1]))
|
||||
|
||||
assert isinstance(result, tuple)
|
||||
assert len(result) == 2
|
||||
|
||||
for x, y in zip(result, expected):
|
||||
tm.assert_extension_array_equal(x, y)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("values", [[0, 1], [0, None]])
|
||||
def test_ufunc_reduce_raises(values):
|
||||
arr = pd.array(values)
|
||||
|
||||
res = np.add.reduce(arr)
|
||||
expected = arr.sum(skipna=False)
|
||||
tm.assert_almost_equal(res, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"pandasmethname, kwargs",
|
||||
[
|
||||
("var", {"ddof": 0}),
|
||||
("var", {"ddof": 1}),
|
||||
("kurtosis", {}),
|
||||
("skew", {}),
|
||||
("sem", {}),
|
||||
],
|
||||
)
|
||||
def test_stat_method(pandasmethname, kwargs):
|
||||
s = pd.Series(data=[1, 2, 3, 4, 5, 6, np.nan, np.nan], dtype="Int64")
|
||||
pandasmeth = getattr(s, pandasmethname)
|
||||
result = pandasmeth(**kwargs)
|
||||
s2 = pd.Series(data=[1, 2, 3, 4, 5, 6], dtype="Int64")
|
||||
pandasmeth = getattr(s2, pandasmethname)
|
||||
expected = pandasmeth(**kwargs)
|
||||
assert expected == result
|
||||
|
||||
|
||||
def test_value_counts_na():
|
||||
arr = pd.array([1, 2, 1, pd.NA], dtype="Int64")
|
||||
result = arr.value_counts(dropna=False)
|
||||
ex_index = pd.Index([1, 2, pd.NA], dtype="Int64")
|
||||
assert ex_index.dtype == "Int64"
|
||||
expected = pd.Series([2, 1, 1], index=ex_index, dtype="Int64")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = arr.value_counts(dropna=True)
|
||||
expected = pd.Series([2, 1], index=arr[:2], dtype="Int64")
|
||||
assert expected.index.dtype == arr.dtype
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_value_counts_empty():
|
||||
# https://github.com/pandas-dev/pandas/issues/33317
|
||||
ser = pd.Series([], dtype="Int64")
|
||||
result = ser.value_counts()
|
||||
idx = pd.Index([], dtype=ser.dtype)
|
||||
assert idx.dtype == ser.dtype
|
||||
expected = pd.Series([], index=idx, dtype="Int64")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_value_counts_with_normalize():
|
||||
# GH 33172
|
||||
ser = pd.Series([1, 2, 1, pd.NA], dtype="Int64")
|
||||
result = ser.value_counts(normalize=True)
|
||||
expected = pd.Series([2, 1], index=ser[:2], dtype="Float64") / 3
|
||||
assert expected.index.dtype == ser.dtype
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
@pytest.mark.parametrize("min_count", [0, 4])
|
||||
def test_integer_array_sum(skipna, min_count, any_int_ea_dtype):
|
||||
dtype = any_int_ea_dtype
|
||||
arr = pd.array([1, 2, 3, None], dtype=dtype)
|
||||
result = arr.sum(skipna=skipna, min_count=min_count)
|
||||
if skipna and min_count == 0:
|
||||
assert result == 6
|
||||
else:
|
||||
assert result is pd.NA
|
||||
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
@pytest.mark.parametrize("method", ["min", "max"])
|
||||
def test_integer_array_min_max(skipna, method, any_int_ea_dtype):
|
||||
dtype = any_int_ea_dtype
|
||||
arr = pd.array([0, 1, None], dtype=dtype)
|
||||
func = getattr(arr, method)
|
||||
result = func(skipna=skipna)
|
||||
if skipna:
|
||||
assert result == (0 if method == "min" else 1)
|
||||
else:
|
||||
assert result is pd.NA
|
||||
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
@pytest.mark.parametrize("min_count", [0, 9])
|
||||
def test_integer_array_prod(skipna, min_count, any_int_ea_dtype):
|
||||
dtype = any_int_ea_dtype
|
||||
arr = pd.array([1, 2, None], dtype=dtype)
|
||||
result = arr.prod(skipna=skipna, min_count=min_count)
|
||||
if skipna and min_count == 0:
|
||||
assert result == 2
|
||||
else:
|
||||
assert result is pd.NA
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"values, expected", [([1, 2, 3], 6), ([1, 2, 3, None], 6), ([None], 0)]
|
||||
)
|
||||
def test_integer_array_numpy_sum(values, expected):
|
||||
arr = pd.array(values, dtype="Int64")
|
||||
result = np.sum(arr)
|
||||
assert result == expected
|
||||
|
||||
|
||||
@pytest.mark.parametrize("op", ["sum", "prod", "min", "max"])
|
||||
def test_dataframe_reductions(op):
|
||||
# https://github.com/pandas-dev/pandas/pull/32867
|
||||
# ensure the integers are not cast to float during reductions
|
||||
df = pd.DataFrame({"a": pd.array([1, 2], dtype="Int64")})
|
||||
result = df.max()
|
||||
assert isinstance(result["a"], np.int64)
|
||||
|
||||
|
||||
# TODO(jreback) - these need testing / are broken
|
||||
|
||||
# shift
|
||||
|
||||
# set_index (destroys type)
|
@ -0,0 +1,19 @@
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
def test_array_setitem_nullable_boolean_mask():
|
||||
# GH 31446
|
||||
ser = pd.Series([1, 2], dtype="Int64")
|
||||
result = ser.where(ser > 1)
|
||||
expected = pd.Series([pd.NA, 2], dtype="Int64")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_array_setitem():
|
||||
# GH 31446
|
||||
arr = pd.Series([1, 2], dtype="Int64").array
|
||||
arr[arr > 1] = 1
|
||||
|
||||
expected = pd.array([1, 1], dtype="Int64")
|
||||
tm.assert_extension_array_equal(arr, expected)
|
@ -0,0 +1,68 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas.core.arrays.integer import (
|
||||
Int8Dtype,
|
||||
Int16Dtype,
|
||||
Int32Dtype,
|
||||
Int64Dtype,
|
||||
UInt8Dtype,
|
||||
UInt16Dtype,
|
||||
UInt32Dtype,
|
||||
UInt64Dtype,
|
||||
)
|
||||
|
||||
|
||||
def test_dtypes(dtype):
|
||||
# smoke tests on auto dtype construction
|
||||
|
||||
if dtype.is_signed_integer:
|
||||
assert np.dtype(dtype.type).kind == "i"
|
||||
else:
|
||||
assert np.dtype(dtype.type).kind == "u"
|
||||
assert dtype.name is not None
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtype, expected",
|
||||
[
|
||||
(Int8Dtype(), "Int8Dtype()"),
|
||||
(Int16Dtype(), "Int16Dtype()"),
|
||||
(Int32Dtype(), "Int32Dtype()"),
|
||||
(Int64Dtype(), "Int64Dtype()"),
|
||||
(UInt8Dtype(), "UInt8Dtype()"),
|
||||
(UInt16Dtype(), "UInt16Dtype()"),
|
||||
(UInt32Dtype(), "UInt32Dtype()"),
|
||||
(UInt64Dtype(), "UInt64Dtype()"),
|
||||
],
|
||||
)
|
||||
def test_repr_dtype(dtype, expected):
|
||||
assert repr(dtype) == expected
|
||||
|
||||
|
||||
def test_repr_array():
|
||||
result = repr(pd.array([1, None, 3]))
|
||||
expected = "<IntegerArray>\n[1, <NA>, 3]\nLength: 3, dtype: Int64"
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_repr_array_long():
|
||||
data = pd.array([1, 2, None] * 1000)
|
||||
expected = (
|
||||
"<IntegerArray>\n"
|
||||
"[ 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>, 1,\n"
|
||||
" ...\n"
|
||||
" <NA>, 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>]\n"
|
||||
"Length: 3000, dtype: Int64"
|
||||
)
|
||||
result = repr(data)
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_frame_repr(data_missing):
|
||||
|
||||
df = pd.DataFrame({"A": data_missing})
|
||||
result = repr(df)
|
||||
expected = " A\n0 <NA>\n1 1"
|
||||
assert result == expected
|
@ -0,0 +1,28 @@
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
Categorical,
|
||||
CategoricalDtype,
|
||||
Index,
|
||||
IntervalIndex,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestAstype:
|
||||
@pytest.mark.parametrize("ordered", [True, False])
|
||||
def test_astype_categorical_retains_ordered(self, ordered):
|
||||
index = IntervalIndex.from_breaks(range(5))
|
||||
arr = index._data
|
||||
|
||||
dtype = CategoricalDtype(None, ordered=ordered)
|
||||
|
||||
expected = Categorical(list(arr), ordered=ordered)
|
||||
result = arr.astype(dtype)
|
||||
assert result.ordered is ordered
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
# test IntervalIndex.astype while we're at it.
|
||||
result = index.astype(dtype)
|
||||
expected = Index(expected)
|
||||
tm.assert_index_equal(result, expected)
|
@ -0,0 +1,369 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
Index,
|
||||
Interval,
|
||||
IntervalIndex,
|
||||
Timedelta,
|
||||
Timestamp,
|
||||
date_range,
|
||||
timedelta_range,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import IntervalArray
|
||||
|
||||
|
||||
@pytest.fixture(
|
||||
params=[
|
||||
(Index([0, 2, 4]), Index([1, 3, 5])),
|
||||
(Index([0.0, 1.0, 2.0]), Index([1.0, 2.0, 3.0])),
|
||||
(timedelta_range("0 days", periods=3), timedelta_range("1 day", periods=3)),
|
||||
(date_range("20170101", periods=3), date_range("20170102", periods=3)),
|
||||
(
|
||||
date_range("20170101", periods=3, tz="US/Eastern"),
|
||||
date_range("20170102", periods=3, tz="US/Eastern"),
|
||||
),
|
||||
],
|
||||
ids=lambda x: str(x[0].dtype),
|
||||
)
|
||||
def left_right_dtypes(request):
|
||||
"""
|
||||
Fixture for building an IntervalArray from various dtypes
|
||||
"""
|
||||
return request.param
|
||||
|
||||
|
||||
class TestAttributes:
|
||||
@pytest.mark.parametrize(
|
||||
"left, right",
|
||||
[
|
||||
(0, 1),
|
||||
(Timedelta("0 days"), Timedelta("1 day")),
|
||||
(Timestamp("2018-01-01"), Timestamp("2018-01-02")),
|
||||
(
|
||||
Timestamp("2018-01-01", tz="US/Eastern"),
|
||||
Timestamp("2018-01-02", tz="US/Eastern"),
|
||||
),
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize("constructor", [IntervalArray, IntervalIndex])
|
||||
def test_is_empty(self, constructor, left, right, closed):
|
||||
# GH27219
|
||||
tuples = [(left, left), (left, right), np.nan]
|
||||
expected = np.array([closed != "both", False, False])
|
||||
result = constructor.from_tuples(tuples, closed=closed).is_empty
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
class TestMethods:
|
||||
@pytest.mark.parametrize("new_closed", ["left", "right", "both", "neither"])
|
||||
def test_set_closed(self, closed, new_closed):
|
||||
# GH 21670
|
||||
array = IntervalArray.from_breaks(range(10), closed=closed)
|
||||
result = array.set_closed(new_closed)
|
||||
expected = IntervalArray.from_breaks(range(10), closed=new_closed)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"other",
|
||||
[
|
||||
Interval(0, 1, closed="right"),
|
||||
IntervalArray.from_breaks([1, 2, 3, 4], closed="right"),
|
||||
],
|
||||
)
|
||||
def test_where_raises(self, other):
|
||||
ser = pd.Series(IntervalArray.from_breaks([1, 2, 3, 4], closed="left"))
|
||||
match = "'value.closed' is 'right', expected 'left'."
|
||||
with pytest.raises(ValueError, match=match):
|
||||
ser.where([True, False, True], other=other)
|
||||
|
||||
def test_shift(self):
|
||||
# https://github.com/pandas-dev/pandas/issues/31495
|
||||
a = IntervalArray.from_breaks([1, 2, 3])
|
||||
result = a.shift()
|
||||
# int -> float
|
||||
expected = IntervalArray.from_tuples([(np.nan, np.nan), (1.0, 2.0)])
|
||||
tm.assert_interval_array_equal(result, expected)
|
||||
|
||||
def test_shift_datetime(self):
|
||||
a = IntervalArray.from_breaks(date_range("2000", periods=4))
|
||||
result = a.shift(2)
|
||||
expected = a.take([-1, -1, 0], allow_fill=True)
|
||||
tm.assert_interval_array_equal(result, expected)
|
||||
|
||||
result = a.shift(-1)
|
||||
expected = a.take([1, 2, -1], allow_fill=True)
|
||||
tm.assert_interval_array_equal(result, expected)
|
||||
|
||||
|
||||
class TestSetitem:
|
||||
def test_set_na(self, left_right_dtypes):
|
||||
left, right = left_right_dtypes
|
||||
left = left.copy(deep=True)
|
||||
right = right.copy(deep=True)
|
||||
result = IntervalArray.from_arrays(left, right)
|
||||
|
||||
if result.dtype.subtype.kind not in ["m", "M"]:
|
||||
msg = "'value' should be an interval type, got <.*NaTType'> instead."
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
result[0] = pd.NaT
|
||||
if result.dtype.subtype.kind in ["i", "u"]:
|
||||
msg = "Cannot set float NaN to integer-backed IntervalArray"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
result[0] = np.NaN
|
||||
return
|
||||
|
||||
result[0] = np.nan
|
||||
|
||||
expected_left = Index([left._na_value] + list(left[1:]))
|
||||
expected_right = Index([right._na_value] + list(right[1:]))
|
||||
expected = IntervalArray.from_arrays(expected_left, expected_right)
|
||||
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
def test_setitem_mismatched_closed(self):
|
||||
arr = IntervalArray.from_breaks(range(4))
|
||||
orig = arr.copy()
|
||||
other = arr.set_closed("both")
|
||||
|
||||
msg = "'value.closed' is 'both', expected 'right'"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr[0] = other[0]
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr[:1] = other[:1]
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr[:0] = other[:0]
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr[:] = other[::-1]
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr[:] = list(other[::-1])
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr[:] = other[::-1].astype(object)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr[:] = other[::-1].astype("category")
|
||||
|
||||
# empty list should be no-op
|
||||
arr[:0] = []
|
||||
tm.assert_interval_array_equal(arr, orig)
|
||||
|
||||
|
||||
def test_repr():
|
||||
# GH 25022
|
||||
arr = IntervalArray.from_tuples([(0, 1), (1, 2)])
|
||||
result = repr(arr)
|
||||
expected = (
|
||||
"<IntervalArray>\n"
|
||||
"[(0, 1], (1, 2]]\n"
|
||||
"Length: 2, dtype: interval[int64, right]"
|
||||
)
|
||||
assert result == expected
|
||||
|
||||
|
||||
class TestReductions:
|
||||
def test_min_max_invalid_axis(self, left_right_dtypes):
|
||||
left, right = left_right_dtypes
|
||||
left = left.copy(deep=True)
|
||||
right = right.copy(deep=True)
|
||||
arr = IntervalArray.from_arrays(left, right)
|
||||
|
||||
msg = "`axis` must be fewer than the number of dimensions"
|
||||
for axis in [-2, 1]:
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr.min(axis=axis)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr.max(axis=axis)
|
||||
|
||||
msg = "'>=' not supported between"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
arr.min(axis="foo")
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
arr.max(axis="foo")
|
||||
|
||||
def test_min_max(self, left_right_dtypes, index_or_series_or_array):
|
||||
# GH#44746
|
||||
left, right = left_right_dtypes
|
||||
left = left.copy(deep=True)
|
||||
right = right.copy(deep=True)
|
||||
arr = IntervalArray.from_arrays(left, right)
|
||||
|
||||
# The expected results below are only valid if monotonic
|
||||
assert left.is_monotonic_increasing
|
||||
assert Index(arr).is_monotonic_increasing
|
||||
|
||||
MIN = arr[0]
|
||||
MAX = arr[-1]
|
||||
|
||||
indexer = np.arange(len(arr))
|
||||
np.random.shuffle(indexer)
|
||||
arr = arr.take(indexer)
|
||||
|
||||
arr_na = arr.insert(2, np.nan)
|
||||
|
||||
arr = index_or_series_or_array(arr)
|
||||
arr_na = index_or_series_or_array(arr_na)
|
||||
|
||||
for skipna in [True, False]:
|
||||
res = arr.min(skipna=skipna)
|
||||
assert res == MIN
|
||||
assert type(res) == type(MIN)
|
||||
|
||||
res = arr.max(skipna=skipna)
|
||||
assert res == MAX
|
||||
assert type(res) == type(MAX)
|
||||
|
||||
res = arr_na.min(skipna=False)
|
||||
assert np.isnan(res)
|
||||
res = arr_na.max(skipna=False)
|
||||
assert np.isnan(res)
|
||||
|
||||
res = arr_na.min(skipna=True)
|
||||
assert res == MIN
|
||||
assert type(res) == type(MIN)
|
||||
res = arr_na.max(skipna=True)
|
||||
assert res == MAX
|
||||
assert type(res) == type(MAX)
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Arrow interaction
|
||||
|
||||
|
||||
pyarrow_skip = td.skip_if_no("pyarrow")
|
||||
|
||||
|
||||
@pyarrow_skip
|
||||
def test_arrow_extension_type():
|
||||
import pyarrow as pa
|
||||
|
||||
from pandas.core.arrays._arrow_utils import ArrowIntervalType
|
||||
|
||||
p1 = ArrowIntervalType(pa.int64(), "left")
|
||||
p2 = ArrowIntervalType(pa.int64(), "left")
|
||||
p3 = ArrowIntervalType(pa.int64(), "right")
|
||||
|
||||
assert p1.closed == "left"
|
||||
assert p1 == p2
|
||||
assert not p1 == p3
|
||||
assert hash(p1) == hash(p2)
|
||||
assert not hash(p1) == hash(p3)
|
||||
|
||||
|
||||
@pyarrow_skip
|
||||
def test_arrow_array():
|
||||
import pyarrow as pa
|
||||
|
||||
from pandas.core.arrays._arrow_utils import ArrowIntervalType
|
||||
|
||||
intervals = pd.interval_range(1, 5, freq=1).array
|
||||
|
||||
result = pa.array(intervals)
|
||||
assert isinstance(result.type, ArrowIntervalType)
|
||||
assert result.type.closed == intervals.closed
|
||||
assert result.type.subtype == pa.int64()
|
||||
assert result.storage.field("left").equals(pa.array([1, 2, 3, 4], type="int64"))
|
||||
assert result.storage.field("right").equals(pa.array([2, 3, 4, 5], type="int64"))
|
||||
|
||||
expected = pa.array([{"left": i, "right": i + 1} for i in range(1, 5)])
|
||||
assert result.storage.equals(expected)
|
||||
|
||||
# convert to its storage type
|
||||
result = pa.array(intervals, type=expected.type)
|
||||
assert result.equals(expected)
|
||||
|
||||
# unsupported conversions
|
||||
with pytest.raises(TypeError, match="Not supported to convert IntervalArray"):
|
||||
pa.array(intervals, type="float64")
|
||||
|
||||
with pytest.raises(TypeError, match="different 'subtype'"):
|
||||
pa.array(intervals, type=ArrowIntervalType(pa.float64(), "left"))
|
||||
|
||||
|
||||
@pyarrow_skip
|
||||
def test_arrow_array_missing():
|
||||
import pyarrow as pa
|
||||
|
||||
from pandas.core.arrays._arrow_utils import ArrowIntervalType
|
||||
|
||||
arr = IntervalArray.from_breaks([0.0, 1.0, 2.0, 3.0])
|
||||
arr[1] = None
|
||||
|
||||
result = pa.array(arr)
|
||||
assert isinstance(result.type, ArrowIntervalType)
|
||||
assert result.type.closed == arr.closed
|
||||
assert result.type.subtype == pa.float64()
|
||||
|
||||
# fields have missing values (not NaN)
|
||||
left = pa.array([0.0, None, 2.0], type="float64")
|
||||
right = pa.array([1.0, None, 3.0], type="float64")
|
||||
assert result.storage.field("left").equals(left)
|
||||
assert result.storage.field("right").equals(right)
|
||||
|
||||
# structarray itself also has missing values on the array level
|
||||
vals = [
|
||||
{"left": 0.0, "right": 1.0},
|
||||
{"left": None, "right": None},
|
||||
{"left": 2.0, "right": 3.0},
|
||||
]
|
||||
expected = pa.StructArray.from_pandas(vals, mask=np.array([False, True, False]))
|
||||
assert result.storage.equals(expected)
|
||||
|
||||
|
||||
@pyarrow_skip
|
||||
@pytest.mark.parametrize(
|
||||
"breaks",
|
||||
[[0.0, 1.0, 2.0, 3.0], date_range("2017", periods=4, freq="D")],
|
||||
ids=["float", "datetime64[ns]"],
|
||||
)
|
||||
def test_arrow_table_roundtrip(breaks):
|
||||
import pyarrow as pa
|
||||
|
||||
from pandas.core.arrays._arrow_utils import ArrowIntervalType
|
||||
|
||||
arr = IntervalArray.from_breaks(breaks)
|
||||
arr[1] = None
|
||||
df = pd.DataFrame({"a": arr})
|
||||
|
||||
table = pa.table(df)
|
||||
assert isinstance(table.field("a").type, ArrowIntervalType)
|
||||
result = table.to_pandas()
|
||||
assert isinstance(result["a"].dtype, pd.IntervalDtype)
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
table2 = pa.concat_tables([table, table])
|
||||
result = table2.to_pandas()
|
||||
expected = pd.concat([df, df], ignore_index=True)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# GH-41040
|
||||
table = pa.table(
|
||||
[pa.chunked_array([], type=table.column(0).type)], schema=table.schema
|
||||
)
|
||||
result = table.to_pandas()
|
||||
tm.assert_frame_equal(result, expected[0:0])
|
||||
|
||||
|
||||
@pyarrow_skip
|
||||
@pytest.mark.parametrize(
|
||||
"breaks",
|
||||
[[0.0, 1.0, 2.0, 3.0], date_range("2017", periods=4, freq="D")],
|
||||
ids=["float", "datetime64[ns]"],
|
||||
)
|
||||
def test_arrow_table_roundtrip_without_metadata(breaks):
|
||||
import pyarrow as pa
|
||||
|
||||
arr = IntervalArray.from_breaks(breaks)
|
||||
arr[1] = None
|
||||
df = pd.DataFrame({"a": arr})
|
||||
|
||||
table = pa.table(df)
|
||||
# remove the metadata
|
||||
table = table.replace_schema_metadata()
|
||||
assert table.schema.metadata is None
|
||||
|
||||
result = table.to_pandas()
|
||||
assert isinstance(result["a"].dtype, pd.IntervalDtype)
|
||||
tm.assert_frame_equal(result, df)
|
@ -0,0 +1,93 @@
|
||||
"""Tests for Interval-Interval operations, such as overlaps, contains, etc."""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
Interval,
|
||||
IntervalIndex,
|
||||
Timedelta,
|
||||
Timestamp,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import IntervalArray
|
||||
|
||||
|
||||
@pytest.fixture(params=[IntervalArray, IntervalIndex])
|
||||
def constructor(request):
|
||||
"""
|
||||
Fixture for testing both interval container classes.
|
||||
"""
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(
|
||||
params=[
|
||||
(Timedelta("0 days"), Timedelta("1 day")),
|
||||
(Timestamp("2018-01-01"), Timedelta("1 day")),
|
||||
(0, 1),
|
||||
],
|
||||
ids=lambda x: type(x[0]).__name__,
|
||||
)
|
||||
def start_shift(request):
|
||||
"""
|
||||
Fixture for generating intervals of different types from a start value
|
||||
and a shift value that can be added to start to generate an endpoint.
|
||||
"""
|
||||
return request.param
|
||||
|
||||
|
||||
class TestOverlaps:
|
||||
def test_overlaps_interval(self, constructor, start_shift, closed, other_closed):
|
||||
start, shift = start_shift
|
||||
interval = Interval(start, start + 3 * shift, other_closed)
|
||||
|
||||
# intervals: identical, nested, spanning, partial, adjacent, disjoint
|
||||
tuples = [
|
||||
(start, start + 3 * shift),
|
||||
(start + shift, start + 2 * shift),
|
||||
(start - shift, start + 4 * shift),
|
||||
(start + 2 * shift, start + 4 * shift),
|
||||
(start + 3 * shift, start + 4 * shift),
|
||||
(start + 4 * shift, start + 5 * shift),
|
||||
]
|
||||
interval_container = constructor.from_tuples(tuples, closed)
|
||||
|
||||
adjacent = interval.closed_right and interval_container.closed_left
|
||||
expected = np.array([True, True, True, True, adjacent, False])
|
||||
result = interval_container.overlaps(interval)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("other_constructor", [IntervalArray, IntervalIndex])
|
||||
def test_overlaps_interval_container(self, constructor, other_constructor):
|
||||
# TODO: modify this test when implemented
|
||||
interval_container = constructor.from_breaks(range(5))
|
||||
other_container = other_constructor.from_breaks(range(5))
|
||||
with pytest.raises(NotImplementedError, match="^$"):
|
||||
interval_container.overlaps(other_container)
|
||||
|
||||
def test_overlaps_na(self, constructor, start_shift):
|
||||
"""NA values are marked as False"""
|
||||
start, shift = start_shift
|
||||
interval = Interval(start, start + shift)
|
||||
|
||||
tuples = [
|
||||
(start, start + shift),
|
||||
np.nan,
|
||||
(start + 2 * shift, start + 3 * shift),
|
||||
]
|
||||
interval_container = constructor.from_tuples(tuples)
|
||||
|
||||
expected = np.array([True, False, False])
|
||||
result = interval_container.overlaps(interval)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"other",
|
||||
[10, True, "foo", Timedelta("1 day"), Timestamp("2018-01-01")],
|
||||
ids=lambda x: type(x).__name__,
|
||||
)
|
||||
def test_overlaps_invalid_type(self, constructor, other):
|
||||
interval_container = constructor.from_breaks(range(5))
|
||||
msg = f"`other` must be Interval-like, got {type(other).__name__}"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
interval_container.overlaps(other)
|
@ -0,0 +1,181 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
# integer dtypes
|
||||
arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES]
|
||||
scalars: list[Any] = [2] * len(arrays)
|
||||
# floating dtypes
|
||||
arrays += [pd.array([0.1, 0.2, 0.3, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES]
|
||||
scalars += [0.2, 0.2]
|
||||
# boolean
|
||||
arrays += [pd.array([True, False, True, None], dtype="boolean")]
|
||||
scalars += [False]
|
||||
|
||||
|
||||
@pytest.fixture(params=zip(arrays, scalars), ids=[a.dtype.name for a in arrays])
|
||||
def data(request):
|
||||
return request.param
|
||||
|
||||
|
||||
def check_skip(data, op_name):
|
||||
if isinstance(data.dtype, pd.BooleanDtype) and "sub" in op_name:
|
||||
pytest.skip("subtract not implemented for boolean")
|
||||
|
||||
|
||||
# Test equivalence of scalars, numpy arrays with array ops
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
def test_array_scalar_like_equivalence(data, all_arithmetic_operators):
|
||||
data, scalar = data
|
||||
op = tm.get_op_from_name(all_arithmetic_operators)
|
||||
check_skip(data, all_arithmetic_operators)
|
||||
|
||||
scalar_array = pd.array([scalar] * len(data), dtype=data.dtype)
|
||||
|
||||
# TODO also add len-1 array (np.array([scalar], dtype=data.dtype.numpy_dtype))
|
||||
for scalar in [scalar, data.dtype.type(scalar)]:
|
||||
result = op(data, scalar)
|
||||
expected = op(data, scalar_array)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_array_NA(data, all_arithmetic_operators, request):
|
||||
data, _ = data
|
||||
op = tm.get_op_from_name(all_arithmetic_operators)
|
||||
check_skip(data, all_arithmetic_operators)
|
||||
|
||||
scalar = pd.NA
|
||||
scalar_array = pd.array([pd.NA] * len(data), dtype=data.dtype)
|
||||
|
||||
result = op(data, scalar)
|
||||
expected = op(data, scalar_array)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_numpy_array_equivalence(data, all_arithmetic_operators):
|
||||
data, scalar = data
|
||||
op = tm.get_op_from_name(all_arithmetic_operators)
|
||||
check_skip(data, all_arithmetic_operators)
|
||||
|
||||
numpy_array = np.array([scalar] * len(data), dtype=data.dtype.numpy_dtype)
|
||||
pd_array = pd.array(numpy_array, dtype=data.dtype)
|
||||
|
||||
result = op(data, numpy_array)
|
||||
expected = op(data, pd_array)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
# Test equivalence with Series and DataFrame ops
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
def test_frame(data, all_arithmetic_operators):
|
||||
data, scalar = data
|
||||
op = tm.get_op_from_name(all_arithmetic_operators)
|
||||
check_skip(data, all_arithmetic_operators)
|
||||
|
||||
# DataFrame with scalar
|
||||
df = pd.DataFrame({"A": data})
|
||||
|
||||
result = op(df, scalar)
|
||||
expected = pd.DataFrame({"A": op(data, scalar)})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_series(data, all_arithmetic_operators):
|
||||
data, scalar = data
|
||||
op = tm.get_op_from_name(all_arithmetic_operators)
|
||||
check_skip(data, all_arithmetic_operators)
|
||||
|
||||
s = pd.Series(data)
|
||||
|
||||
# Series with scalar
|
||||
result = op(s, scalar)
|
||||
expected = pd.Series(op(data, scalar))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# Series with np.ndarray
|
||||
other = np.array([scalar] * len(data), dtype=data.dtype.numpy_dtype)
|
||||
result = op(s, other)
|
||||
expected = pd.Series(op(data, other))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# Series with pd.array
|
||||
other = pd.array([scalar] * len(data), dtype=data.dtype)
|
||||
result = op(s, other)
|
||||
expected = pd.Series(op(data, other))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# Series with Series
|
||||
other = pd.Series([scalar] * len(data), dtype=data.dtype)
|
||||
result = op(s, other)
|
||||
expected = pd.Series(op(data, other.array))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
# Test generic characteristics / errors
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
def test_error_invalid_object(data, all_arithmetic_operators):
|
||||
data, _ = data
|
||||
|
||||
op = all_arithmetic_operators
|
||||
opa = getattr(data, op)
|
||||
|
||||
# 2d -> return NotImplemented
|
||||
result = opa(pd.DataFrame({"A": data}))
|
||||
assert result is NotImplemented
|
||||
|
||||
msg = r"can only perform ops with 1-d structures"
|
||||
with pytest.raises(NotImplementedError, match=msg):
|
||||
opa(np.arange(len(data)).reshape(-1, len(data)))
|
||||
|
||||
|
||||
def test_error_len_mismatch(data, all_arithmetic_operators):
|
||||
# operating with a list-like with non-matching length raises
|
||||
data, scalar = data
|
||||
op = tm.get_op_from_name(all_arithmetic_operators)
|
||||
|
||||
other = [scalar] * (len(data) - 1)
|
||||
|
||||
for other in [other, np.array(other)]:
|
||||
with pytest.raises(ValueError, match="Lengths must match"):
|
||||
op(data, other)
|
||||
|
||||
s = pd.Series(data)
|
||||
with pytest.raises(ValueError, match="Lengths must match"):
|
||||
op(s, other)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("op", ["__neg__", "__abs__", "__invert__"])
|
||||
def test_unary_op_does_not_propagate_mask(data, op, request):
|
||||
# https://github.com/pandas-dev/pandas/issues/39943
|
||||
data, _ = data
|
||||
ser = pd.Series(data)
|
||||
|
||||
if op == "__invert__" and data.dtype.kind == "f":
|
||||
# we follow numpy in raising
|
||||
msg = "ufunc 'invert' not supported for the input types"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
getattr(ser, op)()
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
getattr(data, op)()
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
# Check that this is still the numpy behavior
|
||||
getattr(data._data, op)()
|
||||
|
||||
return
|
||||
|
||||
result = getattr(ser, op)()
|
||||
expected = result.copy(deep=True)
|
||||
ser[0] = None
|
||||
tm.assert_series_equal(result, expected)
|
@ -0,0 +1,187 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
pa = pytest.importorskip("pyarrow", minversion="1.0.1")
|
||||
|
||||
from pandas.core.arrays._arrow_utils import pyarrow_array_to_numpy_and_mask
|
||||
|
||||
arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES]
|
||||
arrays += [pd.array([0.1, 0.2, 0.3, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES]
|
||||
arrays += [pd.array([True, False, True, None], dtype="boolean")]
|
||||
|
||||
|
||||
@pytest.fixture(params=arrays, ids=[a.dtype.name for a in arrays])
|
||||
def data(request):
|
||||
return request.param
|
||||
|
||||
|
||||
def test_arrow_array(data):
|
||||
arr = pa.array(data)
|
||||
expected = pa.array(
|
||||
data.to_numpy(object, na_value=None),
|
||||
type=pa.from_numpy_dtype(data.dtype.numpy_dtype),
|
||||
)
|
||||
assert arr.equals(expected)
|
||||
|
||||
|
||||
def test_arrow_roundtrip(data):
|
||||
df = pd.DataFrame({"a": data})
|
||||
table = pa.table(df)
|
||||
assert table.field("a").type == str(data.dtype.numpy_dtype)
|
||||
result = table.to_pandas()
|
||||
assert result["a"].dtype == data.dtype
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
|
||||
def test_dataframe_from_arrow_types_mapper():
|
||||
def types_mapper(arrow_type):
|
||||
if pa.types.is_boolean(arrow_type):
|
||||
return pd.BooleanDtype()
|
||||
elif pa.types.is_integer(arrow_type):
|
||||
return pd.Int64Dtype()
|
||||
|
||||
bools_array = pa.array([True, None, False], type=pa.bool_())
|
||||
ints_array = pa.array([1, None, 2], type=pa.int64())
|
||||
small_ints_array = pa.array([-1, 0, 7], type=pa.int8())
|
||||
record_batch = pa.RecordBatch.from_arrays(
|
||||
[bools_array, ints_array, small_ints_array], ["bools", "ints", "small_ints"]
|
||||
)
|
||||
result = record_batch.to_pandas(types_mapper=types_mapper)
|
||||
bools = pd.Series([True, None, False], dtype="boolean")
|
||||
ints = pd.Series([1, None, 2], dtype="Int64")
|
||||
small_ints = pd.Series([-1, 0, 7], dtype="Int64")
|
||||
expected = pd.DataFrame({"bools": bools, "ints": ints, "small_ints": small_ints})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_arrow_load_from_zero_chunks(data):
|
||||
# GH-41040
|
||||
|
||||
df = pd.DataFrame({"a": data[0:0]})
|
||||
table = pa.table(df)
|
||||
assert table.field("a").type == str(data.dtype.numpy_dtype)
|
||||
table = pa.table(
|
||||
[pa.chunked_array([], type=table.field("a").type)], schema=table.schema
|
||||
)
|
||||
result = table.to_pandas()
|
||||
assert result["a"].dtype == data.dtype
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
|
||||
def test_arrow_from_arrow_uint():
|
||||
# https://github.com/pandas-dev/pandas/issues/31896
|
||||
# possible mismatch in types
|
||||
|
||||
dtype = pd.UInt32Dtype()
|
||||
result = dtype.__from_arrow__(pa.array([1, 2, 3, 4, None], type="int64"))
|
||||
expected = pd.array([1, 2, 3, 4, None], dtype="UInt32")
|
||||
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_arrow_sliced(data):
|
||||
# https://github.com/pandas-dev/pandas/issues/38525
|
||||
|
||||
df = pd.DataFrame({"a": data})
|
||||
table = pa.table(df)
|
||||
result = table.slice(2, None).to_pandas()
|
||||
expected = df.iloc[2:].reset_index(drop=True)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# no missing values
|
||||
df2 = df.fillna(data[0])
|
||||
table = pa.table(df2)
|
||||
result = table.slice(2, None).to_pandas()
|
||||
expected = df2.iloc[2:].reset_index(drop=True)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def np_dtype_to_arrays(any_real_numpy_dtype):
|
||||
np_dtype = np.dtype(any_real_numpy_dtype)
|
||||
pa_type = pa.from_numpy_dtype(np_dtype)
|
||||
|
||||
# None ensures the creation of a bitmask buffer.
|
||||
pa_array = pa.array([0, 1, 2, None], type=pa_type)
|
||||
# Since masked Arrow buffer slots are not required to contain a specific
|
||||
# value, assert only the first three values of the created np.array
|
||||
np_expected = np.array([0, 1, 2], dtype=np_dtype)
|
||||
mask_expected = np.array([True, True, True, False])
|
||||
return np_dtype, pa_array, np_expected, mask_expected
|
||||
|
||||
|
||||
def test_pyarrow_array_to_numpy_and_mask(np_dtype_to_arrays):
|
||||
"""
|
||||
Test conversion from pyarrow array to numpy array.
|
||||
|
||||
Modifies the pyarrow buffer to contain padding and offset, which are
|
||||
considered valid buffers by pyarrow.
|
||||
|
||||
Also tests empty pyarrow arrays with non empty buffers.
|
||||
See https://github.com/pandas-dev/pandas/issues/40896
|
||||
"""
|
||||
np_dtype, pa_array, np_expected, mask_expected = np_dtype_to_arrays
|
||||
data, mask = pyarrow_array_to_numpy_and_mask(pa_array, np_dtype)
|
||||
tm.assert_numpy_array_equal(data[:3], np_expected)
|
||||
tm.assert_numpy_array_equal(mask, mask_expected)
|
||||
|
||||
mask_buffer = pa_array.buffers()[0]
|
||||
data_buffer = pa_array.buffers()[1]
|
||||
data_buffer_bytes = pa_array.buffers()[1].to_pybytes()
|
||||
|
||||
# Add trailing padding to the buffer.
|
||||
data_buffer_trail = pa.py_buffer(data_buffer_bytes + b"\x00")
|
||||
pa_array_trail = pa.Array.from_buffers(
|
||||
type=pa_array.type,
|
||||
length=len(pa_array),
|
||||
buffers=[mask_buffer, data_buffer_trail],
|
||||
offset=pa_array.offset,
|
||||
)
|
||||
pa_array_trail.validate()
|
||||
data, mask = pyarrow_array_to_numpy_and_mask(pa_array_trail, np_dtype)
|
||||
tm.assert_numpy_array_equal(data[:3], np_expected)
|
||||
tm.assert_numpy_array_equal(mask, mask_expected)
|
||||
|
||||
# Add offset to the buffer.
|
||||
offset = b"\x00" * (pa_array.type.bit_width // 8)
|
||||
data_buffer_offset = pa.py_buffer(offset + data_buffer_bytes)
|
||||
mask_buffer_offset = pa.py_buffer(b"\x0E")
|
||||
pa_array_offset = pa.Array.from_buffers(
|
||||
type=pa_array.type,
|
||||
length=len(pa_array),
|
||||
buffers=[mask_buffer_offset, data_buffer_offset],
|
||||
offset=pa_array.offset + 1,
|
||||
)
|
||||
pa_array_offset.validate()
|
||||
data, mask = pyarrow_array_to_numpy_and_mask(pa_array_offset, np_dtype)
|
||||
tm.assert_numpy_array_equal(data[:3], np_expected)
|
||||
tm.assert_numpy_array_equal(mask, mask_expected)
|
||||
|
||||
# Empty array
|
||||
np_expected_empty = np.array([], dtype=np_dtype)
|
||||
mask_expected_empty = np.array([], dtype=np.bool_)
|
||||
|
||||
pa_array_offset = pa.Array.from_buffers(
|
||||
type=pa_array.type,
|
||||
length=0,
|
||||
buffers=[mask_buffer, data_buffer],
|
||||
offset=pa_array.offset,
|
||||
)
|
||||
pa_array_offset.validate()
|
||||
data, mask = pyarrow_array_to_numpy_and_mask(pa_array_offset, np_dtype)
|
||||
tm.assert_numpy_array_equal(data[:3], np_expected_empty)
|
||||
tm.assert_numpy_array_equal(mask, mask_expected_empty)
|
||||
|
||||
|
||||
def test_from_arrow_type_error(data):
|
||||
# ensure that __from_arrow__ returns a TypeError when getting a wrong
|
||||
# array type
|
||||
|
||||
arr = pa.array(data).cast("string")
|
||||
with pytest.raises(TypeError, match=None):
|
||||
# we don't test the exact error message, only the fact that it raises
|
||||
# a TypeError is relevant
|
||||
data.dtype.__from_arrow__(arr)
|
@ -0,0 +1,44 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.core.dtypes.common import is_integer_dtype
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES]
|
||||
arrays += [
|
||||
pd.array([0.141, -0.268, 5.895, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture(params=arrays, ids=[a.dtype.name for a in arrays])
|
||||
def data(request):
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def numpy_dtype(data):
|
||||
# For integer dtype, the numpy conversion must be done to float
|
||||
if is_integer_dtype(data):
|
||||
numpy_dtype = float
|
||||
else:
|
||||
numpy_dtype = data.dtype.type
|
||||
return numpy_dtype
|
||||
|
||||
|
||||
def test_round(data, numpy_dtype):
|
||||
# No arguments
|
||||
result = data.round()
|
||||
expected = pd.array(
|
||||
np.round(data.to_numpy(dtype=numpy_dtype, na_value=None)), dtype=data.dtype
|
||||
)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# Decimals argument
|
||||
result = data.round(decimals=2)
|
||||
expected = pd.array(
|
||||
np.round(data.to_numpy(dtype=numpy_dtype, na_value=None), decimals=2),
|
||||
dtype=data.dtype,
|
||||
)
|
||||
tm.assert_extension_array_equal(result, expected)
|
138
.venv/Lib/site-packages/pandas/tests/arrays/masked_shared.py
Normal file
138
.venv/Lib/site-packages/pandas/tests/arrays/masked_shared.py
Normal file
@ -0,0 +1,138 @@
|
||||
"""
|
||||
Tests shared by MaskedArray subclasses.
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.tests.extension.base import BaseOpsUtil
|
||||
|
||||
|
||||
class ComparisonOps(BaseOpsUtil):
|
||||
def _compare_other(self, data, op, other):
|
||||
|
||||
# array
|
||||
result = pd.Series(op(data, other))
|
||||
expected = pd.Series(op(data._data, other), dtype="boolean")
|
||||
|
||||
# fill the nan locations
|
||||
expected[data._mask] = pd.NA
|
||||
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# series
|
||||
ser = pd.Series(data)
|
||||
result = op(ser, other)
|
||||
|
||||
expected = op(pd.Series(data._data), other)
|
||||
|
||||
# fill the nan locations
|
||||
expected[data._mask] = pd.NA
|
||||
expected = expected.astype("boolean")
|
||||
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# subclass will override to parametrize 'other'
|
||||
def test_scalar(self, other, comparison_op, dtype):
|
||||
op = comparison_op
|
||||
left = pd.array([1, 0, None], dtype=dtype)
|
||||
|
||||
result = op(left, other)
|
||||
|
||||
if other is pd.NA:
|
||||
expected = pd.array([None, None, None], dtype="boolean")
|
||||
else:
|
||||
values = op(left._data, other)
|
||||
expected = pd.arrays.BooleanArray(values, left._mask, copy=True)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# ensure we haven't mutated anything inplace
|
||||
result[0] = pd.NA
|
||||
tm.assert_extension_array_equal(left, pd.array([1, 0, None], dtype=dtype))
|
||||
|
||||
|
||||
class NumericOps:
|
||||
# Shared by IntegerArray and FloatingArray, not BooleanArray
|
||||
|
||||
def test_no_shared_mask(self, data):
|
||||
result = data + 1
|
||||
assert not tm.shares_memory(result, data)
|
||||
|
||||
def test_array(self, comparison_op, dtype):
|
||||
op = comparison_op
|
||||
|
||||
left = pd.array([0, 1, 2, None, None, None], dtype=dtype)
|
||||
right = pd.array([0, 1, None, 0, 1, None], dtype=dtype)
|
||||
|
||||
result = op(left, right)
|
||||
values = op(left._data, right._data)
|
||||
mask = left._mask | right._mask
|
||||
|
||||
expected = pd.arrays.BooleanArray(values, mask)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# ensure we haven't mutated anything inplace
|
||||
result[0] = pd.NA
|
||||
tm.assert_extension_array_equal(
|
||||
left, pd.array([0, 1, 2, None, None, None], dtype=dtype)
|
||||
)
|
||||
tm.assert_extension_array_equal(
|
||||
right, pd.array([0, 1, None, 0, 1, None], dtype=dtype)
|
||||
)
|
||||
|
||||
def test_compare_with_booleanarray(self, comparison_op, dtype):
|
||||
op = comparison_op
|
||||
|
||||
left = pd.array([True, False, None] * 3, dtype="boolean")
|
||||
right = pd.array([0] * 3 + [1] * 3 + [None] * 3, dtype=dtype)
|
||||
other = pd.array([False] * 3 + [True] * 3 + [None] * 3, dtype="boolean")
|
||||
|
||||
expected = op(left, other)
|
||||
result = op(left, right)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# reversed op
|
||||
expected = op(other, left)
|
||||
result = op(right, left)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
def test_compare_to_string(self, dtype):
|
||||
# GH#28930
|
||||
ser = pd.Series([1, None], dtype=dtype)
|
||||
result = ser == "a"
|
||||
expected = pd.Series([False, pd.NA], dtype="boolean")
|
||||
|
||||
self.assert_series_equal(result, expected)
|
||||
|
||||
def test_ufunc_with_out(self, dtype):
|
||||
arr = pd.array([1, 2, 3], dtype=dtype)
|
||||
arr2 = pd.array([1, 2, pd.NA], dtype=dtype)
|
||||
|
||||
mask = arr == arr
|
||||
mask2 = arr2 == arr2
|
||||
|
||||
result = np.zeros(3, dtype=bool)
|
||||
result |= mask
|
||||
# If MaskedArray.__array_ufunc__ handled "out" appropriately,
|
||||
# `result` should still be an ndarray.
|
||||
assert isinstance(result, np.ndarray)
|
||||
assert result.all()
|
||||
|
||||
# result |= mask worked because mask could be cast lossslessly to
|
||||
# boolean ndarray. mask2 can't, so this raises
|
||||
result = np.zeros(3, dtype=bool)
|
||||
msg = "Specify an appropriate 'na_value' for this dtype"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
result |= mask2
|
||||
|
||||
# addition
|
||||
res = np.add(arr, arr2)
|
||||
expected = pd.array([2, 4, pd.NA], dtype=dtype)
|
||||
tm.assert_extension_array_equal(res, expected)
|
||||
|
||||
# when passing out=arr, we will modify 'arr' inplace.
|
||||
res = np.add(arr, arr2, out=arr)
|
||||
assert res is arr
|
||||
tm.assert_extension_array_equal(res, expected)
|
||||
tm.assert_extension_array_equal(arr, expected)
|
@ -0,0 +1,121 @@
|
||||
import pytest
|
||||
|
||||
from pandas.core.dtypes.dtypes import PeriodDtype
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import (
|
||||
PeriodArray,
|
||||
period_array,
|
||||
)
|
||||
|
||||
pa = pytest.importorskip("pyarrow", minversion="1.0.1")
|
||||
|
||||
|
||||
def test_arrow_extension_type():
|
||||
from pandas.core.arrays._arrow_utils import ArrowPeriodType
|
||||
|
||||
p1 = ArrowPeriodType("D")
|
||||
p2 = ArrowPeriodType("D")
|
||||
p3 = ArrowPeriodType("M")
|
||||
|
||||
assert p1.freq == "D"
|
||||
assert p1 == p2
|
||||
assert not p1 == p3
|
||||
assert hash(p1) == hash(p2)
|
||||
assert not hash(p1) == hash(p3)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"data, freq",
|
||||
[
|
||||
(pd.date_range("2017", periods=3), "D"),
|
||||
(pd.date_range("2017", periods=3, freq="A"), "A-DEC"),
|
||||
],
|
||||
)
|
||||
def test_arrow_array(data, freq):
|
||||
from pandas.core.arrays._arrow_utils import ArrowPeriodType
|
||||
|
||||
periods = period_array(data, freq=freq)
|
||||
result = pa.array(periods)
|
||||
assert isinstance(result.type, ArrowPeriodType)
|
||||
assert result.type.freq == freq
|
||||
expected = pa.array(periods.asi8, type="int64")
|
||||
assert result.storage.equals(expected)
|
||||
|
||||
# convert to its storage type
|
||||
result = pa.array(periods, type=pa.int64())
|
||||
assert result.equals(expected)
|
||||
|
||||
# unsupported conversions
|
||||
msg = "Not supported to convert PeriodArray to 'double' type"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
pa.array(periods, type="float64")
|
||||
|
||||
with pytest.raises(TypeError, match="different 'freq'"):
|
||||
pa.array(periods, type=ArrowPeriodType("T"))
|
||||
|
||||
|
||||
def test_arrow_array_missing():
|
||||
from pandas.core.arrays._arrow_utils import ArrowPeriodType
|
||||
|
||||
arr = PeriodArray([1, 2, 3], freq="D")
|
||||
arr[1] = pd.NaT
|
||||
|
||||
result = pa.array(arr)
|
||||
assert isinstance(result.type, ArrowPeriodType)
|
||||
assert result.type.freq == "D"
|
||||
expected = pa.array([1, None, 3], type="int64")
|
||||
assert result.storage.equals(expected)
|
||||
|
||||
|
||||
def test_arrow_table_roundtrip():
|
||||
from pandas.core.arrays._arrow_utils import ArrowPeriodType
|
||||
|
||||
arr = PeriodArray([1, 2, 3], freq="D")
|
||||
arr[1] = pd.NaT
|
||||
df = pd.DataFrame({"a": arr})
|
||||
|
||||
table = pa.table(df)
|
||||
assert isinstance(table.field("a").type, ArrowPeriodType)
|
||||
result = table.to_pandas()
|
||||
assert isinstance(result["a"].dtype, PeriodDtype)
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
table2 = pa.concat_tables([table, table])
|
||||
result = table2.to_pandas()
|
||||
expected = pd.concat([df, df], ignore_index=True)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_arrow_load_from_zero_chunks():
|
||||
# GH-41040
|
||||
|
||||
from pandas.core.arrays._arrow_utils import ArrowPeriodType
|
||||
|
||||
arr = PeriodArray([], freq="D")
|
||||
df = pd.DataFrame({"a": arr})
|
||||
|
||||
table = pa.table(df)
|
||||
assert isinstance(table.field("a").type, ArrowPeriodType)
|
||||
table = pa.table(
|
||||
[pa.chunked_array([], type=table.column(0).type)], schema=table.schema
|
||||
)
|
||||
result = table.to_pandas()
|
||||
assert isinstance(result["a"].dtype, PeriodDtype)
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
|
||||
def test_arrow_table_roundtrip_without_metadata():
|
||||
arr = PeriodArray([1, 2, 3], freq="H")
|
||||
arr[1] = pd.NaT
|
||||
df = pd.DataFrame({"a": arr})
|
||||
|
||||
table = pa.table(df)
|
||||
# remove the metadata
|
||||
table = table.replace_schema_metadata()
|
||||
assert table.schema.metadata is None
|
||||
|
||||
result = table.to_pandas()
|
||||
assert isinstance(result["a"].dtype, PeriodDtype)
|
||||
tm.assert_frame_equal(result, df)
|
@ -0,0 +1,69 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.core.dtypes.dtypes import PeriodDtype
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import period_array
|
||||
|
||||
|
||||
@pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"])
|
||||
def test_astype(dtype):
|
||||
# We choose to ignore the sign and size of integers for
|
||||
# Period/Datetime/Timedelta astype
|
||||
arr = period_array(["2000", "2001", None], freq="D")
|
||||
result = arr.astype(dtype)
|
||||
|
||||
if np.dtype(dtype).kind == "u":
|
||||
expected_dtype = np.dtype("uint64")
|
||||
else:
|
||||
expected_dtype = np.dtype("int64")
|
||||
|
||||
expected = arr.astype(expected_dtype)
|
||||
|
||||
assert result.dtype == expected_dtype
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_astype_copies():
|
||||
arr = period_array(["2000", "2001", None], freq="D")
|
||||
result = arr.astype(np.int64, copy=False)
|
||||
|
||||
# Add the `.base`, since we now use `.asi8` which returns a view.
|
||||
# We could maybe override it in PeriodArray to return ._data directly.
|
||||
assert result.base is arr._data
|
||||
|
||||
result = arr.astype(np.int64, copy=True)
|
||||
assert result is not arr._data
|
||||
tm.assert_numpy_array_equal(result, arr._data.view("i8"))
|
||||
|
||||
|
||||
def test_astype_categorical():
|
||||
arr = period_array(["2000", "2001", "2001", None], freq="D")
|
||||
result = arr.astype("category")
|
||||
categories = pd.PeriodIndex(["2000", "2001"], freq="D")
|
||||
expected = pd.Categorical.from_codes([0, 1, 1, -1], categories=categories)
|
||||
tm.assert_categorical_equal(result, expected)
|
||||
|
||||
|
||||
def test_astype_period():
|
||||
arr = period_array(["2000", "2001", None], freq="D")
|
||||
result = arr.astype(PeriodDtype("M"))
|
||||
expected = period_array(["2000", "2001", None], freq="M")
|
||||
tm.assert_period_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("other", ["datetime64[ns]", "timedelta64[ns]"])
|
||||
def test_astype_datetime(other):
|
||||
arr = period_array(["2000", "2001", None], freq="D")
|
||||
# slice off the [ns] so that the regex matches.
|
||||
if other == "timedelta64[ns]":
|
||||
with pytest.raises(TypeError, match=other[:-4]):
|
||||
arr.astype(other)
|
||||
|
||||
else:
|
||||
# GH#45038 allow period->dt64 because we allow dt64->period
|
||||
result = arr.astype(other)
|
||||
expected = pd.DatetimeIndex(["2000", "2001", pd.NaT])._data
|
||||
tm.assert_datetime_array_equal(result, expected)
|
@ -0,0 +1,123 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas._libs.tslibs import iNaT
|
||||
from pandas._libs.tslibs.period import IncompatibleFrequency
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import (
|
||||
PeriodArray,
|
||||
period_array,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"data, freq, expected",
|
||||
[
|
||||
([pd.Period("2017", "D")], None, [17167]),
|
||||
([pd.Period("2017", "D")], "D", [17167]),
|
||||
([2017], "D", [17167]),
|
||||
(["2017"], "D", [17167]),
|
||||
([pd.Period("2017", "D")], pd.tseries.offsets.Day(), [17167]),
|
||||
([pd.Period("2017", "D"), None], None, [17167, iNaT]),
|
||||
(pd.Series(pd.date_range("2017", periods=3)), None, [17167, 17168, 17169]),
|
||||
(pd.date_range("2017", periods=3), None, [17167, 17168, 17169]),
|
||||
(pd.period_range("2017", periods=4, freq="Q"), None, [188, 189, 190, 191]),
|
||||
],
|
||||
)
|
||||
def test_period_array_ok(data, freq, expected):
|
||||
result = period_array(data, freq=freq).asi8
|
||||
expected = np.asarray(expected, dtype=np.int64)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_period_array_readonly_object():
|
||||
# https://github.com/pandas-dev/pandas/issues/25403
|
||||
pa = period_array([pd.Period("2019-01-01")])
|
||||
arr = np.asarray(pa, dtype="object")
|
||||
arr.setflags(write=False)
|
||||
|
||||
result = period_array(arr)
|
||||
tm.assert_period_array_equal(result, pa)
|
||||
|
||||
result = pd.Series(arr)
|
||||
tm.assert_series_equal(result, pd.Series(pa))
|
||||
|
||||
result = pd.DataFrame({"A": arr})
|
||||
tm.assert_frame_equal(result, pd.DataFrame({"A": pa}))
|
||||
|
||||
|
||||
def test_from_datetime64_freq_changes():
|
||||
# https://github.com/pandas-dev/pandas/issues/23438
|
||||
arr = pd.date_range("2017", periods=3, freq="D")
|
||||
result = PeriodArray._from_datetime64(arr, freq="M")
|
||||
expected = period_array(["2017-01-01", "2017-01-01", "2017-01-01"], freq="M")
|
||||
tm.assert_period_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"data, freq, msg",
|
||||
[
|
||||
(
|
||||
[pd.Period("2017", "D"), pd.Period("2017", "A")],
|
||||
None,
|
||||
"Input has different freq",
|
||||
),
|
||||
([pd.Period("2017", "D")], "A", "Input has different freq"),
|
||||
],
|
||||
)
|
||||
def test_period_array_raises(data, freq, msg):
|
||||
with pytest.raises(IncompatibleFrequency, match=msg):
|
||||
period_array(data, freq)
|
||||
|
||||
|
||||
def test_period_array_non_period_series_raies():
|
||||
ser = pd.Series([1, 2, 3])
|
||||
with pytest.raises(TypeError, match="dtype"):
|
||||
PeriodArray(ser, freq="D")
|
||||
|
||||
|
||||
def test_period_array_freq_mismatch():
|
||||
arr = period_array(["2000", "2001"], freq="D")
|
||||
with pytest.raises(IncompatibleFrequency, match="freq"):
|
||||
PeriodArray(arr, freq="M")
|
||||
|
||||
with pytest.raises(IncompatibleFrequency, match="freq"):
|
||||
PeriodArray(arr, freq=pd.tseries.offsets.MonthEnd())
|
||||
|
||||
|
||||
def test_from_sequence_disallows_i8():
|
||||
arr = period_array(["2000", "2001"], freq="D")
|
||||
|
||||
msg = str(arr[0].ordinal)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
PeriodArray._from_sequence(arr.asi8, dtype=arr.dtype)
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
PeriodArray._from_sequence(list(arr.asi8), dtype=arr.dtype)
|
||||
|
||||
|
||||
def test_from_td64nat_sequence_raises():
|
||||
# GH#44507
|
||||
td = pd.NaT.to_numpy("m8[ns]")
|
||||
|
||||
dtype = pd.period_range("2005-01-01", periods=3, freq="D").dtype
|
||||
|
||||
arr = np.array([None], dtype=object)
|
||||
arr[0] = td
|
||||
|
||||
msg = "Value must be Period, string, integer, or datetime"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
PeriodArray._from_sequence(arr, dtype=dtype)
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
pd.PeriodIndex(arr, dtype=dtype)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
pd.Index(arr, dtype=dtype)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
pd.array(arr, dtype=dtype)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
pd.Series(arr, dtype=dtype)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
pd.DataFrame(arr, dtype=dtype)
|
@ -0,0 +1,42 @@
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas.core.arrays import period_array
|
||||
|
||||
|
||||
class TestReductions:
|
||||
def test_min_max(self):
|
||||
arr = period_array(
|
||||
[
|
||||
"2000-01-03",
|
||||
"2000-01-03",
|
||||
"NaT",
|
||||
"2000-01-02",
|
||||
"2000-01-05",
|
||||
"2000-01-04",
|
||||
],
|
||||
freq="D",
|
||||
)
|
||||
|
||||
result = arr.min()
|
||||
expected = pd.Period("2000-01-02", freq="D")
|
||||
assert result == expected
|
||||
|
||||
result = arr.max()
|
||||
expected = pd.Period("2000-01-05", freq="D")
|
||||
assert result == expected
|
||||
|
||||
result = arr.min(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = arr.max(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_min_max_empty(self, skipna):
|
||||
arr = period_array([], freq="D")
|
||||
result = arr.min(skipna=skipna)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = arr.max(skipna=skipna)
|
||||
assert result is pd.NaT
|
@ -0,0 +1,159 @@
|
||||
import string
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays.sparse import (
|
||||
SparseArray,
|
||||
SparseDtype,
|
||||
)
|
||||
|
||||
|
||||
class TestSeriesAccessor:
|
||||
# TODO: collect other Series accessor tests
|
||||
def test_to_dense(self):
|
||||
s = pd.Series([0, 1, 0, 10], dtype="Sparse[int64]")
|
||||
result = s.sparse.to_dense()
|
||||
expected = pd.Series([0, 1, 0, 10])
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
class TestFrameAccessor:
|
||||
def test_accessor_raises(self):
|
||||
df = pd.DataFrame({"A": [0, 1]})
|
||||
with pytest.raises(AttributeError, match="sparse"):
|
||||
df.sparse
|
||||
|
||||
@pytest.mark.parametrize("format", ["csc", "csr", "coo"])
|
||||
@pytest.mark.parametrize("labels", [None, list(string.ascii_letters[:10])])
|
||||
@pytest.mark.parametrize("dtype", ["float64", "int64"])
|
||||
@td.skip_if_no_scipy
|
||||
def test_from_spmatrix(self, format, labels, dtype):
|
||||
import scipy.sparse
|
||||
|
||||
sp_dtype = SparseDtype(dtype, np.array(0, dtype=dtype).item())
|
||||
|
||||
mat = scipy.sparse.eye(10, format=format, dtype=dtype)
|
||||
result = pd.DataFrame.sparse.from_spmatrix(mat, index=labels, columns=labels)
|
||||
expected = pd.DataFrame(
|
||||
np.eye(10, dtype=dtype), index=labels, columns=labels
|
||||
).astype(sp_dtype)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("format", ["csc", "csr", "coo"])
|
||||
@td.skip_if_no_scipy
|
||||
def test_from_spmatrix_including_explicit_zero(self, format):
|
||||
import scipy.sparse
|
||||
|
||||
mat = scipy.sparse.random(10, 2, density=0.5, format=format)
|
||||
mat.data[0] = 0
|
||||
result = pd.DataFrame.sparse.from_spmatrix(mat)
|
||||
dtype = SparseDtype("float64", 0.0)
|
||||
expected = pd.DataFrame(mat.todense()).astype(dtype)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"columns",
|
||||
[["a", "b"], pd.MultiIndex.from_product([["A"], ["a", "b"]]), ["a", "a"]],
|
||||
)
|
||||
@td.skip_if_no_scipy
|
||||
def test_from_spmatrix_columns(self, columns):
|
||||
import scipy.sparse
|
||||
|
||||
dtype = SparseDtype("float64", 0.0)
|
||||
|
||||
mat = scipy.sparse.random(10, 2, density=0.5)
|
||||
result = pd.DataFrame.sparse.from_spmatrix(mat, columns=columns)
|
||||
expected = pd.DataFrame(mat.toarray(), columns=columns).astype(dtype)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"colnames", [("A", "B"), (1, 2), (1, pd.NA), (0.1, 0.2), ("x", "x"), (0, 0)]
|
||||
)
|
||||
@td.skip_if_no_scipy
|
||||
def test_to_coo(self, colnames):
|
||||
import scipy.sparse
|
||||
|
||||
df = pd.DataFrame(
|
||||
{colnames[0]: [0, 1, 0], colnames[1]: [1, 0, 0]}, dtype="Sparse[int64, 0]"
|
||||
)
|
||||
result = df.sparse.to_coo()
|
||||
expected = scipy.sparse.coo_matrix(np.asarray(df))
|
||||
assert (result != expected).nnz == 0
|
||||
|
||||
@pytest.mark.parametrize("fill_value", [1, np.nan])
|
||||
@td.skip_if_no_scipy
|
||||
def test_to_coo_nonzero_fill_val_raises(self, fill_value):
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"A": SparseArray(
|
||||
[fill_value, fill_value, fill_value, 2], fill_value=fill_value
|
||||
),
|
||||
"B": SparseArray(
|
||||
[fill_value, 2, fill_value, fill_value], fill_value=fill_value
|
||||
),
|
||||
}
|
||||
)
|
||||
with pytest.raises(ValueError, match="fill value must be 0"):
|
||||
df.sparse.to_coo()
|
||||
|
||||
def test_to_dense(self):
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"A": SparseArray([1, 0], dtype=SparseDtype("int64", 0)),
|
||||
"B": SparseArray([1, 0], dtype=SparseDtype("int64", 1)),
|
||||
"C": SparseArray([1.0, 0.0], dtype=SparseDtype("float64", 0.0)),
|
||||
},
|
||||
index=["b", "a"],
|
||||
)
|
||||
result = df.sparse.to_dense()
|
||||
expected = pd.DataFrame(
|
||||
{"A": [1, 0], "B": [1, 0], "C": [1.0, 0.0]}, index=["b", "a"]
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_density(self):
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"A": SparseArray([1, 0, 2, 1], fill_value=0),
|
||||
"B": SparseArray([0, 1, 1, 1], fill_value=0),
|
||||
}
|
||||
)
|
||||
res = df.sparse.density
|
||||
expected = 0.75
|
||||
assert res == expected
|
||||
|
||||
@pytest.mark.parametrize("dtype", ["int64", "float64"])
|
||||
@pytest.mark.parametrize("dense_index", [True, False])
|
||||
@td.skip_if_no_scipy
|
||||
def test_series_from_coo(self, dtype, dense_index):
|
||||
import scipy.sparse
|
||||
|
||||
A = scipy.sparse.eye(3, format="coo", dtype=dtype)
|
||||
result = pd.Series.sparse.from_coo(A, dense_index=dense_index)
|
||||
index = pd.MultiIndex.from_tuples([(0, 0), (1, 1), (2, 2)])
|
||||
expected = pd.Series(SparseArray(np.array([1, 1, 1], dtype=dtype)), index=index)
|
||||
if dense_index:
|
||||
expected = expected.reindex(pd.MultiIndex.from_product(index.levels))
|
||||
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@td.skip_if_no_scipy
|
||||
def test_series_from_coo_incorrect_format_raises(self):
|
||||
# gh-26554
|
||||
import scipy.sparse
|
||||
|
||||
m = scipy.sparse.csr_matrix(np.array([[0, 1], [0, 0]]))
|
||||
with pytest.raises(
|
||||
TypeError, match="Expected coo_matrix. Got csr_matrix instead."
|
||||
):
|
||||
pd.Series.sparse.from_coo(m)
|
||||
|
||||
def test_with_column_named_sparse(self):
|
||||
# https://github.com/pandas-dev/pandas/issues/30758
|
||||
df = pd.DataFrame({"sparse": pd.arrays.SparseArray([1, 2])})
|
||||
assert isinstance(df.sparse, pd.core.arrays.sparse.accessor.SparseFrameAccessor)
|
@ -0,0 +1,530 @@
|
||||
import operator
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.compat import np_version_under1p20
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core import ops
|
||||
from pandas.core.arrays.sparse import (
|
||||
SparseArray,
|
||||
SparseDtype,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(params=["integer", "block"])
|
||||
def kind(request):
|
||||
"""kind kwarg to pass to SparseArray/SparseSeries"""
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(params=[True, False])
|
||||
def mix(request):
|
||||
# whether to operate op(sparse, dense) instead of op(sparse, sparse)
|
||||
return request.param
|
||||
|
||||
|
||||
class TestSparseArrayArithmetics:
|
||||
|
||||
_base = np.array
|
||||
_klass = SparseArray
|
||||
|
||||
def _assert(self, a, b):
|
||||
# We have to use tm.assert_sp_array_equal. See GH #45126
|
||||
tm.assert_numpy_array_equal(a, b)
|
||||
|
||||
def _check_numeric_ops(self, a, b, a_dense, b_dense, mix: bool, op):
|
||||
# Check that arithmetic behavior matches non-Sparse Series arithmetic
|
||||
|
||||
if isinstance(a_dense, np.ndarray):
|
||||
expected = op(pd.Series(a_dense), b_dense).values
|
||||
elif isinstance(b_dense, np.ndarray):
|
||||
expected = op(a_dense, pd.Series(b_dense)).values
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
with np.errstate(invalid="ignore", divide="ignore"):
|
||||
if mix:
|
||||
result = op(a, b_dense).to_dense()
|
||||
else:
|
||||
result = op(a, b).to_dense()
|
||||
|
||||
self._assert(result, expected)
|
||||
|
||||
def _check_bool_result(self, res):
|
||||
assert isinstance(res, self._klass)
|
||||
assert isinstance(res.dtype, SparseDtype)
|
||||
assert res.dtype.subtype == np.bool_
|
||||
assert isinstance(res.fill_value, bool)
|
||||
|
||||
def _check_comparison_ops(self, a, b, a_dense, b_dense):
|
||||
with np.errstate(invalid="ignore"):
|
||||
# Unfortunately, trying to wrap the computation of each expected
|
||||
# value is with np.errstate() is too tedious.
|
||||
#
|
||||
# sparse & sparse
|
||||
self._check_bool_result(a == b)
|
||||
self._assert((a == b).to_dense(), a_dense == b_dense)
|
||||
|
||||
self._check_bool_result(a != b)
|
||||
self._assert((a != b).to_dense(), a_dense != b_dense)
|
||||
|
||||
self._check_bool_result(a >= b)
|
||||
self._assert((a >= b).to_dense(), a_dense >= b_dense)
|
||||
|
||||
self._check_bool_result(a <= b)
|
||||
self._assert((a <= b).to_dense(), a_dense <= b_dense)
|
||||
|
||||
self._check_bool_result(a > b)
|
||||
self._assert((a > b).to_dense(), a_dense > b_dense)
|
||||
|
||||
self._check_bool_result(a < b)
|
||||
self._assert((a < b).to_dense(), a_dense < b_dense)
|
||||
|
||||
# sparse & dense
|
||||
self._check_bool_result(a == b_dense)
|
||||
self._assert((a == b_dense).to_dense(), a_dense == b_dense)
|
||||
|
||||
self._check_bool_result(a != b_dense)
|
||||
self._assert((a != b_dense).to_dense(), a_dense != b_dense)
|
||||
|
||||
self._check_bool_result(a >= b_dense)
|
||||
self._assert((a >= b_dense).to_dense(), a_dense >= b_dense)
|
||||
|
||||
self._check_bool_result(a <= b_dense)
|
||||
self._assert((a <= b_dense).to_dense(), a_dense <= b_dense)
|
||||
|
||||
self._check_bool_result(a > b_dense)
|
||||
self._assert((a > b_dense).to_dense(), a_dense > b_dense)
|
||||
|
||||
self._check_bool_result(a < b_dense)
|
||||
self._assert((a < b_dense).to_dense(), a_dense < b_dense)
|
||||
|
||||
def _check_logical_ops(self, a, b, a_dense, b_dense):
|
||||
# sparse & sparse
|
||||
self._check_bool_result(a & b)
|
||||
self._assert((a & b).to_dense(), a_dense & b_dense)
|
||||
|
||||
self._check_bool_result(a | b)
|
||||
self._assert((a | b).to_dense(), a_dense | b_dense)
|
||||
# sparse & dense
|
||||
self._check_bool_result(a & b_dense)
|
||||
self._assert((a & b_dense).to_dense(), a_dense & b_dense)
|
||||
|
||||
self._check_bool_result(a | b_dense)
|
||||
self._assert((a | b_dense).to_dense(), a_dense | b_dense)
|
||||
|
||||
@pytest.mark.parametrize("scalar", [0, 1, 3])
|
||||
@pytest.mark.parametrize("fill_value", [None, 0, 2])
|
||||
def test_float_scalar(
|
||||
self, kind, mix, all_arithmetic_functions, fill_value, scalar, request
|
||||
):
|
||||
op = all_arithmetic_functions
|
||||
|
||||
if np_version_under1p20:
|
||||
if op in [operator.floordiv, ops.rfloordiv]:
|
||||
if op is operator.floordiv and scalar != 0:
|
||||
pass
|
||||
elif op is ops.rfloordiv and scalar == 0:
|
||||
pass
|
||||
else:
|
||||
mark = pytest.mark.xfail(raises=AssertionError, reason="GH#38172")
|
||||
request.node.add_marker(mark)
|
||||
|
||||
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
||||
|
||||
a = self._klass(values, kind=kind, fill_value=fill_value)
|
||||
self._check_numeric_ops(a, scalar, values, scalar, mix, op)
|
||||
|
||||
def test_float_scalar_comparison(self, kind):
|
||||
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
||||
|
||||
a = self._klass(values, kind=kind)
|
||||
self._check_comparison_ops(a, 1, values, 1)
|
||||
self._check_comparison_ops(a, 0, values, 0)
|
||||
self._check_comparison_ops(a, 3, values, 3)
|
||||
|
||||
a = self._klass(values, kind=kind, fill_value=0)
|
||||
self._check_comparison_ops(a, 1, values, 1)
|
||||
self._check_comparison_ops(a, 0, values, 0)
|
||||
self._check_comparison_ops(a, 3, values, 3)
|
||||
|
||||
a = self._klass(values, kind=kind, fill_value=2)
|
||||
self._check_comparison_ops(a, 1, values, 1)
|
||||
self._check_comparison_ops(a, 0, values, 0)
|
||||
self._check_comparison_ops(a, 3, values, 3)
|
||||
|
||||
def test_float_same_index_without_nans(self, kind, mix, all_arithmetic_functions):
|
||||
# when sp_index are the same
|
||||
op = all_arithmetic_functions
|
||||
|
||||
values = self._base([0.0, 1.0, 2.0, 6.0, 0.0, 0.0, 1.0, 2.0, 1.0, 0.0])
|
||||
rvalues = self._base([0.0, 2.0, 3.0, 4.0, 0.0, 0.0, 1.0, 3.0, 2.0, 0.0])
|
||||
|
||||
a = self._klass(values, kind=kind, fill_value=0)
|
||||
b = self._klass(rvalues, kind=kind, fill_value=0)
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
|
||||
def test_float_same_index_with_nans(
|
||||
self, kind, mix, all_arithmetic_functions, request
|
||||
):
|
||||
# when sp_index are the same
|
||||
op = all_arithmetic_functions
|
||||
|
||||
if (
|
||||
np_version_under1p20
|
||||
and op is ops.rfloordiv
|
||||
and not (mix and kind == "block")
|
||||
):
|
||||
mark = pytest.mark.xfail(raises=AssertionError, reason="GH#38172")
|
||||
request.node.add_marker(mark)
|
||||
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
||||
rvalues = self._base([np.nan, 2, 3, 4, np.nan, 0, 1, 3, 2, np.nan])
|
||||
|
||||
a = self._klass(values, kind=kind)
|
||||
b = self._klass(rvalues, kind=kind)
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
|
||||
def test_float_same_index_comparison(self, kind):
|
||||
# when sp_index are the same
|
||||
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
||||
rvalues = self._base([np.nan, 2, 3, 4, np.nan, 0, 1, 3, 2, np.nan])
|
||||
|
||||
a = self._klass(values, kind=kind)
|
||||
b = self._klass(rvalues, kind=kind)
|
||||
self._check_comparison_ops(a, b, values, rvalues)
|
||||
|
||||
values = self._base([0.0, 1.0, 2.0, 6.0, 0.0, 0.0, 1.0, 2.0, 1.0, 0.0])
|
||||
rvalues = self._base([0.0, 2.0, 3.0, 4.0, 0.0, 0.0, 1.0, 3.0, 2.0, 0.0])
|
||||
|
||||
a = self._klass(values, kind=kind, fill_value=0)
|
||||
b = self._klass(rvalues, kind=kind, fill_value=0)
|
||||
self._check_comparison_ops(a, b, values, rvalues)
|
||||
|
||||
def test_float_array(self, kind, mix, all_arithmetic_functions):
|
||||
op = all_arithmetic_functions
|
||||
|
||||
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
||||
rvalues = self._base([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan])
|
||||
|
||||
a = self._klass(values, kind=kind)
|
||||
b = self._klass(rvalues, kind=kind)
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
|
||||
|
||||
a = self._klass(values, kind=kind, fill_value=0)
|
||||
b = self._klass(rvalues, kind=kind)
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
|
||||
a = self._klass(values, kind=kind, fill_value=0)
|
||||
b = self._klass(rvalues, kind=kind, fill_value=0)
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
|
||||
a = self._klass(values, kind=kind, fill_value=1)
|
||||
b = self._klass(rvalues, kind=kind, fill_value=2)
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
|
||||
def test_float_array_different_kind(self, mix, all_arithmetic_functions):
|
||||
op = all_arithmetic_functions
|
||||
|
||||
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
||||
rvalues = self._base([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan])
|
||||
|
||||
a = self._klass(values, kind="integer")
|
||||
b = self._klass(rvalues, kind="block")
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
|
||||
|
||||
a = self._klass(values, kind="integer", fill_value=0)
|
||||
b = self._klass(rvalues, kind="block")
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
|
||||
a = self._klass(values, kind="integer", fill_value=0)
|
||||
b = self._klass(rvalues, kind="block", fill_value=0)
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
|
||||
a = self._klass(values, kind="integer", fill_value=1)
|
||||
b = self._klass(rvalues, kind="block", fill_value=2)
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
|
||||
def test_float_array_comparison(self, kind):
|
||||
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
||||
rvalues = self._base([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan])
|
||||
|
||||
a = self._klass(values, kind=kind)
|
||||
b = self._klass(rvalues, kind=kind)
|
||||
self._check_comparison_ops(a, b, values, rvalues)
|
||||
self._check_comparison_ops(a, b * 0, values, rvalues * 0)
|
||||
|
||||
a = self._klass(values, kind=kind, fill_value=0)
|
||||
b = self._klass(rvalues, kind=kind)
|
||||
self._check_comparison_ops(a, b, values, rvalues)
|
||||
|
||||
a = self._klass(values, kind=kind, fill_value=0)
|
||||
b = self._klass(rvalues, kind=kind, fill_value=0)
|
||||
self._check_comparison_ops(a, b, values, rvalues)
|
||||
|
||||
a = self._klass(values, kind=kind, fill_value=1)
|
||||
b = self._klass(rvalues, kind=kind, fill_value=2)
|
||||
self._check_comparison_ops(a, b, values, rvalues)
|
||||
|
||||
def test_int_array(self, kind, mix, all_arithmetic_functions):
|
||||
op = all_arithmetic_functions
|
||||
|
||||
# have to specify dtype explicitly until fixing GH 667
|
||||
dtype = np.int64
|
||||
|
||||
values = self._base([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype)
|
||||
rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype)
|
||||
|
||||
a = self._klass(values, dtype=dtype, kind=kind)
|
||||
assert a.dtype == SparseDtype(dtype)
|
||||
b = self._klass(rvalues, dtype=dtype, kind=kind)
|
||||
assert b.dtype == SparseDtype(dtype)
|
||||
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
|
||||
|
||||
a = self._klass(values, fill_value=0, dtype=dtype, kind=kind)
|
||||
assert a.dtype == SparseDtype(dtype)
|
||||
b = self._klass(rvalues, dtype=dtype, kind=kind)
|
||||
assert b.dtype == SparseDtype(dtype)
|
||||
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
|
||||
a = self._klass(values, fill_value=0, dtype=dtype, kind=kind)
|
||||
assert a.dtype == SparseDtype(dtype)
|
||||
b = self._klass(rvalues, fill_value=0, dtype=dtype, kind=kind)
|
||||
assert b.dtype == SparseDtype(dtype)
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
|
||||
a = self._klass(values, fill_value=1, dtype=dtype, kind=kind)
|
||||
assert a.dtype == SparseDtype(dtype, fill_value=1)
|
||||
b = self._klass(rvalues, fill_value=2, dtype=dtype, kind=kind)
|
||||
assert b.dtype == SparseDtype(dtype, fill_value=2)
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
|
||||
def test_int_array_comparison(self, kind):
|
||||
dtype = "int64"
|
||||
# int32 NI ATM
|
||||
|
||||
values = self._base([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype)
|
||||
rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype)
|
||||
|
||||
a = self._klass(values, dtype=dtype, kind=kind)
|
||||
b = self._klass(rvalues, dtype=dtype, kind=kind)
|
||||
self._check_comparison_ops(a, b, values, rvalues)
|
||||
self._check_comparison_ops(a, b * 0, values, rvalues * 0)
|
||||
|
||||
a = self._klass(values, dtype=dtype, kind=kind, fill_value=0)
|
||||
b = self._klass(rvalues, dtype=dtype, kind=kind)
|
||||
self._check_comparison_ops(a, b, values, rvalues)
|
||||
|
||||
a = self._klass(values, dtype=dtype, kind=kind, fill_value=0)
|
||||
b = self._klass(rvalues, dtype=dtype, kind=kind, fill_value=0)
|
||||
self._check_comparison_ops(a, b, values, rvalues)
|
||||
|
||||
a = self._klass(values, dtype=dtype, kind=kind, fill_value=1)
|
||||
b = self._klass(rvalues, dtype=dtype, kind=kind, fill_value=2)
|
||||
self._check_comparison_ops(a, b, values, rvalues)
|
||||
|
||||
@pytest.mark.parametrize("fill_value", [True, False, np.nan])
|
||||
def test_bool_same_index(self, kind, fill_value):
|
||||
# GH 14000
|
||||
# when sp_index are the same
|
||||
values = self._base([True, False, True, True], dtype=np.bool_)
|
||||
rvalues = self._base([True, False, True, True], dtype=np.bool_)
|
||||
|
||||
a = self._klass(values, kind=kind, dtype=np.bool_, fill_value=fill_value)
|
||||
b = self._klass(rvalues, kind=kind, dtype=np.bool_, fill_value=fill_value)
|
||||
self._check_logical_ops(a, b, values, rvalues)
|
||||
|
||||
@pytest.mark.parametrize("fill_value", [True, False, np.nan])
|
||||
def test_bool_array_logical(self, kind, fill_value):
|
||||
# GH 14000
|
||||
# when sp_index are the same
|
||||
values = self._base([True, False, True, False, True, True], dtype=np.bool_)
|
||||
rvalues = self._base([True, False, False, True, False, True], dtype=np.bool_)
|
||||
|
||||
a = self._klass(values, kind=kind, dtype=np.bool_, fill_value=fill_value)
|
||||
b = self._klass(rvalues, kind=kind, dtype=np.bool_, fill_value=fill_value)
|
||||
self._check_logical_ops(a, b, values, rvalues)
|
||||
|
||||
def test_mixed_array_float_int(self, kind, mix, all_arithmetic_functions, request):
|
||||
op = all_arithmetic_functions
|
||||
|
||||
if np_version_under1p20 and op in [operator.floordiv, ops.rfloordiv] and mix:
|
||||
mark = pytest.mark.xfail(raises=AssertionError, reason="GH#38172")
|
||||
request.node.add_marker(mark)
|
||||
|
||||
rdtype = "int64"
|
||||
|
||||
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
||||
rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=rdtype)
|
||||
|
||||
a = self._klass(values, kind=kind)
|
||||
b = self._klass(rvalues, kind=kind)
|
||||
assert b.dtype == SparseDtype(rdtype)
|
||||
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
|
||||
|
||||
a = self._klass(values, kind=kind, fill_value=0)
|
||||
b = self._klass(rvalues, kind=kind)
|
||||
assert b.dtype == SparseDtype(rdtype)
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
|
||||
a = self._klass(values, kind=kind, fill_value=0)
|
||||
b = self._klass(rvalues, kind=kind, fill_value=0)
|
||||
assert b.dtype == SparseDtype(rdtype)
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
|
||||
a = self._klass(values, kind=kind, fill_value=1)
|
||||
b = self._klass(rvalues, kind=kind, fill_value=2)
|
||||
assert b.dtype == SparseDtype(rdtype, fill_value=2)
|
||||
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
||||
|
||||
def test_mixed_array_comparison(self, kind):
|
||||
rdtype = "int64"
|
||||
# int32 NI ATM
|
||||
|
||||
values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
||||
rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=rdtype)
|
||||
|
||||
a = self._klass(values, kind=kind)
|
||||
b = self._klass(rvalues, kind=kind)
|
||||
assert b.dtype == SparseDtype(rdtype)
|
||||
|
||||
self._check_comparison_ops(a, b, values, rvalues)
|
||||
self._check_comparison_ops(a, b * 0, values, rvalues * 0)
|
||||
|
||||
a = self._klass(values, kind=kind, fill_value=0)
|
||||
b = self._klass(rvalues, kind=kind)
|
||||
assert b.dtype == SparseDtype(rdtype)
|
||||
self._check_comparison_ops(a, b, values, rvalues)
|
||||
|
||||
a = self._klass(values, kind=kind, fill_value=0)
|
||||
b = self._klass(rvalues, kind=kind, fill_value=0)
|
||||
assert b.dtype == SparseDtype(rdtype)
|
||||
self._check_comparison_ops(a, b, values, rvalues)
|
||||
|
||||
a = self._klass(values, kind=kind, fill_value=1)
|
||||
b = self._klass(rvalues, kind=kind, fill_value=2)
|
||||
assert b.dtype == SparseDtype(rdtype, fill_value=2)
|
||||
self._check_comparison_ops(a, b, values, rvalues)
|
||||
|
||||
def test_xor(self):
|
||||
s = SparseArray([True, True, False, False])
|
||||
t = SparseArray([True, False, True, False])
|
||||
result = s ^ t
|
||||
sp_index = pd.core.arrays.sparse.IntIndex(4, np.array([0, 1, 2], dtype="int32"))
|
||||
expected = SparseArray([False, True, True], sparse_index=sp_index)
|
||||
tm.assert_sp_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("op", [operator.eq, operator.add])
|
||||
def test_with_list(op):
|
||||
arr = SparseArray([0, 1], fill_value=0)
|
||||
result = op(arr, [0, 1])
|
||||
expected = op(arr, SparseArray([0, 1]))
|
||||
tm.assert_sp_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_with_dataframe():
|
||||
# GH#27910
|
||||
arr = SparseArray([0, 1], fill_value=0)
|
||||
df = pd.DataFrame([[1, 2], [3, 4]])
|
||||
result = arr.__add__(df)
|
||||
assert result is NotImplemented
|
||||
|
||||
|
||||
def test_with_zerodim_ndarray():
|
||||
# GH#27910
|
||||
arr = SparseArray([0, 1], fill_value=0)
|
||||
|
||||
result = arr * np.array(2)
|
||||
expected = arr * 2
|
||||
tm.assert_sp_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("ufunc", [np.abs, np.exp])
|
||||
@pytest.mark.parametrize(
|
||||
"arr", [SparseArray([0, 0, -1, 1]), SparseArray([None, None, -1, 1])]
|
||||
)
|
||||
def test_ufuncs(ufunc, arr):
|
||||
result = ufunc(arr)
|
||||
fill_value = ufunc(arr.fill_value)
|
||||
expected = SparseArray(ufunc(np.asarray(arr)), fill_value=fill_value)
|
||||
tm.assert_sp_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"a, b",
|
||||
[
|
||||
(SparseArray([0, 0, 0]), np.array([0, 1, 2])),
|
||||
(SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
|
||||
(SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
|
||||
(SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
|
||||
(SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize("ufunc", [np.add, np.greater])
|
||||
def test_binary_ufuncs(ufunc, a, b):
|
||||
# can't say anything about fill value here.
|
||||
result = ufunc(a, b)
|
||||
expected = ufunc(np.asarray(a), np.asarray(b))
|
||||
assert isinstance(result, SparseArray)
|
||||
tm.assert_numpy_array_equal(np.asarray(result), expected)
|
||||
|
||||
|
||||
def test_ndarray_inplace():
|
||||
sparray = SparseArray([0, 2, 0, 0])
|
||||
ndarray = np.array([0, 1, 2, 3])
|
||||
ndarray += sparray
|
||||
expected = np.array([0, 3, 2, 3])
|
||||
tm.assert_numpy_array_equal(ndarray, expected)
|
||||
|
||||
|
||||
def test_sparray_inplace():
|
||||
sparray = SparseArray([0, 2, 0, 0])
|
||||
ndarray = np.array([0, 1, 2, 3])
|
||||
sparray += ndarray
|
||||
expected = SparseArray([0, 3, 2, 3], fill_value=0)
|
||||
tm.assert_sp_array_equal(sparray, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("fill_value", [True, False])
|
||||
def test_invert(fill_value):
|
||||
arr = np.array([True, False, False, True])
|
||||
sparray = SparseArray(arr, fill_value=fill_value)
|
||||
result = ~sparray
|
||||
expected = SparseArray(~arr, fill_value=not fill_value)
|
||||
tm.assert_sp_array_equal(result, expected)
|
||||
|
||||
result = ~pd.Series(sparray)
|
||||
expected = pd.Series(expected)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = ~pd.DataFrame({"A": sparray})
|
||||
expected = pd.DataFrame({"A": expected})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("fill_value", [0, np.nan])
|
||||
@pytest.mark.parametrize("op", [operator.pos, operator.neg])
|
||||
def test_unary_op(op, fill_value):
|
||||
arr = np.array([0, 1, np.nan, 2])
|
||||
sparray = SparseArray(arr, fill_value=fill_value)
|
||||
result = op(sparray)
|
||||
expected = SparseArray(op(arr), fill_value=op(fill_value))
|
||||
tm.assert_sp_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("cons", [list, np.array, SparseArray])
|
||||
def test_mismatched_length_cmp_op(cons):
|
||||
left = SparseArray([True, True])
|
||||
right = cons([True, True, True])
|
||||
with pytest.raises(ValueError, match="operands have mismatched length"):
|
||||
left & right
|
1518
.venv/Lib/site-packages/pandas/tests/arrays/sparse/test_array.py
Normal file
1518
.venv/Lib/site-packages/pandas/tests/arrays/sparse/test_array.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,62 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays.sparse import SparseArray
|
||||
|
||||
|
||||
class TestSparseArrayConcat:
|
||||
@pytest.mark.parametrize("kind", ["integer", "block"])
|
||||
def test_basic(self, kind):
|
||||
a = SparseArray([1, 0, 0, 2], kind=kind)
|
||||
b = SparseArray([1, 0, 2, 2], kind=kind)
|
||||
|
||||
result = SparseArray._concat_same_type([a, b])
|
||||
# Can't make any assertions about the sparse index itself
|
||||
# since we aren't don't merge sparse blocs across arrays
|
||||
# in to_concat
|
||||
expected = np.array([1, 2, 1, 2, 2], dtype="int64")
|
||||
tm.assert_numpy_array_equal(result.sp_values, expected)
|
||||
assert result.kind == kind
|
||||
|
||||
@pytest.mark.parametrize("kind", ["integer", "block"])
|
||||
def test_uses_first_kind(self, kind):
|
||||
other = "integer" if kind == "block" else "block"
|
||||
a = SparseArray([1, 0, 0, 2], kind=kind)
|
||||
b = SparseArray([1, 0, 2, 2], kind=other)
|
||||
|
||||
result = SparseArray._concat_same_type([a, b])
|
||||
expected = np.array([1, 2, 1, 2, 2], dtype="int64")
|
||||
tm.assert_numpy_array_equal(result.sp_values, expected)
|
||||
assert result.kind == kind
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"other, expected_dtype",
|
||||
[
|
||||
# compatible dtype -> preserve sparse
|
||||
(pd.Series([3, 4, 5], dtype="int64"), pd.SparseDtype("int64", 0)),
|
||||
# (pd.Series([3, 4, 5], dtype="Int64"), pd.SparseDtype("int64", 0)),
|
||||
# incompatible dtype -> Sparse[common dtype]
|
||||
(pd.Series([1.5, 2.5, 3.5], dtype="float64"), pd.SparseDtype("float64", 0)),
|
||||
# incompatible dtype -> Sparse[object] dtype
|
||||
(pd.Series(["a", "b", "c"], dtype=object), pd.SparseDtype(object, 0)),
|
||||
# categorical with compatible categories -> dtype of the categories
|
||||
(pd.Series([3, 4, 5], dtype="category"), np.dtype("int64")),
|
||||
(pd.Series([1.5, 2.5, 3.5], dtype="category"), np.dtype("float64")),
|
||||
# categorical with incompatible categories -> object dtype
|
||||
(pd.Series(["a", "b", "c"], dtype="category"), np.dtype(object)),
|
||||
],
|
||||
)
|
||||
def test_concat_with_non_sparse(other, expected_dtype):
|
||||
# https://github.com/pandas-dev/pandas/issues/34336
|
||||
s_sparse = pd.Series([1, 0, 2], dtype=pd.SparseDtype("int64", 0))
|
||||
|
||||
result = pd.concat([s_sparse, other], ignore_index=True)
|
||||
expected = pd.Series(list(s_sparse) + list(other)).astype(expected_dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = pd.concat([other, s_sparse], ignore_index=True)
|
||||
expected = pd.Series(list(other) + list(s_sparse)).astype(expected_dtype)
|
||||
tm.assert_series_equal(result, expected)
|
209
.venv/Lib/site-packages/pandas/tests/arrays/sparse/test_dtype.py
Normal file
209
.venv/Lib/site-packages/pandas/tests/arrays/sparse/test_dtype.py
Normal file
@ -0,0 +1,209 @@
|
||||
import re
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas.core.arrays.sparse import SparseDtype
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtype, fill_value",
|
||||
[
|
||||
("int", 0),
|
||||
("float", np.nan),
|
||||
("bool", False),
|
||||
("object", np.nan),
|
||||
("datetime64[ns]", np.datetime64("NaT", "ns")),
|
||||
("timedelta64[ns]", np.timedelta64("NaT", "ns")),
|
||||
],
|
||||
)
|
||||
def test_inferred_dtype(dtype, fill_value):
|
||||
sparse_dtype = SparseDtype(dtype)
|
||||
result = sparse_dtype.fill_value
|
||||
if pd.isna(fill_value):
|
||||
assert pd.isna(result) and type(result) == type(fill_value)
|
||||
else:
|
||||
assert result == fill_value
|
||||
|
||||
|
||||
def test_from_sparse_dtype():
|
||||
dtype = SparseDtype("float", 0)
|
||||
result = SparseDtype(dtype)
|
||||
assert result.fill_value == 0
|
||||
|
||||
|
||||
def test_from_sparse_dtype_fill_value():
|
||||
dtype = SparseDtype("int", 1)
|
||||
result = SparseDtype(dtype, fill_value=2)
|
||||
expected = SparseDtype("int", 2)
|
||||
assert result == expected
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtype, fill_value",
|
||||
[
|
||||
("int", None),
|
||||
("float", None),
|
||||
("bool", None),
|
||||
("object", None),
|
||||
("datetime64[ns]", None),
|
||||
("timedelta64[ns]", None),
|
||||
("int", np.nan),
|
||||
("float", 0),
|
||||
],
|
||||
)
|
||||
def test_equal(dtype, fill_value):
|
||||
a = SparseDtype(dtype, fill_value)
|
||||
b = SparseDtype(dtype, fill_value)
|
||||
assert a == b
|
||||
assert b == a
|
||||
|
||||
|
||||
def test_nans_equal():
|
||||
a = SparseDtype(float, float("nan"))
|
||||
b = SparseDtype(float, np.nan)
|
||||
assert a == b
|
||||
assert b == a
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"a, b",
|
||||
[
|
||||
(SparseDtype("float64"), SparseDtype("float32")),
|
||||
(SparseDtype("float64"), SparseDtype("float64", 0)),
|
||||
(SparseDtype("float64"), SparseDtype("datetime64[ns]", np.nan)),
|
||||
(SparseDtype(int, pd.NaT), SparseDtype(float, pd.NaT)),
|
||||
(SparseDtype("float64"), np.dtype("float64")),
|
||||
],
|
||||
)
|
||||
def test_not_equal(a, b):
|
||||
assert a != b
|
||||
|
||||
|
||||
def test_construct_from_string_raises():
|
||||
with pytest.raises(
|
||||
TypeError, match="Cannot construct a 'SparseDtype' from 'not a dtype'"
|
||||
):
|
||||
SparseDtype.construct_from_string("not a dtype")
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtype, expected",
|
||||
[
|
||||
(SparseDtype(int), True),
|
||||
(SparseDtype(float), True),
|
||||
(SparseDtype(bool), True),
|
||||
(SparseDtype(object), False),
|
||||
(SparseDtype(str), False),
|
||||
],
|
||||
)
|
||||
def test_is_numeric(dtype, expected):
|
||||
assert dtype._is_numeric is expected
|
||||
|
||||
|
||||
def test_str_uses_object():
|
||||
result = SparseDtype(str).subtype
|
||||
assert result == np.dtype("object")
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"string, expected",
|
||||
[
|
||||
("Sparse[float64]", SparseDtype(np.dtype("float64"))),
|
||||
("Sparse[float32]", SparseDtype(np.dtype("float32"))),
|
||||
("Sparse[int]", SparseDtype(np.dtype("int"))),
|
||||
("Sparse[str]", SparseDtype(np.dtype("str"))),
|
||||
("Sparse[datetime64[ns]]", SparseDtype(np.dtype("datetime64[ns]"))),
|
||||
("Sparse", SparseDtype(np.dtype("float"), np.nan)),
|
||||
],
|
||||
)
|
||||
def test_construct_from_string(string, expected):
|
||||
result = SparseDtype.construct_from_string(string)
|
||||
assert result == expected
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"a, b, expected",
|
||||
[
|
||||
(SparseDtype(float, 0.0), SparseDtype(np.dtype("float"), 0.0), True),
|
||||
(SparseDtype(int, 0), SparseDtype(int, 0), True),
|
||||
(SparseDtype(float, float("nan")), SparseDtype(float, np.nan), True),
|
||||
(SparseDtype(float, 0), SparseDtype(float, np.nan), False),
|
||||
(SparseDtype(int, 0.0), SparseDtype(float, 0.0), False),
|
||||
],
|
||||
)
|
||||
def test_hash_equal(a, b, expected):
|
||||
result = a == b
|
||||
assert result is expected
|
||||
|
||||
result = hash(a) == hash(b)
|
||||
assert result is expected
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"string, expected",
|
||||
[
|
||||
("Sparse[int]", "int"),
|
||||
("Sparse[int, 0]", "int"),
|
||||
("Sparse[int64]", "int64"),
|
||||
("Sparse[int64, 0]", "int64"),
|
||||
("Sparse[datetime64[ns], 0]", "datetime64[ns]"),
|
||||
],
|
||||
)
|
||||
def test_parse_subtype(string, expected):
|
||||
subtype, _ = SparseDtype._parse_subtype(string)
|
||||
assert subtype == expected
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"string", ["Sparse[int, 1]", "Sparse[float, 0.0]", "Sparse[bool, True]"]
|
||||
)
|
||||
def test_construct_from_string_fill_value_raises(string):
|
||||
with pytest.raises(TypeError, match="fill_value in the string is not"):
|
||||
SparseDtype.construct_from_string(string)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"original, dtype, expected",
|
||||
[
|
||||
(SparseDtype(int, 0), float, SparseDtype(float, 0.0)),
|
||||
(SparseDtype(int, 1), float, SparseDtype(float, 1.0)),
|
||||
(SparseDtype(int, 1), str, SparseDtype(object, "1")),
|
||||
(SparseDtype(float, 1.5), int, SparseDtype(int, 1)),
|
||||
],
|
||||
)
|
||||
def test_update_dtype(original, dtype, expected):
|
||||
result = original.update_dtype(dtype)
|
||||
assert result == expected
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"original, dtype, expected_error_msg",
|
||||
[
|
||||
(
|
||||
SparseDtype(float, np.nan),
|
||||
int,
|
||||
re.escape("Cannot convert non-finite values (NA or inf) to integer"),
|
||||
),
|
||||
(
|
||||
SparseDtype(str, "abc"),
|
||||
int,
|
||||
re.escape("invalid literal for int() with base 10: 'abc'"),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_update_dtype_raises(original, dtype, expected_error_msg):
|
||||
with pytest.raises(ValueError, match=expected_error_msg):
|
||||
original.update_dtype(dtype)
|
||||
|
||||
|
||||
def test_repr():
|
||||
# GH-34352
|
||||
result = str(SparseDtype("int64", fill_value=0))
|
||||
expected = "Sparse[int64, 0]"
|
||||
assert result == expected
|
||||
|
||||
result = str(SparseDtype(object, fill_value="0"))
|
||||
expected = "Sparse[object, '0']"
|
||||
assert result == expected
|
@ -0,0 +1,618 @@
|
||||
import operator
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas._libs.sparse as splib
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas import Series
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays.sparse import (
|
||||
BlockIndex,
|
||||
IntIndex,
|
||||
make_sparse_index,
|
||||
)
|
||||
|
||||
TEST_LENGTH = 20
|
||||
|
||||
plain_case = {
|
||||
"xloc": [0, 7, 15],
|
||||
"xlen": [3, 5, 5],
|
||||
"yloc": [2, 9, 14],
|
||||
"ylen": [2, 3, 5],
|
||||
"intersect_loc": [2, 9, 15],
|
||||
"intersect_len": [1, 3, 4],
|
||||
}
|
||||
delete_blocks = {
|
||||
"xloc": [0, 5],
|
||||
"xlen": [4, 4],
|
||||
"yloc": [1],
|
||||
"ylen": [4],
|
||||
"intersect_loc": [1],
|
||||
"intersect_len": [3],
|
||||
}
|
||||
split_blocks = {
|
||||
"xloc": [0],
|
||||
"xlen": [10],
|
||||
"yloc": [0, 5],
|
||||
"ylen": [3, 7],
|
||||
"intersect_loc": [0, 5],
|
||||
"intersect_len": [3, 5],
|
||||
}
|
||||
skip_block = {
|
||||
"xloc": [10],
|
||||
"xlen": [5],
|
||||
"yloc": [0, 12],
|
||||
"ylen": [5, 3],
|
||||
"intersect_loc": [12],
|
||||
"intersect_len": [3],
|
||||
}
|
||||
|
||||
no_intersect = {
|
||||
"xloc": [0, 10],
|
||||
"xlen": [4, 6],
|
||||
"yloc": [5, 17],
|
||||
"ylen": [4, 2],
|
||||
"intersect_loc": [],
|
||||
"intersect_len": [],
|
||||
}
|
||||
|
||||
|
||||
def check_cases(_check_case):
|
||||
def _check_case_dict(case):
|
||||
_check_case(
|
||||
case["xloc"],
|
||||
case["xlen"],
|
||||
case["yloc"],
|
||||
case["ylen"],
|
||||
case["intersect_loc"],
|
||||
case["intersect_len"],
|
||||
)
|
||||
|
||||
_check_case_dict(plain_case)
|
||||
_check_case_dict(delete_blocks)
|
||||
_check_case_dict(split_blocks)
|
||||
_check_case_dict(skip_block)
|
||||
_check_case_dict(no_intersect)
|
||||
|
||||
# one or both is empty
|
||||
_check_case([0], [5], [], [], [], [])
|
||||
_check_case([], [], [], [], [], [])
|
||||
|
||||
|
||||
class TestSparseIndexUnion:
|
||||
def test_index_make_union(self):
|
||||
def _check_case(xloc, xlen, yloc, ylen, eloc, elen):
|
||||
xindex = BlockIndex(TEST_LENGTH, xloc, xlen)
|
||||
yindex = BlockIndex(TEST_LENGTH, yloc, ylen)
|
||||
bresult = xindex.make_union(yindex)
|
||||
assert isinstance(bresult, BlockIndex)
|
||||
tm.assert_numpy_array_equal(bresult.blocs, np.array(eloc, dtype=np.int32))
|
||||
tm.assert_numpy_array_equal(
|
||||
bresult.blengths, np.array(elen, dtype=np.int32)
|
||||
)
|
||||
|
||||
ixindex = xindex.to_int_index()
|
||||
iyindex = yindex.to_int_index()
|
||||
iresult = ixindex.make_union(iyindex)
|
||||
assert isinstance(iresult, IntIndex)
|
||||
tm.assert_numpy_array_equal(iresult.indices, bresult.to_int_index().indices)
|
||||
|
||||
"""
|
||||
x: ----
|
||||
y: ----
|
||||
r: --------
|
||||
"""
|
||||
xloc = [0]
|
||||
xlen = [5]
|
||||
yloc = [5]
|
||||
ylen = [4]
|
||||
eloc = [0]
|
||||
elen = [9]
|
||||
_check_case(xloc, xlen, yloc, ylen, eloc, elen)
|
||||
"""
|
||||
x: ----- -----
|
||||
y: ----- --
|
||||
"""
|
||||
xloc = [0, 10]
|
||||
xlen = [5, 5]
|
||||
yloc = [2, 17]
|
||||
ylen = [5, 2]
|
||||
eloc = [0, 10, 17]
|
||||
elen = [7, 5, 2]
|
||||
_check_case(xloc, xlen, yloc, ylen, eloc, elen)
|
||||
"""
|
||||
x: ------
|
||||
y: -------
|
||||
r: ----------
|
||||
"""
|
||||
xloc = [1]
|
||||
xlen = [5]
|
||||
yloc = [3]
|
||||
ylen = [5]
|
||||
eloc = [1]
|
||||
elen = [7]
|
||||
_check_case(xloc, xlen, yloc, ylen, eloc, elen)
|
||||
"""
|
||||
x: ------ -----
|
||||
y: -------
|
||||
r: -------------
|
||||
"""
|
||||
xloc = [2, 10]
|
||||
xlen = [4, 4]
|
||||
yloc = [4]
|
||||
ylen = [8]
|
||||
eloc = [2]
|
||||
elen = [12]
|
||||
_check_case(xloc, xlen, yloc, ylen, eloc, elen)
|
||||
"""
|
||||
x: --- -----
|
||||
y: -------
|
||||
r: -------------
|
||||
"""
|
||||
xloc = [0, 5]
|
||||
xlen = [3, 5]
|
||||
yloc = [0]
|
||||
ylen = [7]
|
||||
eloc = [0]
|
||||
elen = [10]
|
||||
_check_case(xloc, xlen, yloc, ylen, eloc, elen)
|
||||
"""
|
||||
x: ------ -----
|
||||
y: ------- ---
|
||||
r: -------------
|
||||
"""
|
||||
xloc = [2, 10]
|
||||
xlen = [4, 4]
|
||||
yloc = [4, 13]
|
||||
ylen = [8, 4]
|
||||
eloc = [2]
|
||||
elen = [15]
|
||||
_check_case(xloc, xlen, yloc, ylen, eloc, elen)
|
||||
"""
|
||||
x: ----------------------
|
||||
y: ---- ---- ---
|
||||
r: ----------------------
|
||||
"""
|
||||
xloc = [2]
|
||||
xlen = [15]
|
||||
yloc = [4, 9, 14]
|
||||
ylen = [3, 2, 2]
|
||||
eloc = [2]
|
||||
elen = [15]
|
||||
_check_case(xloc, xlen, yloc, ylen, eloc, elen)
|
||||
"""
|
||||
x: ---- ---
|
||||
y: --- ---
|
||||
"""
|
||||
xloc = [0, 10]
|
||||
xlen = [3, 3]
|
||||
yloc = [5, 15]
|
||||
ylen = [2, 2]
|
||||
eloc = [0, 5, 10, 15]
|
||||
elen = [3, 2, 3, 2]
|
||||
_check_case(xloc, xlen, yloc, ylen, eloc, elen)
|
||||
|
||||
def test_int_index_make_union(self):
|
||||
a = IntIndex(5, np.array([0, 3, 4], dtype=np.int32))
|
||||
b = IntIndex(5, np.array([0, 2], dtype=np.int32))
|
||||
res = a.make_union(b)
|
||||
exp = IntIndex(5, np.array([0, 2, 3, 4], np.int32))
|
||||
assert res.equals(exp)
|
||||
|
||||
a = IntIndex(5, np.array([], dtype=np.int32))
|
||||
b = IntIndex(5, np.array([0, 2], dtype=np.int32))
|
||||
res = a.make_union(b)
|
||||
exp = IntIndex(5, np.array([0, 2], np.int32))
|
||||
assert res.equals(exp)
|
||||
|
||||
a = IntIndex(5, np.array([], dtype=np.int32))
|
||||
b = IntIndex(5, np.array([], dtype=np.int32))
|
||||
res = a.make_union(b)
|
||||
exp = IntIndex(5, np.array([], np.int32))
|
||||
assert res.equals(exp)
|
||||
|
||||
a = IntIndex(5, np.array([0, 1, 2, 3, 4], dtype=np.int32))
|
||||
b = IntIndex(5, np.array([0, 1, 2, 3, 4], dtype=np.int32))
|
||||
res = a.make_union(b)
|
||||
exp = IntIndex(5, np.array([0, 1, 2, 3, 4], np.int32))
|
||||
assert res.equals(exp)
|
||||
|
||||
a = IntIndex(5, np.array([0, 1], dtype=np.int32))
|
||||
b = IntIndex(4, np.array([0, 1], dtype=np.int32))
|
||||
|
||||
msg = "Indices must reference same underlying length"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
a.make_union(b)
|
||||
|
||||
|
||||
class TestSparseIndexIntersect:
|
||||
@td.skip_if_windows
|
||||
def test_intersect(self):
|
||||
def _check_correct(a, b, expected):
|
||||
result = a.intersect(b)
|
||||
assert result.equals(expected)
|
||||
|
||||
def _check_length_exc(a, longer):
|
||||
msg = "Indices must reference same underlying length"
|
||||
with pytest.raises(Exception, match=msg):
|
||||
a.intersect(longer)
|
||||
|
||||
def _check_case(xloc, xlen, yloc, ylen, eloc, elen):
|
||||
xindex = BlockIndex(TEST_LENGTH, xloc, xlen)
|
||||
yindex = BlockIndex(TEST_LENGTH, yloc, ylen)
|
||||
expected = BlockIndex(TEST_LENGTH, eloc, elen)
|
||||
longer_index = BlockIndex(TEST_LENGTH + 1, yloc, ylen)
|
||||
|
||||
_check_correct(xindex, yindex, expected)
|
||||
_check_correct(
|
||||
xindex.to_int_index(), yindex.to_int_index(), expected.to_int_index()
|
||||
)
|
||||
|
||||
_check_length_exc(xindex, longer_index)
|
||||
_check_length_exc(xindex.to_int_index(), longer_index.to_int_index())
|
||||
|
||||
check_cases(_check_case)
|
||||
|
||||
def test_intersect_empty(self):
|
||||
xindex = IntIndex(4, np.array([], dtype=np.int32))
|
||||
yindex = IntIndex(4, np.array([2, 3], dtype=np.int32))
|
||||
assert xindex.intersect(yindex).equals(xindex)
|
||||
assert yindex.intersect(xindex).equals(xindex)
|
||||
|
||||
xindex = xindex.to_block_index()
|
||||
yindex = yindex.to_block_index()
|
||||
assert xindex.intersect(yindex).equals(xindex)
|
||||
assert yindex.intersect(xindex).equals(xindex)
|
||||
|
||||
def test_intersect_identical(self):
|
||||
cases = [
|
||||
IntIndex(5, np.array([1, 2], dtype=np.int32)),
|
||||
IntIndex(5, np.array([0, 2, 4], dtype=np.int32)),
|
||||
IntIndex(0, np.array([], dtype=np.int32)),
|
||||
IntIndex(5, np.array([], dtype=np.int32)),
|
||||
]
|
||||
|
||||
for case in cases:
|
||||
assert case.intersect(case).equals(case)
|
||||
case = case.to_block_index()
|
||||
assert case.intersect(case).equals(case)
|
||||
|
||||
|
||||
class TestSparseIndexCommon:
|
||||
def test_int_internal(self):
|
||||
idx = make_sparse_index(4, np.array([2, 3], dtype=np.int32), kind="integer")
|
||||
assert isinstance(idx, IntIndex)
|
||||
assert idx.npoints == 2
|
||||
tm.assert_numpy_array_equal(idx.indices, np.array([2, 3], dtype=np.int32))
|
||||
|
||||
idx = make_sparse_index(4, np.array([], dtype=np.int32), kind="integer")
|
||||
assert isinstance(idx, IntIndex)
|
||||
assert idx.npoints == 0
|
||||
tm.assert_numpy_array_equal(idx.indices, np.array([], dtype=np.int32))
|
||||
|
||||
idx = make_sparse_index(
|
||||
4, np.array([0, 1, 2, 3], dtype=np.int32), kind="integer"
|
||||
)
|
||||
assert isinstance(idx, IntIndex)
|
||||
assert idx.npoints == 4
|
||||
tm.assert_numpy_array_equal(idx.indices, np.array([0, 1, 2, 3], dtype=np.int32))
|
||||
|
||||
def test_block_internal(self):
|
||||
idx = make_sparse_index(4, np.array([2, 3], dtype=np.int32), kind="block")
|
||||
assert isinstance(idx, BlockIndex)
|
||||
assert idx.npoints == 2
|
||||
tm.assert_numpy_array_equal(idx.blocs, np.array([2], dtype=np.int32))
|
||||
tm.assert_numpy_array_equal(idx.blengths, np.array([2], dtype=np.int32))
|
||||
|
||||
idx = make_sparse_index(4, np.array([], dtype=np.int32), kind="block")
|
||||
assert isinstance(idx, BlockIndex)
|
||||
assert idx.npoints == 0
|
||||
tm.assert_numpy_array_equal(idx.blocs, np.array([], dtype=np.int32))
|
||||
tm.assert_numpy_array_equal(idx.blengths, np.array([], dtype=np.int32))
|
||||
|
||||
idx = make_sparse_index(4, np.array([0, 1, 2, 3], dtype=np.int32), kind="block")
|
||||
assert isinstance(idx, BlockIndex)
|
||||
assert idx.npoints == 4
|
||||
tm.assert_numpy_array_equal(idx.blocs, np.array([0], dtype=np.int32))
|
||||
tm.assert_numpy_array_equal(idx.blengths, np.array([4], dtype=np.int32))
|
||||
|
||||
idx = make_sparse_index(4, np.array([0, 2, 3], dtype=np.int32), kind="block")
|
||||
assert isinstance(idx, BlockIndex)
|
||||
assert idx.npoints == 3
|
||||
tm.assert_numpy_array_equal(idx.blocs, np.array([0, 2], dtype=np.int32))
|
||||
tm.assert_numpy_array_equal(idx.blengths, np.array([1, 2], dtype=np.int32))
|
||||
|
||||
def test_lookup(self):
|
||||
for kind in ["integer", "block"]:
|
||||
idx = make_sparse_index(4, np.array([2, 3], dtype=np.int32), kind=kind)
|
||||
assert idx.lookup(-1) == -1
|
||||
assert idx.lookup(0) == -1
|
||||
assert idx.lookup(1) == -1
|
||||
assert idx.lookup(2) == 0
|
||||
assert idx.lookup(3) == 1
|
||||
assert idx.lookup(4) == -1
|
||||
|
||||
idx = make_sparse_index(4, np.array([], dtype=np.int32), kind=kind)
|
||||
|
||||
for i in range(-1, 5):
|
||||
assert idx.lookup(i) == -1
|
||||
|
||||
idx = make_sparse_index(
|
||||
4, np.array([0, 1, 2, 3], dtype=np.int32), kind=kind
|
||||
)
|
||||
assert idx.lookup(-1) == -1
|
||||
assert idx.lookup(0) == 0
|
||||
assert idx.lookup(1) == 1
|
||||
assert idx.lookup(2) == 2
|
||||
assert idx.lookup(3) == 3
|
||||
assert idx.lookup(4) == -1
|
||||
|
||||
idx = make_sparse_index(4, np.array([0, 2, 3], dtype=np.int32), kind=kind)
|
||||
assert idx.lookup(-1) == -1
|
||||
assert idx.lookup(0) == 0
|
||||
assert idx.lookup(1) == -1
|
||||
assert idx.lookup(2) == 1
|
||||
assert idx.lookup(3) == 2
|
||||
assert idx.lookup(4) == -1
|
||||
|
||||
def test_lookup_array(self):
|
||||
for kind in ["integer", "block"]:
|
||||
idx = make_sparse_index(4, np.array([2, 3], dtype=np.int32), kind=kind)
|
||||
|
||||
res = idx.lookup_array(np.array([-1, 0, 2], dtype=np.int32))
|
||||
exp = np.array([-1, -1, 0], dtype=np.int32)
|
||||
tm.assert_numpy_array_equal(res, exp)
|
||||
|
||||
res = idx.lookup_array(np.array([4, 2, 1, 3], dtype=np.int32))
|
||||
exp = np.array([-1, 0, -1, 1], dtype=np.int32)
|
||||
tm.assert_numpy_array_equal(res, exp)
|
||||
|
||||
idx = make_sparse_index(4, np.array([], dtype=np.int32), kind=kind)
|
||||
res = idx.lookup_array(np.array([-1, 0, 2, 4], dtype=np.int32))
|
||||
exp = np.array([-1, -1, -1, -1], dtype=np.int32)
|
||||
|
||||
idx = make_sparse_index(
|
||||
4, np.array([0, 1, 2, 3], dtype=np.int32), kind=kind
|
||||
)
|
||||
res = idx.lookup_array(np.array([-1, 0, 2], dtype=np.int32))
|
||||
exp = np.array([-1, 0, 2], dtype=np.int32)
|
||||
tm.assert_numpy_array_equal(res, exp)
|
||||
|
||||
res = idx.lookup_array(np.array([4, 2, 1, 3], dtype=np.int32))
|
||||
exp = np.array([-1, 2, 1, 3], dtype=np.int32)
|
||||
tm.assert_numpy_array_equal(res, exp)
|
||||
|
||||
idx = make_sparse_index(4, np.array([0, 2, 3], dtype=np.int32), kind=kind)
|
||||
res = idx.lookup_array(np.array([2, 1, 3, 0], dtype=np.int32))
|
||||
exp = np.array([1, -1, 2, 0], dtype=np.int32)
|
||||
tm.assert_numpy_array_equal(res, exp)
|
||||
|
||||
res = idx.lookup_array(np.array([1, 4, 2, 5], dtype=np.int32))
|
||||
exp = np.array([-1, -1, 1, -1], dtype=np.int32)
|
||||
tm.assert_numpy_array_equal(res, exp)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"idx, expected",
|
||||
[
|
||||
[0, -1],
|
||||
[5, 0],
|
||||
[7, 2],
|
||||
[8, -1],
|
||||
[9, -1],
|
||||
[10, -1],
|
||||
[11, -1],
|
||||
[12, 3],
|
||||
[17, 8],
|
||||
[18, -1],
|
||||
],
|
||||
)
|
||||
def test_lookup_basics(self, idx, expected):
|
||||
bindex = BlockIndex(20, [5, 12], [3, 6])
|
||||
assert bindex.lookup(idx) == expected
|
||||
|
||||
iindex = bindex.to_int_index()
|
||||
assert iindex.lookup(idx) == expected
|
||||
|
||||
|
||||
class TestBlockIndex:
|
||||
def test_block_internal(self):
|
||||
idx = make_sparse_index(4, np.array([2, 3], dtype=np.int32), kind="block")
|
||||
assert isinstance(idx, BlockIndex)
|
||||
assert idx.npoints == 2
|
||||
tm.assert_numpy_array_equal(idx.blocs, np.array([2], dtype=np.int32))
|
||||
tm.assert_numpy_array_equal(idx.blengths, np.array([2], dtype=np.int32))
|
||||
|
||||
idx = make_sparse_index(4, np.array([], dtype=np.int32), kind="block")
|
||||
assert isinstance(idx, BlockIndex)
|
||||
assert idx.npoints == 0
|
||||
tm.assert_numpy_array_equal(idx.blocs, np.array([], dtype=np.int32))
|
||||
tm.assert_numpy_array_equal(idx.blengths, np.array([], dtype=np.int32))
|
||||
|
||||
idx = make_sparse_index(4, np.array([0, 1, 2, 3], dtype=np.int32), kind="block")
|
||||
assert isinstance(idx, BlockIndex)
|
||||
assert idx.npoints == 4
|
||||
tm.assert_numpy_array_equal(idx.blocs, np.array([0], dtype=np.int32))
|
||||
tm.assert_numpy_array_equal(idx.blengths, np.array([4], dtype=np.int32))
|
||||
|
||||
idx = make_sparse_index(4, np.array([0, 2, 3], dtype=np.int32), kind="block")
|
||||
assert isinstance(idx, BlockIndex)
|
||||
assert idx.npoints == 3
|
||||
tm.assert_numpy_array_equal(idx.blocs, np.array([0, 2], dtype=np.int32))
|
||||
tm.assert_numpy_array_equal(idx.blengths, np.array([1, 2], dtype=np.int32))
|
||||
|
||||
def test_make_block_boundary(self):
|
||||
for i in [5, 10, 100, 101]:
|
||||
idx = make_sparse_index(i, np.arange(0, i, 2, dtype=np.int32), kind="block")
|
||||
|
||||
exp = np.arange(0, i, 2, dtype=np.int32)
|
||||
tm.assert_numpy_array_equal(idx.blocs, exp)
|
||||
tm.assert_numpy_array_equal(idx.blengths, np.ones(len(exp), dtype=np.int32))
|
||||
|
||||
def test_equals(self):
|
||||
index = BlockIndex(10, [0, 4], [2, 5])
|
||||
|
||||
assert index.equals(index)
|
||||
assert not index.equals(BlockIndex(10, [0, 4], [2, 6]))
|
||||
|
||||
def test_check_integrity(self):
|
||||
locs = []
|
||||
lengths = []
|
||||
|
||||
# 0-length OK
|
||||
BlockIndex(0, locs, lengths)
|
||||
|
||||
# also OK even though empty
|
||||
BlockIndex(1, locs, lengths)
|
||||
|
||||
msg = "Block 0 extends beyond end"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
BlockIndex(10, [5], [10])
|
||||
|
||||
msg = "Block 0 overlaps"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
BlockIndex(10, [2, 5], [5, 3])
|
||||
|
||||
def test_to_int_index(self):
|
||||
locs = [0, 10]
|
||||
lengths = [4, 6]
|
||||
exp_inds = [0, 1, 2, 3, 10, 11, 12, 13, 14, 15]
|
||||
|
||||
block = BlockIndex(20, locs, lengths)
|
||||
dense = block.to_int_index()
|
||||
|
||||
tm.assert_numpy_array_equal(dense.indices, np.array(exp_inds, dtype=np.int32))
|
||||
|
||||
def test_to_block_index(self):
|
||||
index = BlockIndex(10, [0, 5], [4, 5])
|
||||
assert index.to_block_index() is index
|
||||
|
||||
|
||||
class TestIntIndex:
|
||||
def test_check_integrity(self):
|
||||
|
||||
# Too many indices than specified in self.length
|
||||
msg = "Too many indices"
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
IntIndex(length=1, indices=[1, 2, 3])
|
||||
|
||||
# No index can be negative.
|
||||
msg = "No index can be less than zero"
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
IntIndex(length=5, indices=[1, -2, 3])
|
||||
|
||||
# No index can be negative.
|
||||
msg = "No index can be less than zero"
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
IntIndex(length=5, indices=[1, -2, 3])
|
||||
|
||||
# All indices must be less than the length.
|
||||
msg = "All indices must be less than the length"
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
IntIndex(length=5, indices=[1, 2, 5])
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
IntIndex(length=5, indices=[1, 2, 6])
|
||||
|
||||
# Indices must be strictly ascending.
|
||||
msg = "Indices must be strictly increasing"
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
IntIndex(length=5, indices=[1, 3, 2])
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
IntIndex(length=5, indices=[1, 3, 3])
|
||||
|
||||
def test_int_internal(self):
|
||||
idx = make_sparse_index(4, np.array([2, 3], dtype=np.int32), kind="integer")
|
||||
assert isinstance(idx, IntIndex)
|
||||
assert idx.npoints == 2
|
||||
tm.assert_numpy_array_equal(idx.indices, np.array([2, 3], dtype=np.int32))
|
||||
|
||||
idx = make_sparse_index(4, np.array([], dtype=np.int32), kind="integer")
|
||||
assert isinstance(idx, IntIndex)
|
||||
assert idx.npoints == 0
|
||||
tm.assert_numpy_array_equal(idx.indices, np.array([], dtype=np.int32))
|
||||
|
||||
idx = make_sparse_index(
|
||||
4, np.array([0, 1, 2, 3], dtype=np.int32), kind="integer"
|
||||
)
|
||||
assert isinstance(idx, IntIndex)
|
||||
assert idx.npoints == 4
|
||||
tm.assert_numpy_array_equal(idx.indices, np.array([0, 1, 2, 3], dtype=np.int32))
|
||||
|
||||
def test_equals(self):
|
||||
index = IntIndex(10, [0, 1, 2, 3, 4])
|
||||
assert index.equals(index)
|
||||
assert not index.equals(IntIndex(10, [0, 1, 2, 3]))
|
||||
|
||||
def test_to_block_index(self):
|
||||
def _check_case(xloc, xlen, yloc, ylen, eloc, elen):
|
||||
xindex = BlockIndex(TEST_LENGTH, xloc, xlen)
|
||||
yindex = BlockIndex(TEST_LENGTH, yloc, ylen)
|
||||
|
||||
# see if survive the round trip
|
||||
xbindex = xindex.to_int_index().to_block_index()
|
||||
ybindex = yindex.to_int_index().to_block_index()
|
||||
assert isinstance(xbindex, BlockIndex)
|
||||
assert xbindex.equals(xindex)
|
||||
assert ybindex.equals(yindex)
|
||||
|
||||
check_cases(_check_case)
|
||||
|
||||
def test_to_int_index(self):
|
||||
index = IntIndex(10, [2, 3, 4, 5, 6])
|
||||
assert index.to_int_index() is index
|
||||
|
||||
|
||||
class TestSparseOperators:
|
||||
def _op_tests(self, sparse_op, python_op):
|
||||
def _check_case(xloc, xlen, yloc, ylen, eloc, elen):
|
||||
xindex = BlockIndex(TEST_LENGTH, xloc, xlen)
|
||||
yindex = BlockIndex(TEST_LENGTH, yloc, ylen)
|
||||
|
||||
xdindex = xindex.to_int_index()
|
||||
ydindex = yindex.to_int_index()
|
||||
|
||||
x = np.arange(xindex.npoints) * 10.0 + 1
|
||||
y = np.arange(yindex.npoints) * 100.0 + 1
|
||||
|
||||
xfill = 0
|
||||
yfill = 2
|
||||
|
||||
result_block_vals, rb_index, bfill = sparse_op(
|
||||
x, xindex, xfill, y, yindex, yfill
|
||||
)
|
||||
result_int_vals, ri_index, ifill = sparse_op(
|
||||
x, xdindex, xfill, y, ydindex, yfill
|
||||
)
|
||||
|
||||
assert rb_index.to_int_index().equals(ri_index)
|
||||
tm.assert_numpy_array_equal(result_block_vals, result_int_vals)
|
||||
assert bfill == ifill
|
||||
|
||||
# check versus Series...
|
||||
xseries = Series(x, xdindex.indices)
|
||||
xseries = xseries.reindex(np.arange(TEST_LENGTH)).fillna(xfill)
|
||||
|
||||
yseries = Series(y, ydindex.indices)
|
||||
yseries = yseries.reindex(np.arange(TEST_LENGTH)).fillna(yfill)
|
||||
|
||||
series_result = python_op(xseries, yseries)
|
||||
series_result = series_result.reindex(ri_index.indices)
|
||||
|
||||
tm.assert_numpy_array_equal(result_block_vals, series_result.values)
|
||||
tm.assert_numpy_array_equal(result_int_vals, series_result.values)
|
||||
|
||||
check_cases(_check_case)
|
||||
|
||||
@pytest.mark.parametrize("opname", ["add", "sub", "mul", "truediv", "floordiv"])
|
||||
def test_op(self, opname):
|
||||
sparse_op = getattr(splib, f"sparse_{opname}_float64")
|
||||
python_op = getattr(operator, opname)
|
||||
self._op_tests(sparse_op, python_op)
|
@ -0,0 +1,555 @@
|
||||
"""
|
||||
This module tests the functionality of StringArray and ArrowStringArray.
|
||||
Tests for the str accessors are in pandas/tests/strings/test_string_array.py
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas.core.dtypes.common import is_dtype_equal
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays.string_arrow import ArrowStringArray
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def dtype(string_storage):
|
||||
return pd.StringDtype(storage=string_storage)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def cls(dtype):
|
||||
return dtype.construct_array_type()
|
||||
|
||||
|
||||
def test_repr(dtype):
|
||||
df = pd.DataFrame({"A": pd.array(["a", pd.NA, "b"], dtype=dtype)})
|
||||
expected = " A\n0 a\n1 <NA>\n2 b"
|
||||
assert repr(df) == expected
|
||||
|
||||
expected = "0 a\n1 <NA>\n2 b\nName: A, dtype: string"
|
||||
assert repr(df.A) == expected
|
||||
|
||||
arr_name = "ArrowStringArray" if dtype.storage == "pyarrow" else "StringArray"
|
||||
expected = f"<{arr_name}>\n['a', <NA>, 'b']\nLength: 3, dtype: string"
|
||||
assert repr(df.A.array) == expected
|
||||
|
||||
|
||||
def test_none_to_nan(cls):
|
||||
a = cls._from_sequence(["a", None, "b"])
|
||||
assert a[1] is not None
|
||||
assert a[1] is pd.NA
|
||||
|
||||
|
||||
def test_setitem_validates(cls):
|
||||
arr = cls._from_sequence(["a", "b"])
|
||||
|
||||
if cls is pd.arrays.StringArray:
|
||||
msg = "Cannot set non-string value '10' into a StringArray."
|
||||
else:
|
||||
msg = "Scalar must be NA or str"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr[0] = 10
|
||||
|
||||
if cls is pd.arrays.StringArray:
|
||||
msg = "Must provide strings."
|
||||
else:
|
||||
msg = "Scalar must be NA or str"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr[:] = np.array([1, 2])
|
||||
|
||||
|
||||
def test_setitem_with_scalar_string(dtype):
|
||||
# is_float_dtype considers some strings, like 'd', to be floats
|
||||
# which can cause issues.
|
||||
arr = pd.array(["a", "c"], dtype=dtype)
|
||||
arr[0] = "d"
|
||||
expected = pd.array(["d", "c"], dtype=dtype)
|
||||
tm.assert_extension_array_equal(arr, expected)
|
||||
|
||||
|
||||
def test_astype_roundtrip(dtype, request):
|
||||
if dtype.storage == "pyarrow":
|
||||
reason = "ValueError: Could not convert object to NumPy datetime"
|
||||
mark = pytest.mark.xfail(reason=reason, raises=ValueError)
|
||||
request.node.add_marker(mark)
|
||||
else:
|
||||
mark = pytest.mark.xfail(
|
||||
reason="GH#36153 casting from StringArray to dt64 fails", raises=ValueError
|
||||
)
|
||||
request.node.add_marker(mark)
|
||||
|
||||
ser = pd.Series(pd.date_range("2000", periods=12))
|
||||
ser[0] = None
|
||||
|
||||
casted = ser.astype(dtype)
|
||||
assert is_dtype_equal(casted.dtype, dtype)
|
||||
|
||||
result = casted.astype("datetime64[ns]")
|
||||
tm.assert_series_equal(result, ser)
|
||||
|
||||
|
||||
def test_add(dtype, request):
|
||||
if dtype.storage == "pyarrow":
|
||||
reason = (
|
||||
"unsupported operand type(s) for +: 'ArrowStringArray' and "
|
||||
"'ArrowStringArray'"
|
||||
)
|
||||
mark = pytest.mark.xfail(raises=TypeError, reason=reason)
|
||||
request.node.add_marker(mark)
|
||||
|
||||
a = pd.Series(["a", "b", "c", None, None], dtype=dtype)
|
||||
b = pd.Series(["x", "y", None, "z", None], dtype=dtype)
|
||||
|
||||
result = a + b
|
||||
expected = pd.Series(["ax", "by", None, None, None], dtype=dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = a.add(b)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = a.radd(b)
|
||||
expected = pd.Series(["xa", "yb", None, None, None], dtype=dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = a.add(b, fill_value="-")
|
||||
expected = pd.Series(["ax", "by", "c-", "-z", None], dtype=dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_add_2d(dtype, request):
|
||||
if dtype.storage == "pyarrow":
|
||||
reason = "Failed: DID NOT RAISE <class 'ValueError'>"
|
||||
mark = pytest.mark.xfail(raises=None, reason=reason)
|
||||
request.node.add_marker(mark)
|
||||
|
||||
a = pd.array(["a", "b", "c"], dtype=dtype)
|
||||
b = np.array([["a", "b", "c"]], dtype=object)
|
||||
with pytest.raises(ValueError, match="3 != 1"):
|
||||
a + b
|
||||
|
||||
s = pd.Series(a)
|
||||
with pytest.raises(ValueError, match="3 != 1"):
|
||||
s + b
|
||||
|
||||
|
||||
def test_add_sequence(dtype, request):
|
||||
if dtype.storage == "pyarrow":
|
||||
reason = "unsupported operand type(s) for +: 'ArrowStringArray' and 'list'"
|
||||
mark = pytest.mark.xfail(raises=TypeError, reason=reason)
|
||||
request.node.add_marker(mark)
|
||||
|
||||
a = pd.array(["a", "b", None, None], dtype=dtype)
|
||||
other = ["x", None, "y", None]
|
||||
|
||||
result = a + other
|
||||
expected = pd.array(["ax", None, None, None], dtype=dtype)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = other + a
|
||||
expected = pd.array(["xa", None, None, None], dtype=dtype)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_mul(dtype, request):
|
||||
if dtype.storage == "pyarrow":
|
||||
reason = "unsupported operand type(s) for *: 'ArrowStringArray' and 'int'"
|
||||
mark = pytest.mark.xfail(raises=TypeError, reason=reason)
|
||||
request.node.add_marker(mark)
|
||||
|
||||
a = pd.array(["a", "b", None], dtype=dtype)
|
||||
result = a * 2
|
||||
expected = pd.array(["aa", "bb", None], dtype=dtype)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = 2 * a
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.xfail(reason="GH-28527")
|
||||
def test_add_strings(dtype):
|
||||
arr = pd.array(["a", "b", "c", "d"], dtype=dtype)
|
||||
df = pd.DataFrame([["t", "u", "v", "w"]])
|
||||
assert arr.__add__(df) is NotImplemented
|
||||
|
||||
result = arr + df
|
||||
expected = pd.DataFrame([["at", "bu", "cv", "dw"]]).astype(dtype)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df + arr
|
||||
expected = pd.DataFrame([["ta", "ub", "vc", "wd"]]).astype(dtype)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.xfail(reason="GH-28527")
|
||||
def test_add_frame(dtype):
|
||||
arr = pd.array(["a", "b", np.nan, np.nan], dtype=dtype)
|
||||
df = pd.DataFrame([["x", np.nan, "y", np.nan]])
|
||||
|
||||
assert arr.__add__(df) is NotImplemented
|
||||
|
||||
result = arr + df
|
||||
expected = pd.DataFrame([["ax", np.nan, np.nan, np.nan]]).astype(dtype)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df + arr
|
||||
expected = pd.DataFrame([["xa", np.nan, np.nan, np.nan]]).astype(dtype)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_comparison_methods_scalar(comparison_op, dtype):
|
||||
op_name = f"__{comparison_op.__name__}__"
|
||||
a = pd.array(["a", None, "c"], dtype=dtype)
|
||||
other = "a"
|
||||
result = getattr(a, op_name)(other)
|
||||
expected = np.array([getattr(item, op_name)(other) for item in a], dtype=object)
|
||||
expected = pd.array(expected, dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_comparison_methods_scalar_pd_na(comparison_op, dtype):
|
||||
op_name = f"__{comparison_op.__name__}__"
|
||||
a = pd.array(["a", None, "c"], dtype=dtype)
|
||||
result = getattr(a, op_name)(pd.NA)
|
||||
expected = pd.array([None, None, None], dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_comparison_methods_scalar_not_string(comparison_op, dtype):
|
||||
op_name = f"__{comparison_op.__name__}__"
|
||||
|
||||
a = pd.array(["a", None, "c"], dtype=dtype)
|
||||
other = 42
|
||||
|
||||
if op_name not in ["__eq__", "__ne__"]:
|
||||
with pytest.raises(TypeError, match="not supported between"):
|
||||
getattr(a, op_name)(other)
|
||||
|
||||
return
|
||||
|
||||
result = getattr(a, op_name)(other)
|
||||
expected_data = {"__eq__": [False, None, False], "__ne__": [True, None, True]}[
|
||||
op_name
|
||||
]
|
||||
expected = pd.array(expected_data, dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_comparison_methods_array(comparison_op, dtype):
|
||||
|
||||
op_name = f"__{comparison_op.__name__}__"
|
||||
|
||||
a = pd.array(["a", None, "c"], dtype=dtype)
|
||||
other = [None, None, "c"]
|
||||
result = getattr(a, op_name)(other)
|
||||
expected = np.empty_like(a, dtype="object")
|
||||
expected[-1] = getattr(other[-1], op_name)(a[-1])
|
||||
expected = pd.array(expected, dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = getattr(a, op_name)(pd.NA)
|
||||
expected = pd.array([None, None, None], dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_constructor_raises(cls):
|
||||
if cls is pd.arrays.StringArray:
|
||||
msg = "StringArray requires a sequence of strings or pandas.NA"
|
||||
else:
|
||||
msg = "Unsupported type '<class 'numpy.ndarray'>' for ArrowStringArray"
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cls(np.array(["a", "b"], dtype="S1"))
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cls(np.array([]))
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cls(np.array(["a", np.nan], dtype=object))
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cls(np.array(["a", None], dtype=object))
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
cls(np.array(["a", pd.NaT], dtype=object))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("copy", [True, False])
|
||||
def test_from_sequence_no_mutate(copy, cls, request):
|
||||
if cls is ArrowStringArray and copy is False:
|
||||
mark = pytest.mark.xfail(
|
||||
raises=AssertionError, reason="numpy array are different"
|
||||
)
|
||||
request.node.add_marker(mark)
|
||||
|
||||
nan_arr = np.array(["a", np.nan], dtype=object)
|
||||
na_arr = np.array(["a", pd.NA], dtype=object)
|
||||
|
||||
result = cls._from_sequence(nan_arr, copy=copy)
|
||||
|
||||
if cls is ArrowStringArray:
|
||||
import pyarrow as pa
|
||||
|
||||
expected = cls(pa.array(na_arr, type=pa.string(), from_pandas=True))
|
||||
else:
|
||||
expected = cls(na_arr)
|
||||
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
expected = nan_arr if copy else na_arr
|
||||
tm.assert_numpy_array_equal(nan_arr, expected)
|
||||
|
||||
|
||||
def test_astype_int(dtype):
|
||||
arr = pd.array(["1", "2", "3"], dtype=dtype)
|
||||
result = arr.astype("int64")
|
||||
expected = np.array([1, 2, 3], dtype="int64")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
arr = pd.array(["1", pd.NA, "3"], dtype=dtype)
|
||||
msg = r"int\(\) argument must be a string, a bytes-like object or a( real)? number"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
arr.astype("int64")
|
||||
|
||||
|
||||
def test_astype_nullable_int(dtype):
|
||||
arr = pd.array(["1", pd.NA, "3"], dtype=dtype)
|
||||
|
||||
result = arr.astype("Int64")
|
||||
expected = pd.array([1, pd.NA, 3], dtype="Int64")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_astype_float(dtype, any_float_dtype):
|
||||
# Don't compare arrays (37974)
|
||||
ser = pd.Series(["1.1", pd.NA, "3.3"], dtype=dtype)
|
||||
result = ser.astype(any_float_dtype)
|
||||
expected = pd.Series([1.1, np.nan, 3.3], dtype=any_float_dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
@pytest.mark.xfail(reason="Not implemented StringArray.sum")
|
||||
def test_reduce(skipna, dtype):
|
||||
arr = pd.Series(["a", "b", "c"], dtype=dtype)
|
||||
result = arr.sum(skipna=skipna)
|
||||
assert result == "abc"
|
||||
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
@pytest.mark.xfail(reason="Not implemented StringArray.sum")
|
||||
def test_reduce_missing(skipna, dtype):
|
||||
arr = pd.Series([None, "a", None, "b", "c", None], dtype=dtype)
|
||||
result = arr.sum(skipna=skipna)
|
||||
if skipna:
|
||||
assert result == "abc"
|
||||
else:
|
||||
assert pd.isna(result)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("method", ["min", "max"])
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_min_max(method, skipna, dtype, request):
|
||||
if dtype.storage == "pyarrow":
|
||||
reason = "'ArrowStringArray' object has no attribute 'max'"
|
||||
mark = pytest.mark.xfail(raises=TypeError, reason=reason)
|
||||
request.node.add_marker(mark)
|
||||
|
||||
arr = pd.Series(["a", "b", "c", None], dtype=dtype)
|
||||
result = getattr(arr, method)(skipna=skipna)
|
||||
if skipna:
|
||||
expected = "a" if method == "min" else "c"
|
||||
assert result == expected
|
||||
else:
|
||||
assert result is pd.NA
|
||||
|
||||
|
||||
@pytest.mark.parametrize("method", ["min", "max"])
|
||||
@pytest.mark.parametrize("box", [pd.Series, pd.array])
|
||||
def test_min_max_numpy(method, box, dtype, request):
|
||||
if dtype.storage == "pyarrow":
|
||||
if box is pd.array:
|
||||
reason = "'<=' not supported between instances of 'str' and 'NoneType'"
|
||||
else:
|
||||
reason = "'ArrowStringArray' object has no attribute 'max'"
|
||||
mark = pytest.mark.xfail(raises=TypeError, reason=reason)
|
||||
request.node.add_marker(mark)
|
||||
|
||||
arr = box(["a", "b", "c", None], dtype=dtype)
|
||||
result = getattr(np, method)(arr)
|
||||
expected = "a" if method == "min" else "c"
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_fillna_args(dtype, request):
|
||||
# GH 37987
|
||||
|
||||
if dtype.storage == "pyarrow":
|
||||
reason = (
|
||||
"Regex pattern \"Cannot set non-string value '1' into "
|
||||
"a StringArray.\" does not match 'Scalar must be NA or str'"
|
||||
)
|
||||
mark = pytest.mark.xfail(raises=AssertionError, reason=reason)
|
||||
request.node.add_marker(mark)
|
||||
|
||||
arr = pd.array(["a", pd.NA], dtype=dtype)
|
||||
|
||||
res = arr.fillna(value="b")
|
||||
expected = pd.array(["a", "b"], dtype=dtype)
|
||||
tm.assert_extension_array_equal(res, expected)
|
||||
|
||||
res = arr.fillna(value=np.str_("b"))
|
||||
expected = pd.array(["a", "b"], dtype=dtype)
|
||||
tm.assert_extension_array_equal(res, expected)
|
||||
|
||||
msg = "Cannot set non-string value '1' into a StringArray."
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr.fillna(value=1)
|
||||
|
||||
|
||||
@td.skip_if_no("pyarrow")
|
||||
def test_arrow_array(dtype):
|
||||
# protocol added in 0.15.0
|
||||
import pyarrow as pa
|
||||
|
||||
data = pd.array(["a", "b", "c"], dtype=dtype)
|
||||
arr = pa.array(data)
|
||||
expected = pa.array(list(data), type=pa.string(), from_pandas=True)
|
||||
if dtype.storage == "pyarrow":
|
||||
expected = pa.chunked_array(expected)
|
||||
|
||||
assert arr.equals(expected)
|
||||
|
||||
|
||||
@td.skip_if_no("pyarrow")
|
||||
def test_arrow_roundtrip(dtype, string_storage2):
|
||||
# roundtrip possible from arrow 1.0.0
|
||||
import pyarrow as pa
|
||||
|
||||
data = pd.array(["a", "b", None], dtype=dtype)
|
||||
df = pd.DataFrame({"a": data})
|
||||
table = pa.table(df)
|
||||
assert table.field("a").type == "string"
|
||||
with pd.option_context("string_storage", string_storage2):
|
||||
result = table.to_pandas()
|
||||
assert isinstance(result["a"].dtype, pd.StringDtype)
|
||||
expected = df.astype(f"string[{string_storage2}]")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
# ensure the missing value is represented by NA and not np.nan or None
|
||||
assert result.loc[2, "a"] is pd.NA
|
||||
|
||||
|
||||
@td.skip_if_no("pyarrow")
|
||||
def test_arrow_load_from_zero_chunks(dtype, string_storage2):
|
||||
# GH-41040
|
||||
import pyarrow as pa
|
||||
|
||||
data = pd.array([], dtype=dtype)
|
||||
df = pd.DataFrame({"a": data})
|
||||
table = pa.table(df)
|
||||
assert table.field("a").type == "string"
|
||||
# Instantiate the same table with no chunks at all
|
||||
table = pa.table([pa.chunked_array([], type=pa.string())], schema=table.schema)
|
||||
with pd.option_context("string_storage", string_storage2):
|
||||
result = table.to_pandas()
|
||||
assert isinstance(result["a"].dtype, pd.StringDtype)
|
||||
expected = df.astype(f"string[{string_storage2}]")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_value_counts_na(dtype):
|
||||
arr = pd.array(["a", "b", "a", pd.NA], dtype=dtype)
|
||||
result = arr.value_counts(dropna=False)
|
||||
expected = pd.Series([2, 1, 1], index=arr[[0, 1, 3]], dtype="Int64")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = arr.value_counts(dropna=True)
|
||||
expected = pd.Series([2, 1], index=arr[:2], dtype="Int64")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_value_counts_with_normalize(dtype):
|
||||
ser = pd.Series(["a", "b", "a", pd.NA], dtype=dtype)
|
||||
result = ser.value_counts(normalize=True)
|
||||
expected = pd.Series([2, 1], index=ser[:2], dtype="Float64") / 3
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"values, expected",
|
||||
[
|
||||
(["a", "b", "c"], np.array([False, False, False])),
|
||||
(["a", "b", None], np.array([False, False, True])),
|
||||
],
|
||||
)
|
||||
def test_use_inf_as_na(values, expected, dtype):
|
||||
# https://github.com/pandas-dev/pandas/issues/33655
|
||||
values = pd.array(values, dtype=dtype)
|
||||
with pd.option_context("mode.use_inf_as_na", True):
|
||||
result = values.isna()
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = pd.Series(values).isna()
|
||||
expected = pd.Series(expected)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = pd.DataFrame(values).isna()
|
||||
expected = pd.DataFrame(expected)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_memory_usage(dtype):
|
||||
# GH 33963
|
||||
|
||||
if dtype.storage == "pyarrow":
|
||||
pytest.skip(f"not applicable for {dtype.storage}")
|
||||
|
||||
series = pd.Series(["a", "b", "c"], dtype=dtype)
|
||||
|
||||
assert 0 < series.nbytes <= series.memory_usage() < series.memory_usage(deep=True)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("float_dtype", [np.float16, np.float32, np.float64])
|
||||
def test_astype_from_float_dtype(float_dtype, dtype):
|
||||
# https://github.com/pandas-dev/pandas/issues/36451
|
||||
ser = pd.Series([0.1], dtype=float_dtype)
|
||||
result = ser.astype(dtype)
|
||||
expected = pd.Series(["0.1"], dtype=dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_to_numpy_returns_pdna_default(dtype):
|
||||
arr = pd.array(["a", pd.NA, "b"], dtype=dtype)
|
||||
result = np.array(arr)
|
||||
expected = np.array(["a", pd.NA, "b"], dtype=object)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_to_numpy_na_value(dtype, nulls_fixture):
|
||||
na_value = nulls_fixture
|
||||
arr = pd.array(["a", pd.NA, "b"], dtype=dtype)
|
||||
result = arr.to_numpy(na_value=na_value)
|
||||
expected = np.array(["a", na_value, "b"], dtype=object)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_isin(dtype, request, fixed_now_ts):
|
||||
s = pd.Series(["a", "b", None], dtype=dtype)
|
||||
|
||||
result = s.isin(["a", "c"])
|
||||
expected = pd.Series([True, False, False])
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = s.isin(["a", pd.NA])
|
||||
expected = pd.Series([True, False, True])
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = s.isin([])
|
||||
expected = pd.Series([False, False, False])
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = s.isin(["a", fixed_now_ts])
|
||||
expected = pd.Series([True, False, False])
|
||||
tm.assert_series_equal(result, expected)
|
@ -0,0 +1,134 @@
|
||||
import re
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.compat import pa_version_under1p01
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays.string_ import (
|
||||
StringArray,
|
||||
StringDtype,
|
||||
)
|
||||
from pandas.core.arrays.string_arrow import ArrowStringArray
|
||||
|
||||
skip_if_no_pyarrow = pytest.mark.skipif(
|
||||
pa_version_under1p01,
|
||||
reason="pyarrow>=1.0.0 is required for PyArrow backed StringArray",
|
||||
)
|
||||
|
||||
|
||||
@skip_if_no_pyarrow
|
||||
def test_eq_all_na():
|
||||
a = pd.array([pd.NA, pd.NA], dtype=StringDtype("pyarrow"))
|
||||
result = a == a
|
||||
expected = pd.array([pd.NA, pd.NA], dtype="boolean")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_config(string_storage):
|
||||
with pd.option_context("string_storage", string_storage):
|
||||
assert StringDtype().storage == string_storage
|
||||
result = pd.array(["a", "b"])
|
||||
assert result.dtype.storage == string_storage
|
||||
|
||||
expected = (
|
||||
StringDtype(string_storage).construct_array_type()._from_sequence(["a", "b"])
|
||||
)
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
|
||||
def test_config_bad_storage_raises():
|
||||
msg = re.escape("Value must be one of python|pyarrow")
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
pd.options.mode.string_storage = "foo"
|
||||
|
||||
|
||||
@skip_if_no_pyarrow
|
||||
@pytest.mark.parametrize("chunked", [True, False])
|
||||
@pytest.mark.parametrize("array", ["numpy", "pyarrow"])
|
||||
def test_constructor_not_string_type_raises(array, chunked):
|
||||
import pyarrow as pa
|
||||
|
||||
array = pa if array == "pyarrow" else np
|
||||
|
||||
arr = array.array([1, 2, 3])
|
||||
if chunked:
|
||||
if array is np:
|
||||
pytest.skip("chunked not applicable to numpy array")
|
||||
arr = pa.chunked_array(arr)
|
||||
if array is np:
|
||||
msg = "Unsupported type '<class 'numpy.ndarray'>' for ArrowStringArray"
|
||||
else:
|
||||
msg = re.escape(
|
||||
"ArrowStringArray requires a PyArrow (chunked) array of string type"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
ArrowStringArray(arr)
|
||||
|
||||
|
||||
@skip_if_no_pyarrow
|
||||
def test_from_sequence_wrong_dtype_raises():
|
||||
with pd.option_context("string_storage", "python"):
|
||||
ArrowStringArray._from_sequence(["a", None, "c"], dtype="string")
|
||||
|
||||
with pd.option_context("string_storage", "pyarrow"):
|
||||
ArrowStringArray._from_sequence(["a", None, "c"], dtype="string")
|
||||
|
||||
with pytest.raises(AssertionError, match=None):
|
||||
ArrowStringArray._from_sequence(["a", None, "c"], dtype="string[python]")
|
||||
|
||||
ArrowStringArray._from_sequence(["a", None, "c"], dtype="string[pyarrow]")
|
||||
|
||||
with pytest.raises(AssertionError, match=None):
|
||||
with pd.option_context("string_storage", "python"):
|
||||
ArrowStringArray._from_sequence(["a", None, "c"], dtype=StringDtype())
|
||||
|
||||
with pd.option_context("string_storage", "pyarrow"):
|
||||
ArrowStringArray._from_sequence(["a", None, "c"], dtype=StringDtype())
|
||||
|
||||
with pytest.raises(AssertionError, match=None):
|
||||
ArrowStringArray._from_sequence(["a", None, "c"], dtype=StringDtype("python"))
|
||||
|
||||
ArrowStringArray._from_sequence(["a", None, "c"], dtype=StringDtype("pyarrow"))
|
||||
|
||||
with pd.option_context("string_storage", "python"):
|
||||
StringArray._from_sequence(["a", None, "c"], dtype="string")
|
||||
|
||||
with pd.option_context("string_storage", "pyarrow"):
|
||||
StringArray._from_sequence(["a", None, "c"], dtype="string")
|
||||
|
||||
StringArray._from_sequence(["a", None, "c"], dtype="string[python]")
|
||||
|
||||
with pytest.raises(AssertionError, match=None):
|
||||
StringArray._from_sequence(["a", None, "c"], dtype="string[pyarrow]")
|
||||
|
||||
with pd.option_context("string_storage", "python"):
|
||||
StringArray._from_sequence(["a", None, "c"], dtype=StringDtype())
|
||||
|
||||
with pytest.raises(AssertionError, match=None):
|
||||
with pd.option_context("string_storage", "pyarrow"):
|
||||
StringArray._from_sequence(["a", None, "c"], dtype=StringDtype())
|
||||
|
||||
StringArray._from_sequence(["a", None, "c"], dtype=StringDtype("python"))
|
||||
|
||||
with pytest.raises(AssertionError, match=None):
|
||||
StringArray._from_sequence(["a", None, "c"], dtype=StringDtype("pyarrow"))
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not pa_version_under1p01,
|
||||
reason="pyarrow is installed",
|
||||
)
|
||||
def test_pyarrow_not_installed_raises():
|
||||
msg = re.escape("pyarrow>=1.0.0 is required for PyArrow backed StringArray")
|
||||
|
||||
with pytest.raises(ImportError, match=msg):
|
||||
StringDtype(storage="pyarrow")
|
||||
|
||||
with pytest.raises(ImportError, match=msg):
|
||||
ArrowStringArray([])
|
||||
|
||||
with pytest.raises(ImportError, match=msg):
|
||||
ArrowStringArray._from_sequence(["a", None, "b"])
|
451
.venv/Lib/site-packages/pandas/tests/arrays/test_array.py
Normal file
451
.venv/Lib/site-packages/pandas/tests/arrays/test_array.py
Normal file
@ -0,0 +1,451 @@
|
||||
import datetime
|
||||
import decimal
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import pytz
|
||||
|
||||
from pandas.core.dtypes.base import _registry as registry
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.api.extensions import register_extension_dtype
|
||||
from pandas.api.types import is_scalar
|
||||
from pandas.arrays import (
|
||||
BooleanArray,
|
||||
DatetimeArray,
|
||||
FloatingArray,
|
||||
IntegerArray,
|
||||
IntervalArray,
|
||||
SparseArray,
|
||||
TimedeltaArray,
|
||||
)
|
||||
from pandas.core.arrays import (
|
||||
PandasArray,
|
||||
period_array,
|
||||
)
|
||||
from pandas.tests.extension.decimal import (
|
||||
DecimalArray,
|
||||
DecimalDtype,
|
||||
to_decimal,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"data, dtype, expected",
|
||||
[
|
||||
# Basic NumPy defaults.
|
||||
([1, 2], None, IntegerArray._from_sequence([1, 2])),
|
||||
([1, 2], object, PandasArray(np.array([1, 2], dtype=object))),
|
||||
(
|
||||
[1, 2],
|
||||
np.dtype("float32"),
|
||||
PandasArray(np.array([1.0, 2.0], dtype=np.dtype("float32"))),
|
||||
),
|
||||
(np.array([1, 2], dtype="int64"), None, IntegerArray._from_sequence([1, 2])),
|
||||
(
|
||||
np.array([1.0, 2.0], dtype="float64"),
|
||||
None,
|
||||
FloatingArray._from_sequence([1.0, 2.0]),
|
||||
),
|
||||
# String alias passes through to NumPy
|
||||
([1, 2], "float32", PandasArray(np.array([1, 2], dtype="float32"))),
|
||||
([1, 2], "int64", PandasArray(np.array([1, 2], dtype=np.int64))),
|
||||
# GH#44715 FloatingArray does not support float16, so fall back to PandasArray
|
||||
(
|
||||
np.array([1, 2], dtype=np.float16),
|
||||
None,
|
||||
PandasArray(np.array([1, 2], dtype=np.float16)),
|
||||
),
|
||||
# idempotency with e.g. pd.array(pd.array([1, 2], dtype="int64"))
|
||||
(
|
||||
PandasArray(np.array([1, 2], dtype=np.int32)),
|
||||
None,
|
||||
PandasArray(np.array([1, 2], dtype=np.int32)),
|
||||
),
|
||||
# Period alias
|
||||
(
|
||||
[pd.Period("2000", "D"), pd.Period("2001", "D")],
|
||||
"Period[D]",
|
||||
period_array(["2000", "2001"], freq="D"),
|
||||
),
|
||||
# Period dtype
|
||||
(
|
||||
[pd.Period("2000", "D")],
|
||||
pd.PeriodDtype("D"),
|
||||
period_array(["2000"], freq="D"),
|
||||
),
|
||||
# Datetime (naive)
|
||||
(
|
||||
[1, 2],
|
||||
np.dtype("datetime64[ns]"),
|
||||
DatetimeArray._from_sequence(np.array([1, 2], dtype="datetime64[ns]")),
|
||||
),
|
||||
(
|
||||
np.array([1, 2], dtype="datetime64[ns]"),
|
||||
None,
|
||||
DatetimeArray._from_sequence(np.array([1, 2], dtype="datetime64[ns]")),
|
||||
),
|
||||
(
|
||||
pd.DatetimeIndex(["2000", "2001"]),
|
||||
np.dtype("datetime64[ns]"),
|
||||
DatetimeArray._from_sequence(["2000", "2001"]),
|
||||
),
|
||||
(
|
||||
pd.DatetimeIndex(["2000", "2001"]),
|
||||
None,
|
||||
DatetimeArray._from_sequence(["2000", "2001"]),
|
||||
),
|
||||
(
|
||||
["2000", "2001"],
|
||||
np.dtype("datetime64[ns]"),
|
||||
DatetimeArray._from_sequence(["2000", "2001"]),
|
||||
),
|
||||
# Datetime (tz-aware)
|
||||
(
|
||||
["2000", "2001"],
|
||||
pd.DatetimeTZDtype(tz="CET"),
|
||||
DatetimeArray._from_sequence(
|
||||
["2000", "2001"], dtype=pd.DatetimeTZDtype(tz="CET")
|
||||
),
|
||||
),
|
||||
# Timedelta
|
||||
(
|
||||
["1H", "2H"],
|
||||
np.dtype("timedelta64[ns]"),
|
||||
TimedeltaArray._from_sequence(["1H", "2H"]),
|
||||
),
|
||||
(
|
||||
pd.TimedeltaIndex(["1H", "2H"]),
|
||||
np.dtype("timedelta64[ns]"),
|
||||
TimedeltaArray._from_sequence(["1H", "2H"]),
|
||||
),
|
||||
(
|
||||
pd.TimedeltaIndex(["1H", "2H"]),
|
||||
None,
|
||||
TimedeltaArray._from_sequence(["1H", "2H"]),
|
||||
),
|
||||
# Category
|
||||
(["a", "b"], "category", pd.Categorical(["a", "b"])),
|
||||
(
|
||||
["a", "b"],
|
||||
pd.CategoricalDtype(None, ordered=True),
|
||||
pd.Categorical(["a", "b"], ordered=True),
|
||||
),
|
||||
# Interval
|
||||
(
|
||||
[pd.Interval(1, 2), pd.Interval(3, 4)],
|
||||
"interval",
|
||||
IntervalArray.from_tuples([(1, 2), (3, 4)]),
|
||||
),
|
||||
# Sparse
|
||||
([0, 1], "Sparse[int64]", SparseArray([0, 1], dtype="int64")),
|
||||
# IntegerNA
|
||||
([1, None], "Int16", pd.array([1, None], dtype="Int16")),
|
||||
(pd.Series([1, 2]), None, PandasArray(np.array([1, 2], dtype=np.int64))),
|
||||
# String
|
||||
(
|
||||
["a", None],
|
||||
"string",
|
||||
pd.StringDtype().construct_array_type()._from_sequence(["a", None]),
|
||||
),
|
||||
(
|
||||
["a", None],
|
||||
pd.StringDtype(),
|
||||
pd.StringDtype().construct_array_type()._from_sequence(["a", None]),
|
||||
),
|
||||
# Boolean
|
||||
([True, None], "boolean", BooleanArray._from_sequence([True, None])),
|
||||
([True, None], pd.BooleanDtype(), BooleanArray._from_sequence([True, None])),
|
||||
# Index
|
||||
(pd.Index([1, 2]), None, PandasArray(np.array([1, 2], dtype=np.int64))),
|
||||
# Series[EA] returns the EA
|
||||
(
|
||||
pd.Series(pd.Categorical(["a", "b"], categories=["a", "b", "c"])),
|
||||
None,
|
||||
pd.Categorical(["a", "b"], categories=["a", "b", "c"]),
|
||||
),
|
||||
# "3rd party" EAs work
|
||||
([decimal.Decimal(0), decimal.Decimal(1)], "decimal", to_decimal([0, 1])),
|
||||
# pass an ExtensionArray, but a different dtype
|
||||
(
|
||||
period_array(["2000", "2001"], freq="D"),
|
||||
"category",
|
||||
pd.Categorical([pd.Period("2000", "D"), pd.Period("2001", "D")]),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_array(data, dtype, expected):
|
||||
result = pd.array(data, dtype=dtype)
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
|
||||
def test_array_copy():
|
||||
a = np.array([1, 2])
|
||||
# default is to copy
|
||||
b = pd.array(a, dtype=a.dtype)
|
||||
assert not tm.shares_memory(a, b)
|
||||
|
||||
# copy=True
|
||||
b = pd.array(a, dtype=a.dtype, copy=True)
|
||||
assert not tm.shares_memory(a, b)
|
||||
|
||||
# copy=False
|
||||
b = pd.array(a, dtype=a.dtype, copy=False)
|
||||
assert tm.shares_memory(a, b)
|
||||
|
||||
|
||||
cet = pytz.timezone("CET")
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"data, expected",
|
||||
[
|
||||
# period
|
||||
(
|
||||
[pd.Period("2000", "D"), pd.Period("2001", "D")],
|
||||
period_array(["2000", "2001"], freq="D"),
|
||||
),
|
||||
# interval
|
||||
([pd.Interval(0, 1), pd.Interval(1, 2)], IntervalArray.from_breaks([0, 1, 2])),
|
||||
# datetime
|
||||
(
|
||||
[pd.Timestamp("2000"), pd.Timestamp("2001")],
|
||||
DatetimeArray._from_sequence(["2000", "2001"]),
|
||||
),
|
||||
(
|
||||
[datetime.datetime(2000, 1, 1), datetime.datetime(2001, 1, 1)],
|
||||
DatetimeArray._from_sequence(["2000", "2001"]),
|
||||
),
|
||||
(
|
||||
np.array([1, 2], dtype="M8[ns]"),
|
||||
DatetimeArray(np.array([1, 2], dtype="M8[ns]")),
|
||||
),
|
||||
(
|
||||
np.array([1, 2], dtype="M8[us]"),
|
||||
DatetimeArray(np.array([1000, 2000], dtype="M8[ns]")),
|
||||
),
|
||||
# datetimetz
|
||||
(
|
||||
[pd.Timestamp("2000", tz="CET"), pd.Timestamp("2001", tz="CET")],
|
||||
DatetimeArray._from_sequence(
|
||||
["2000", "2001"], dtype=pd.DatetimeTZDtype(tz="CET")
|
||||
),
|
||||
),
|
||||
(
|
||||
[
|
||||
datetime.datetime(2000, 1, 1, tzinfo=cet),
|
||||
datetime.datetime(2001, 1, 1, tzinfo=cet),
|
||||
],
|
||||
DatetimeArray._from_sequence(
|
||||
["2000", "2001"], dtype=pd.DatetimeTZDtype(tz=cet)
|
||||
),
|
||||
),
|
||||
# timedelta
|
||||
(
|
||||
[pd.Timedelta("1H"), pd.Timedelta("2H")],
|
||||
TimedeltaArray._from_sequence(["1H", "2H"]),
|
||||
),
|
||||
(
|
||||
np.array([1, 2], dtype="m8[ns]"),
|
||||
TimedeltaArray(np.array([1, 2], dtype="m8[ns]")),
|
||||
),
|
||||
(
|
||||
np.array([1, 2], dtype="m8[us]"),
|
||||
TimedeltaArray(np.array([1000, 2000], dtype="m8[ns]")),
|
||||
),
|
||||
# integer
|
||||
([1, 2], IntegerArray._from_sequence([1, 2])),
|
||||
([1, None], IntegerArray._from_sequence([1, None])),
|
||||
([1, pd.NA], IntegerArray._from_sequence([1, pd.NA])),
|
||||
([1, np.nan], IntegerArray._from_sequence([1, np.nan])),
|
||||
# float
|
||||
([0.1, 0.2], FloatingArray._from_sequence([0.1, 0.2])),
|
||||
([0.1, None], FloatingArray._from_sequence([0.1, pd.NA])),
|
||||
([0.1, np.nan], FloatingArray._from_sequence([0.1, pd.NA])),
|
||||
([0.1, pd.NA], FloatingArray._from_sequence([0.1, pd.NA])),
|
||||
# integer-like float
|
||||
([1.0, 2.0], FloatingArray._from_sequence([1.0, 2.0])),
|
||||
([1.0, None], FloatingArray._from_sequence([1.0, pd.NA])),
|
||||
([1.0, np.nan], FloatingArray._from_sequence([1.0, pd.NA])),
|
||||
([1.0, pd.NA], FloatingArray._from_sequence([1.0, pd.NA])),
|
||||
# mixed-integer-float
|
||||
([1, 2.0], FloatingArray._from_sequence([1.0, 2.0])),
|
||||
([1, np.nan, 2.0], FloatingArray._from_sequence([1.0, None, 2.0])),
|
||||
# string
|
||||
(
|
||||
["a", "b"],
|
||||
pd.StringDtype().construct_array_type()._from_sequence(["a", "b"]),
|
||||
),
|
||||
(
|
||||
["a", None],
|
||||
pd.StringDtype().construct_array_type()._from_sequence(["a", None]),
|
||||
),
|
||||
# Boolean
|
||||
([True, False], BooleanArray._from_sequence([True, False])),
|
||||
([True, None], BooleanArray._from_sequence([True, None])),
|
||||
],
|
||||
)
|
||||
def test_array_inference(data, expected):
|
||||
result = pd.array(data)
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"data",
|
||||
[
|
||||
# mix of frequencies
|
||||
[pd.Period("2000", "D"), pd.Period("2001", "A")],
|
||||
# mix of closed
|
||||
[pd.Interval(0, 1, closed="left"), pd.Interval(1, 2, closed="right")],
|
||||
# Mix of timezones
|
||||
[pd.Timestamp("2000", tz="CET"), pd.Timestamp("2000", tz="UTC")],
|
||||
# Mix of tz-aware and tz-naive
|
||||
[pd.Timestamp("2000", tz="CET"), pd.Timestamp("2000")],
|
||||
np.array([pd.Timestamp("2000"), pd.Timestamp("2000", tz="CET")]),
|
||||
],
|
||||
)
|
||||
def test_array_inference_fails(data):
|
||||
result = pd.array(data)
|
||||
expected = PandasArray(np.array(data, dtype=object))
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("data", [np.array(0)])
|
||||
def test_nd_raises(data):
|
||||
with pytest.raises(ValueError, match="PandasArray must be 1-dimensional"):
|
||||
pd.array(data, dtype="int64")
|
||||
|
||||
|
||||
def test_scalar_raises():
|
||||
with pytest.raises(ValueError, match="Cannot pass scalar '1'"):
|
||||
pd.array(1)
|
||||
|
||||
|
||||
def test_bounds_check():
|
||||
# GH21796
|
||||
with pytest.raises(
|
||||
TypeError, match=r"cannot safely cast non-equivalent int(32|64) to uint16"
|
||||
):
|
||||
pd.array([-1, 2, 3], dtype="UInt16")
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# A couple dummy classes to ensure that Series and Indexes are unboxed before
|
||||
# getting to the EA classes.
|
||||
|
||||
|
||||
@register_extension_dtype
|
||||
class DecimalDtype2(DecimalDtype):
|
||||
name = "decimal2"
|
||||
|
||||
@classmethod
|
||||
def construct_array_type(cls):
|
||||
"""
|
||||
Return the array type associated with this dtype.
|
||||
|
||||
Returns
|
||||
-------
|
||||
type
|
||||
"""
|
||||
return DecimalArray2
|
||||
|
||||
|
||||
class DecimalArray2(DecimalArray):
|
||||
@classmethod
|
||||
def _from_sequence(cls, scalars, dtype=None, copy=False):
|
||||
if isinstance(scalars, (pd.Series, pd.Index)):
|
||||
raise TypeError("scalars should not be of type pd.Series or pd.Index")
|
||||
|
||||
return super()._from_sequence(scalars, dtype=dtype, copy=copy)
|
||||
|
||||
|
||||
def test_array_unboxes(index_or_series):
|
||||
box = index_or_series
|
||||
|
||||
data = box([decimal.Decimal("1"), decimal.Decimal("2")])
|
||||
# make sure it works
|
||||
with pytest.raises(
|
||||
TypeError, match="scalars should not be of type pd.Series or pd.Index"
|
||||
):
|
||||
DecimalArray2._from_sequence(data)
|
||||
|
||||
result = pd.array(data, dtype="decimal2")
|
||||
expected = DecimalArray2._from_sequence(data.values)
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def registry_without_decimal():
|
||||
idx = registry.dtypes.index(DecimalDtype)
|
||||
registry.dtypes.pop(idx)
|
||||
yield
|
||||
registry.dtypes.append(DecimalDtype)
|
||||
|
||||
|
||||
def test_array_not_registered(registry_without_decimal):
|
||||
# check we aren't on it
|
||||
assert registry.find("decimal") is None
|
||||
data = [decimal.Decimal("1"), decimal.Decimal("2")]
|
||||
|
||||
result = pd.array(data, dtype=DecimalDtype)
|
||||
expected = DecimalArray._from_sequence(data)
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
|
||||
class TestArrayAnalytics:
|
||||
def test_searchsorted(self, string_dtype):
|
||||
arr = pd.array(["a", "b", "c"], dtype=string_dtype)
|
||||
|
||||
result = arr.searchsorted("a", side="left")
|
||||
assert is_scalar(result)
|
||||
assert result == 0
|
||||
|
||||
result = arr.searchsorted("a", side="right")
|
||||
assert is_scalar(result)
|
||||
assert result == 1
|
||||
|
||||
def test_searchsorted_numeric_dtypes_scalar(self, any_real_numpy_dtype):
|
||||
arr = pd.array([1, 3, 90], dtype=any_real_numpy_dtype)
|
||||
result = arr.searchsorted(30)
|
||||
assert is_scalar(result)
|
||||
assert result == 2
|
||||
|
||||
result = arr.searchsorted([30])
|
||||
expected = np.array([2], dtype=np.intp)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
def test_searchsorted_numeric_dtypes_vector(self, any_real_numpy_dtype):
|
||||
arr = pd.array([1, 3, 90], dtype=any_real_numpy_dtype)
|
||||
result = arr.searchsorted([2, 30])
|
||||
expected = np.array([1, 2], dtype=np.intp)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"arr, val",
|
||||
[
|
||||
[
|
||||
pd.date_range("20120101", periods=10, freq="2D"),
|
||||
pd.Timestamp("20120102"),
|
||||
],
|
||||
[
|
||||
pd.date_range("20120101", periods=10, freq="2D", tz="Asia/Hong_Kong"),
|
||||
pd.Timestamp("20120102", tz="Asia/Hong_Kong"),
|
||||
],
|
||||
[
|
||||
pd.timedelta_range(start="1 day", end="10 days", periods=10),
|
||||
pd.Timedelta("2 days"),
|
||||
],
|
||||
],
|
||||
)
|
||||
def test_search_sorted_datetime64_scalar(self, arr, val):
|
||||
arr = pd.array(arr)
|
||||
result = arr.searchsorted(val)
|
||||
assert is_scalar(result)
|
||||
assert result == 1
|
||||
|
||||
def test_searchsorted_sorter(self, any_real_numpy_dtype):
|
||||
arr = pd.array([3, 1, 2], dtype=any_real_numpy_dtype)
|
||||
result = arr.searchsorted([0, 3], sorter=np.argsort(arr))
|
||||
expected = np.array([0, 2], dtype=np.intp)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
1446
.venv/Lib/site-packages/pandas/tests/arrays/test_datetimelike.py
Normal file
1446
.venv/Lib/site-packages/pandas/tests/arrays/test_datetimelike.py
Normal file
File diff suppressed because it is too large
Load Diff
408
.venv/Lib/site-packages/pandas/tests/arrays/test_datetimes.py
Normal file
408
.venv/Lib/site-packages/pandas/tests/arrays/test_datetimes.py
Normal file
@ -0,0 +1,408 @@
|
||||
"""
|
||||
Tests for DatetimeArray
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.core.dtypes.dtypes import DatetimeTZDtype
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import DatetimeArray
|
||||
|
||||
|
||||
class TestDatetimeArrayComparisons:
|
||||
# TODO: merge this into tests/arithmetic/test_datetime64 once it is
|
||||
# sufficiently robust
|
||||
|
||||
def test_cmp_dt64_arraylike_tznaive(self, comparison_op):
|
||||
# arbitrary tz-naive DatetimeIndex
|
||||
op = comparison_op
|
||||
|
||||
dti = pd.date_range("2016-01-1", freq="MS", periods=9, tz=None)
|
||||
arr = DatetimeArray(dti)
|
||||
assert arr.freq == dti.freq
|
||||
assert arr.tz == dti.tz
|
||||
|
||||
right = dti
|
||||
|
||||
expected = np.ones(len(arr), dtype=bool)
|
||||
if comparison_op.__name__ in ["ne", "gt", "lt"]:
|
||||
# for these the comparisons should be all-False
|
||||
expected = ~expected
|
||||
|
||||
result = op(arr, arr)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
for other in [
|
||||
right,
|
||||
np.array(right),
|
||||
list(right),
|
||||
tuple(right),
|
||||
right.astype(object),
|
||||
]:
|
||||
result = op(arr, other)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = op(other, arr)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
class TestDatetimeArray:
|
||||
def test_astype_to_same(self):
|
||||
arr = DatetimeArray._from_sequence(
|
||||
["2000"], dtype=DatetimeTZDtype(tz="US/Central")
|
||||
)
|
||||
result = arr.astype(DatetimeTZDtype(tz="US/Central"), copy=False)
|
||||
assert result is arr
|
||||
|
||||
@pytest.mark.parametrize("dtype", ["datetime64[ns]", "datetime64[ns, UTC]"])
|
||||
@pytest.mark.parametrize(
|
||||
"other", ["datetime64[ns]", "datetime64[ns, UTC]", "datetime64[ns, CET]"]
|
||||
)
|
||||
def test_astype_copies(self, dtype, other):
|
||||
# https://github.com/pandas-dev/pandas/pull/32490
|
||||
ser = pd.Series([1, 2], dtype=dtype)
|
||||
orig = ser.copy()
|
||||
|
||||
warn = None
|
||||
if (dtype == "datetime64[ns]") ^ (other == "datetime64[ns]"):
|
||||
# deprecated in favor of tz_localize
|
||||
warn = FutureWarning
|
||||
|
||||
with tm.assert_produces_warning(warn):
|
||||
t = ser.astype(other)
|
||||
t[:] = pd.NaT
|
||||
tm.assert_series_equal(ser, orig)
|
||||
|
||||
@pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"])
|
||||
def test_astype_int(self, dtype):
|
||||
arr = DatetimeArray._from_sequence([pd.Timestamp("2000"), pd.Timestamp("2001")])
|
||||
result = arr.astype(dtype)
|
||||
|
||||
if np.dtype(dtype).kind == "u":
|
||||
expected_dtype = np.dtype("uint64")
|
||||
else:
|
||||
expected_dtype = np.dtype("int64")
|
||||
expected = arr.astype(expected_dtype)
|
||||
|
||||
assert result.dtype == expected_dtype
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
def test_tz_setter_raises(self):
|
||||
arr = DatetimeArray._from_sequence(
|
||||
["2000"], dtype=DatetimeTZDtype(tz="US/Central")
|
||||
)
|
||||
with pytest.raises(AttributeError, match="tz_localize"):
|
||||
arr.tz = "UTC"
|
||||
|
||||
def test_setitem_str_impute_tz(self, tz_naive_fixture):
|
||||
# Like for getitem, if we are passed a naive-like string, we impute
|
||||
# our own timezone.
|
||||
tz = tz_naive_fixture
|
||||
|
||||
data = np.array([1, 2, 3], dtype="M8[ns]")
|
||||
dtype = data.dtype if tz is None else DatetimeTZDtype(tz=tz)
|
||||
arr = DatetimeArray(data, dtype=dtype)
|
||||
expected = arr.copy()
|
||||
|
||||
ts = pd.Timestamp("2020-09-08 16:50").tz_localize(tz)
|
||||
setter = str(ts.tz_localize(None))
|
||||
|
||||
# Setting a scalar tznaive string
|
||||
expected[0] = ts
|
||||
arr[0] = setter
|
||||
tm.assert_equal(arr, expected)
|
||||
|
||||
# Setting a listlike of tznaive strings
|
||||
expected[1] = ts
|
||||
arr[:2] = [setter, setter]
|
||||
tm.assert_equal(arr, expected)
|
||||
|
||||
def test_setitem_different_tz_raises(self):
|
||||
data = np.array([1, 2, 3], dtype="M8[ns]")
|
||||
arr = DatetimeArray(data, copy=False, dtype=DatetimeTZDtype(tz="US/Central"))
|
||||
with pytest.raises(TypeError, match="Cannot compare tz-naive and tz-aware"):
|
||||
arr[0] = pd.Timestamp("2000")
|
||||
|
||||
ts = pd.Timestamp("2000", tz="US/Eastern")
|
||||
with pytest.raises(ValueError, match="US/Central"):
|
||||
with tm.assert_produces_warning(
|
||||
FutureWarning, match="mismatched timezones"
|
||||
):
|
||||
arr[0] = ts
|
||||
# once deprecation is enforced
|
||||
# assert arr[0] == ts.tz_convert("US/Central")
|
||||
|
||||
def test_setitem_clears_freq(self):
|
||||
a = DatetimeArray(pd.date_range("2000", periods=2, freq="D", tz="US/Central"))
|
||||
a[0] = pd.Timestamp("2000", tz="US/Central")
|
||||
assert a.freq is None
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"obj",
|
||||
[
|
||||
pd.Timestamp("2021-01-01"),
|
||||
pd.Timestamp("2021-01-01").to_datetime64(),
|
||||
pd.Timestamp("2021-01-01").to_pydatetime(),
|
||||
],
|
||||
)
|
||||
def test_setitem_objects(self, obj):
|
||||
# make sure we accept datetime64 and datetime in addition to Timestamp
|
||||
dti = pd.date_range("2000", periods=2, freq="D")
|
||||
arr = dti._data
|
||||
|
||||
arr[0] = obj
|
||||
assert arr[0] == obj
|
||||
|
||||
def test_repeat_preserves_tz(self):
|
||||
dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central")
|
||||
arr = DatetimeArray(dti)
|
||||
|
||||
repeated = arr.repeat([1, 1])
|
||||
|
||||
# preserves tz and values, but not freq
|
||||
expected = DatetimeArray(arr.asi8, freq=None, dtype=arr.dtype)
|
||||
tm.assert_equal(repeated, expected)
|
||||
|
||||
def test_value_counts_preserves_tz(self):
|
||||
dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central")
|
||||
arr = DatetimeArray(dti).repeat([4, 3])
|
||||
|
||||
result = arr.value_counts()
|
||||
|
||||
# Note: not tm.assert_index_equal, since `freq`s do not match
|
||||
assert result.index.equals(dti)
|
||||
|
||||
arr[-2] = pd.NaT
|
||||
result = arr.value_counts(dropna=False)
|
||||
expected = pd.Series([4, 2, 1], index=[dti[0], dti[1], pd.NaT])
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("method", ["pad", "backfill"])
|
||||
def test_fillna_preserves_tz(self, method):
|
||||
dti = pd.date_range("2000-01-01", periods=5, freq="D", tz="US/Central")
|
||||
arr = DatetimeArray(dti, copy=True)
|
||||
arr[2] = pd.NaT
|
||||
|
||||
fill_val = dti[1] if method == "pad" else dti[3]
|
||||
expected = DatetimeArray._from_sequence(
|
||||
[dti[0], dti[1], fill_val, dti[3], dti[4]],
|
||||
dtype=DatetimeTZDtype(tz="US/Central"),
|
||||
)
|
||||
|
||||
result = arr.fillna(method=method)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# assert that arr and dti were not modified in-place
|
||||
assert arr[2] is pd.NaT
|
||||
assert dti[2] == pd.Timestamp("2000-01-03", tz="US/Central")
|
||||
|
||||
def test_fillna_2d(self):
|
||||
dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific")
|
||||
dta = dti._data.reshape(3, 2).copy()
|
||||
dta[0, 1] = pd.NaT
|
||||
dta[1, 0] = pd.NaT
|
||||
|
||||
res1 = dta.fillna(method="pad")
|
||||
expected1 = dta.copy()
|
||||
expected1[1, 0] = dta[0, 0]
|
||||
tm.assert_extension_array_equal(res1, expected1)
|
||||
|
||||
res2 = dta.fillna(method="backfill")
|
||||
expected2 = dta.copy()
|
||||
expected2 = dta.copy()
|
||||
expected2[1, 0] = dta[2, 0]
|
||||
expected2[0, 1] = dta[1, 1]
|
||||
tm.assert_extension_array_equal(res2, expected2)
|
||||
|
||||
# with different ordering for underlying ndarray; behavior should
|
||||
# be unchanged
|
||||
dta2 = dta._from_backing_data(dta._ndarray.copy(order="F"))
|
||||
assert dta2._ndarray.flags["F_CONTIGUOUS"]
|
||||
assert not dta2._ndarray.flags["C_CONTIGUOUS"]
|
||||
tm.assert_extension_array_equal(dta, dta2)
|
||||
|
||||
res3 = dta2.fillna(method="pad")
|
||||
tm.assert_extension_array_equal(res3, expected1)
|
||||
|
||||
res4 = dta2.fillna(method="backfill")
|
||||
tm.assert_extension_array_equal(res4, expected2)
|
||||
|
||||
# test the DataFrame method while we're here
|
||||
df = pd.DataFrame(dta)
|
||||
res = df.fillna(method="pad")
|
||||
expected = pd.DataFrame(expected1)
|
||||
tm.assert_frame_equal(res, expected)
|
||||
|
||||
res = df.fillna(method="backfill")
|
||||
expected = pd.DataFrame(expected2)
|
||||
tm.assert_frame_equal(res, expected)
|
||||
|
||||
def test_array_interface_tz(self):
|
||||
tz = "US/Central"
|
||||
data = DatetimeArray(pd.date_range("2017", periods=2, tz=tz))
|
||||
result = np.asarray(data)
|
||||
|
||||
expected = np.array(
|
||||
[
|
||||
pd.Timestamp("2017-01-01T00:00:00", tz=tz),
|
||||
pd.Timestamp("2017-01-02T00:00:00", tz=tz),
|
||||
],
|
||||
dtype=object,
|
||||
)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = np.asarray(data, dtype=object)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = np.asarray(data, dtype="M8[ns]")
|
||||
|
||||
expected = np.array(
|
||||
["2017-01-01T06:00:00", "2017-01-02T06:00:00"], dtype="M8[ns]"
|
||||
)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
def test_array_interface(self):
|
||||
data = DatetimeArray(pd.date_range("2017", periods=2))
|
||||
expected = np.array(
|
||||
["2017-01-01T00:00:00", "2017-01-02T00:00:00"], dtype="datetime64[ns]"
|
||||
)
|
||||
|
||||
result = np.asarray(data)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = np.asarray(data, dtype=object)
|
||||
expected = np.array(
|
||||
[pd.Timestamp("2017-01-01T00:00:00"), pd.Timestamp("2017-01-02T00:00:00")],
|
||||
dtype=object,
|
||||
)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("index", [True, False])
|
||||
def test_searchsorted_different_tz(self, index):
|
||||
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
|
||||
arr = DatetimeArray(data, freq="D").tz_localize("Asia/Tokyo")
|
||||
if index:
|
||||
arr = pd.Index(arr)
|
||||
|
||||
expected = arr.searchsorted(arr[2])
|
||||
result = arr.searchsorted(arr[2].tz_convert("UTC"))
|
||||
assert result == expected
|
||||
|
||||
expected = arr.searchsorted(arr[2:6])
|
||||
result = arr.searchsorted(arr[2:6].tz_convert("UTC"))
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("index", [True, False])
|
||||
def test_searchsorted_tzawareness_compat(self, index):
|
||||
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
|
||||
arr = DatetimeArray(data, freq="D")
|
||||
if index:
|
||||
arr = pd.Index(arr)
|
||||
|
||||
mismatch = arr.tz_localize("Asia/Tokyo")
|
||||
|
||||
msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
arr.searchsorted(mismatch[0])
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
arr.searchsorted(mismatch)
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
mismatch.searchsorted(arr[0])
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
mismatch.searchsorted(arr)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"other",
|
||||
[
|
||||
1,
|
||||
np.int64(1),
|
||||
1.0,
|
||||
np.timedelta64("NaT"),
|
||||
pd.Timedelta(days=2),
|
||||
"invalid",
|
||||
np.arange(10, dtype="i8") * 24 * 3600 * 10**9,
|
||||
np.arange(10).view("timedelta64[ns]") * 24 * 3600 * 10**9,
|
||||
pd.Timestamp("2021-01-01").to_period("D"),
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize("index", [True, False])
|
||||
def test_searchsorted_invalid_types(self, other, index):
|
||||
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
|
||||
arr = DatetimeArray(data, freq="D")
|
||||
if index:
|
||||
arr = pd.Index(arr)
|
||||
|
||||
msg = "|".join(
|
||||
[
|
||||
"searchsorted requires compatible dtype or scalar",
|
||||
"value should be a 'Timestamp', 'NaT', or array of those. Got",
|
||||
]
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
arr.searchsorted(other)
|
||||
|
||||
def test_shift_fill_value(self):
|
||||
dti = pd.date_range("2016-01-01", periods=3)
|
||||
|
||||
dta = dti._data
|
||||
expected = DatetimeArray(np.roll(dta._data, 1))
|
||||
|
||||
fv = dta[-1]
|
||||
for fill_value in [fv, fv.to_pydatetime(), fv.to_datetime64()]:
|
||||
result = dta.shift(1, fill_value=fill_value)
|
||||
tm.assert_datetime_array_equal(result, expected)
|
||||
|
||||
dta = dta.tz_localize("UTC")
|
||||
expected = expected.tz_localize("UTC")
|
||||
fv = dta[-1]
|
||||
for fill_value in [fv, fv.to_pydatetime()]:
|
||||
result = dta.shift(1, fill_value=fill_value)
|
||||
tm.assert_datetime_array_equal(result, expected)
|
||||
|
||||
def test_shift_value_tzawareness_mismatch(self):
|
||||
dti = pd.date_range("2016-01-01", periods=3)
|
||||
|
||||
dta = dti._data
|
||||
|
||||
fv = dta[-1].tz_localize("UTC")
|
||||
for invalid in [fv, fv.to_pydatetime()]:
|
||||
with pytest.raises(TypeError, match="Cannot compare"):
|
||||
dta.shift(1, fill_value=invalid)
|
||||
|
||||
dta = dta.tz_localize("UTC")
|
||||
fv = dta[-1].tz_localize(None)
|
||||
for invalid in [fv, fv.to_pydatetime(), fv.to_datetime64()]:
|
||||
with pytest.raises(TypeError, match="Cannot compare"):
|
||||
dta.shift(1, fill_value=invalid)
|
||||
|
||||
def test_shift_requires_tzmatch(self):
|
||||
# since filling is setitem-like, we require a matching timezone,
|
||||
# not just matching tzawawreness
|
||||
dti = pd.date_range("2016-01-01", periods=3, tz="UTC")
|
||||
dta = dti._data
|
||||
|
||||
fill_value = pd.Timestamp("2020-10-18 18:44", tz="US/Pacific")
|
||||
|
||||
msg = "Timezones don't match. 'UTC' != 'US/Pacific'"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
with tm.assert_produces_warning(
|
||||
FutureWarning, match="mismatched timezones"
|
||||
):
|
||||
dta.shift(1, fill_value=fill_value)
|
||||
|
||||
# once deprecation is enforced
|
||||
# expected = dta.shift(1, fill_value=fill_value.tz_convert("UTC"))
|
||||
# tm.assert_equal(result, expected)
|
||||
|
||||
def test_tz_localize_t2d(self):
|
||||
dti = pd.date_range("1994-05-12", periods=12, tz="US/Pacific")
|
||||
dta = dti._data.reshape(3, 4)
|
||||
result = dta.tz_localize(None)
|
||||
|
||||
expected = dta.ravel().tz_localize(None).reshape(dta.shape)
|
||||
tm.assert_datetime_array_equal(result, expected)
|
||||
|
||||
roundtrip = expected.tz_localize("US/Pacific")
|
||||
tm.assert_datetime_array_equal(roundtrip, dta)
|
@ -0,0 +1,75 @@
|
||||
"""
|
||||
Tests for subclasses of NDArrayBackedExtensionArray
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
from pandas import (
|
||||
CategoricalIndex,
|
||||
date_range,
|
||||
)
|
||||
from pandas.core.arrays import (
|
||||
Categorical,
|
||||
DatetimeArray,
|
||||
PandasArray,
|
||||
TimedeltaArray,
|
||||
)
|
||||
|
||||
|
||||
class TestEmpty:
|
||||
def test_empty_categorical(self):
|
||||
ci = CategoricalIndex(["a", "b", "c"], ordered=True)
|
||||
dtype = ci.dtype
|
||||
|
||||
# case with int8 codes
|
||||
shape = (4,)
|
||||
result = Categorical._empty(shape, dtype=dtype)
|
||||
assert isinstance(result, Categorical)
|
||||
assert result.shape == shape
|
||||
assert result._ndarray.dtype == np.int8
|
||||
|
||||
# case where repr would segfault if we didn't override base implementation
|
||||
result = Categorical._empty((4096,), dtype=dtype)
|
||||
assert isinstance(result, Categorical)
|
||||
assert result.shape == (4096,)
|
||||
assert result._ndarray.dtype == np.int8
|
||||
repr(result)
|
||||
|
||||
# case with int16 codes
|
||||
ci = CategoricalIndex(list(range(512)) * 4, ordered=False)
|
||||
dtype = ci.dtype
|
||||
result = Categorical._empty(shape, dtype=dtype)
|
||||
assert isinstance(result, Categorical)
|
||||
assert result.shape == shape
|
||||
assert result._ndarray.dtype == np.int16
|
||||
|
||||
def test_empty_dt64tz(self):
|
||||
dti = date_range("2016-01-01", periods=2, tz="Asia/Tokyo")
|
||||
dtype = dti.dtype
|
||||
|
||||
shape = (0,)
|
||||
result = DatetimeArray._empty(shape, dtype=dtype)
|
||||
assert result.dtype == dtype
|
||||
assert isinstance(result, DatetimeArray)
|
||||
assert result.shape == shape
|
||||
|
||||
def test_empty_dt64(self):
|
||||
shape = (3, 9)
|
||||
result = DatetimeArray._empty(shape, dtype="datetime64[ns]")
|
||||
assert isinstance(result, DatetimeArray)
|
||||
assert result.shape == shape
|
||||
|
||||
def test_empty_td64(self):
|
||||
shape = (3, 9)
|
||||
result = TimedeltaArray._empty(shape, dtype="m8[ns]")
|
||||
assert isinstance(result, TimedeltaArray)
|
||||
assert result.shape == shape
|
||||
|
||||
def test_empty_pandas_array(self):
|
||||
arr = PandasArray(np.array([1, 2]))
|
||||
dtype = arr.dtype
|
||||
|
||||
shape = (3, 9)
|
||||
result = PandasArray._empty(shape, dtype=dtype)
|
||||
assert isinstance(result, PandasArray)
|
||||
assert result.dtype == dtype
|
||||
assert result.shape == shape
|
295
.venv/Lib/site-packages/pandas/tests/arrays/test_numpy.py
Normal file
295
.venv/Lib/site-packages/pandas/tests/arrays/test_numpy.py
Normal file
@ -0,0 +1,295 @@
|
||||
"""
|
||||
Additional tests for PandasArray that aren't covered by
|
||||
the interface tests.
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.core.dtypes.dtypes import PandasDtype
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.arrays import PandasArray
|
||||
|
||||
|
||||
@pytest.fixture(
|
||||
params=[
|
||||
np.array(["a", "b"], dtype=object),
|
||||
np.array([0, 1], dtype=float),
|
||||
np.array([0, 1], dtype=int),
|
||||
np.array([0, 1 + 2j], dtype=complex),
|
||||
np.array([True, False], dtype=bool),
|
||||
np.array([0, 1], dtype="datetime64[ns]"),
|
||||
np.array([0, 1], dtype="timedelta64[ns]"),
|
||||
]
|
||||
)
|
||||
def any_numpy_array(request):
|
||||
"""
|
||||
Parametrized fixture for NumPy arrays with different dtypes.
|
||||
|
||||
This excludes string and bytes.
|
||||
"""
|
||||
return request.param
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# PandasDtype
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtype, expected",
|
||||
[
|
||||
("bool", True),
|
||||
("int", True),
|
||||
("uint", True),
|
||||
("float", True),
|
||||
("complex", True),
|
||||
("str", False),
|
||||
("bytes", False),
|
||||
("datetime64[ns]", False),
|
||||
("object", False),
|
||||
("void", False),
|
||||
],
|
||||
)
|
||||
def test_is_numeric(dtype, expected):
|
||||
dtype = PandasDtype(dtype)
|
||||
assert dtype._is_numeric is expected
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtype, expected",
|
||||
[
|
||||
("bool", True),
|
||||
("int", False),
|
||||
("uint", False),
|
||||
("float", False),
|
||||
("complex", False),
|
||||
("str", False),
|
||||
("bytes", False),
|
||||
("datetime64[ns]", False),
|
||||
("object", False),
|
||||
("void", False),
|
||||
],
|
||||
)
|
||||
def test_is_boolean(dtype, expected):
|
||||
dtype = PandasDtype(dtype)
|
||||
assert dtype._is_boolean is expected
|
||||
|
||||
|
||||
def test_repr():
|
||||
dtype = PandasDtype(np.dtype("int64"))
|
||||
assert repr(dtype) == "PandasDtype('int64')"
|
||||
|
||||
|
||||
def test_constructor_from_string():
|
||||
result = PandasDtype.construct_from_string("int64")
|
||||
expected = PandasDtype(np.dtype("int64"))
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_dtype_univalent(any_numpy_dtype):
|
||||
dtype = PandasDtype(any_numpy_dtype)
|
||||
|
||||
result = PandasDtype(dtype)
|
||||
assert result == dtype
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Construction
|
||||
|
||||
|
||||
def test_constructor_no_coercion():
|
||||
with pytest.raises(ValueError, match="NumPy array"):
|
||||
PandasArray([1, 2, 3])
|
||||
|
||||
|
||||
def test_series_constructor_with_copy():
|
||||
ndarray = np.array([1, 2, 3])
|
||||
ser = pd.Series(PandasArray(ndarray), copy=True)
|
||||
|
||||
assert ser.values is not ndarray
|
||||
|
||||
|
||||
def test_series_constructor_with_astype():
|
||||
ndarray = np.array([1, 2, 3])
|
||||
result = pd.Series(PandasArray(ndarray), dtype="float64")
|
||||
expected = pd.Series([1.0, 2.0, 3.0], dtype="float64")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_from_sequence_dtype():
|
||||
arr = np.array([1, 2, 3], dtype="int64")
|
||||
result = PandasArray._from_sequence(arr, dtype="uint64")
|
||||
expected = PandasArray(np.array([1, 2, 3], dtype="uint64"))
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_constructor_copy():
|
||||
arr = np.array([0, 1])
|
||||
result = PandasArray(arr, copy=True)
|
||||
|
||||
assert not tm.shares_memory(result, arr)
|
||||
|
||||
|
||||
def test_constructor_with_data(any_numpy_array):
|
||||
nparr = any_numpy_array
|
||||
arr = PandasArray(nparr)
|
||||
assert arr.dtype.numpy_dtype == nparr.dtype
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Conversion
|
||||
|
||||
|
||||
def test_to_numpy():
|
||||
arr = PandasArray(np.array([1, 2, 3]))
|
||||
result = arr.to_numpy()
|
||||
assert result is arr._ndarray
|
||||
|
||||
result = arr.to_numpy(copy=True)
|
||||
assert result is not arr._ndarray
|
||||
|
||||
result = arr.to_numpy(dtype="f8")
|
||||
expected = np.array([1, 2, 3], dtype="f8")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Setitem
|
||||
|
||||
|
||||
def test_setitem_series():
|
||||
ser = pd.Series([1, 2, 3])
|
||||
ser.array[0] = 10
|
||||
expected = pd.Series([10, 2, 3])
|
||||
tm.assert_series_equal(ser, expected)
|
||||
|
||||
|
||||
def test_setitem(any_numpy_array):
|
||||
nparr = any_numpy_array
|
||||
arr = PandasArray(nparr, copy=True)
|
||||
|
||||
arr[0] = arr[1]
|
||||
nparr[0] = nparr[1]
|
||||
|
||||
tm.assert_numpy_array_equal(arr.to_numpy(), nparr)
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Reductions
|
||||
|
||||
|
||||
def test_bad_reduce_raises():
|
||||
arr = np.array([1, 2, 3], dtype="int64")
|
||||
arr = PandasArray(arr)
|
||||
msg = "cannot perform not_a_method with type int"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
arr._reduce(msg)
|
||||
|
||||
|
||||
def test_validate_reduction_keyword_args():
|
||||
arr = PandasArray(np.array([1, 2, 3]))
|
||||
msg = "the 'keepdims' parameter is not supported .*all"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr.all(keepdims=True)
|
||||
|
||||
|
||||
def test_np_max_nested_tuples():
|
||||
# case where checking in ufunc.nout works while checking for tuples
|
||||
# does not
|
||||
vals = [
|
||||
(("j", "k"), ("l", "m")),
|
||||
(("l", "m"), ("o", "p")),
|
||||
(("o", "p"), ("j", "k")),
|
||||
]
|
||||
ser = pd.Series(vals)
|
||||
arr = ser.array
|
||||
|
||||
assert arr.max() is arr[2]
|
||||
assert ser.max() is arr[2]
|
||||
|
||||
result = np.maximum.reduce(arr)
|
||||
assert result == arr[2]
|
||||
|
||||
result = np.maximum.reduce(ser)
|
||||
assert result == arr[2]
|
||||
|
||||
|
||||
def test_np_reduce_2d():
|
||||
raw = np.arange(12).reshape(4, 3)
|
||||
arr = PandasArray(raw)
|
||||
|
||||
res = np.maximum.reduce(arr, axis=0)
|
||||
tm.assert_extension_array_equal(res, arr[-1])
|
||||
|
||||
alt = arr.max(axis=0)
|
||||
tm.assert_extension_array_equal(alt, arr[-1])
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Ops
|
||||
|
||||
|
||||
@pytest.mark.parametrize("ufunc", [np.abs, np.negative, np.positive])
|
||||
def test_ufunc_unary(ufunc):
|
||||
arr = PandasArray(np.array([-1.0, 0.0, 1.0]))
|
||||
result = ufunc(arr)
|
||||
expected = PandasArray(ufunc(arr._ndarray))
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_ufunc():
|
||||
arr = PandasArray(np.array([-1.0, 0.0, 1.0]))
|
||||
|
||||
r1, r2 = np.divmod(arr, np.add(arr, 2))
|
||||
e1, e2 = np.divmod(arr._ndarray, np.add(arr._ndarray, 2))
|
||||
e1 = PandasArray(e1)
|
||||
e2 = PandasArray(e2)
|
||||
tm.assert_extension_array_equal(r1, e1)
|
||||
tm.assert_extension_array_equal(r2, e2)
|
||||
|
||||
|
||||
def test_basic_binop():
|
||||
# Just a basic smoke test. The EA interface tests exercise this
|
||||
# more thoroughly.
|
||||
x = PandasArray(np.array([1, 2, 3]))
|
||||
result = x + x
|
||||
expected = PandasArray(np.array([2, 4, 6]))
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("dtype", [None, object])
|
||||
def test_setitem_object_typecode(dtype):
|
||||
arr = PandasArray(np.array(["a", "b", "c"], dtype=dtype))
|
||||
arr[0] = "t"
|
||||
expected = PandasArray(np.array(["t", "b", "c"], dtype=dtype))
|
||||
tm.assert_extension_array_equal(arr, expected)
|
||||
|
||||
|
||||
def test_setitem_no_coercion():
|
||||
# https://github.com/pandas-dev/pandas/issues/28150
|
||||
arr = PandasArray(np.array([1, 2, 3]))
|
||||
with pytest.raises(ValueError, match="int"):
|
||||
arr[0] = "a"
|
||||
|
||||
# With a value that we do coerce, check that we coerce the value
|
||||
# and not the underlying array.
|
||||
arr[0] = 2.5
|
||||
assert isinstance(arr[0], (int, np.integer)), type(arr[0])
|
||||
|
||||
|
||||
def test_setitem_preserves_views():
|
||||
# GH#28150, see also extension test of the same name
|
||||
arr = PandasArray(np.array([1, 2, 3]))
|
||||
view1 = arr.view()
|
||||
view2 = arr[:]
|
||||
view3 = np.asarray(arr)
|
||||
|
||||
arr[0] = 9
|
||||
assert view1[0] == 9
|
||||
assert view2[0] == 9
|
||||
assert view3[0] == 9
|
||||
|
||||
arr[-1] = 2.5
|
||||
view1[-1] = 5
|
||||
assert arr[-1] == 5
|
162
.venv/Lib/site-packages/pandas/tests/arrays/test_period.py
Normal file
162
.venv/Lib/site-packages/pandas/tests/arrays/test_period.py
Normal file
@ -0,0 +1,162 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas._libs.tslibs import iNaT
|
||||
from pandas._libs.tslibs.period import IncompatibleFrequency
|
||||
|
||||
from pandas.core.dtypes.base import _registry as registry
|
||||
from pandas.core.dtypes.dtypes import PeriodDtype
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import (
|
||||
PeriodArray,
|
||||
period_array,
|
||||
)
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Dtype
|
||||
|
||||
|
||||
def test_registered():
|
||||
assert PeriodDtype in registry.dtypes
|
||||
result = registry.find("Period[D]")
|
||||
expected = PeriodDtype("D")
|
||||
assert result == expected
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# period_array
|
||||
|
||||
|
||||
def test_asi8():
|
||||
result = period_array(["2000", "2001", None], freq="D").asi8
|
||||
expected = np.array([10957, 11323, iNaT])
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_take_raises():
|
||||
arr = period_array(["2000", "2001"], freq="D")
|
||||
with pytest.raises(IncompatibleFrequency, match="freq"):
|
||||
arr.take([0, -1], allow_fill=True, fill_value=pd.Period("2000", freq="W"))
|
||||
|
||||
msg = "value should be a 'Period' or 'NaT'. Got 'str' instead"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
arr.take([0, -1], allow_fill=True, fill_value="foo")
|
||||
|
||||
|
||||
def test_fillna_raises():
|
||||
arr = period_array(["2000", "2001", "2002"], freq="D")
|
||||
with pytest.raises(ValueError, match="Length"):
|
||||
arr.fillna(arr[:2])
|
||||
|
||||
|
||||
def test_fillna_copies():
|
||||
arr = period_array(["2000", "2001", "2002"], freq="D")
|
||||
result = arr.fillna(pd.Period("2000", "D"))
|
||||
assert result is not arr
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# setitem
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"key, value, expected",
|
||||
[
|
||||
([0], pd.Period("2000", "D"), [10957, 1, 2]),
|
||||
([0], None, [iNaT, 1, 2]),
|
||||
([0], np.nan, [iNaT, 1, 2]),
|
||||
([0, 1, 2], pd.Period("2000", "D"), [10957] * 3),
|
||||
(
|
||||
[0, 1, 2],
|
||||
[pd.Period("2000", "D"), pd.Period("2001", "D"), pd.Period("2002", "D")],
|
||||
[10957, 11323, 11688],
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_setitem(key, value, expected):
|
||||
arr = PeriodArray(np.arange(3), freq="D")
|
||||
expected = PeriodArray(expected, freq="D")
|
||||
arr[key] = value
|
||||
tm.assert_period_array_equal(arr, expected)
|
||||
|
||||
|
||||
def test_setitem_raises_incompatible_freq():
|
||||
arr = PeriodArray(np.arange(3), freq="D")
|
||||
with pytest.raises(IncompatibleFrequency, match="freq"):
|
||||
arr[0] = pd.Period("2000", freq="A")
|
||||
|
||||
other = period_array(["2000", "2001"], freq="A")
|
||||
with pytest.raises(IncompatibleFrequency, match="freq"):
|
||||
arr[[0, 1]] = other
|
||||
|
||||
|
||||
def test_setitem_raises_length():
|
||||
arr = PeriodArray(np.arange(3), freq="D")
|
||||
with pytest.raises(ValueError, match="length"):
|
||||
arr[[0, 1]] = [pd.Period("2000", freq="D")]
|
||||
|
||||
|
||||
def test_setitem_raises_type():
|
||||
arr = PeriodArray(np.arange(3), freq="D")
|
||||
with pytest.raises(TypeError, match="int"):
|
||||
arr[0] = 1
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Ops
|
||||
|
||||
|
||||
def test_sub_period():
|
||||
arr = period_array(["2000", "2001"], freq="D")
|
||||
other = pd.Period("2000", freq="M")
|
||||
with pytest.raises(IncompatibleFrequency, match="freq"):
|
||||
arr - other
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Methods
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"other",
|
||||
[pd.Period("2000", freq="H"), period_array(["2000", "2001", "2000"], freq="H")],
|
||||
)
|
||||
def test_where_different_freq_raises(other):
|
||||
ser = pd.Series(period_array(["2000", "2001", "2002"], freq="D"))
|
||||
cond = np.array([True, False, True])
|
||||
with pytest.raises(IncompatibleFrequency, match="freq"):
|
||||
ser.where(cond, other)
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Printing
|
||||
|
||||
|
||||
def test_repr_small():
|
||||
arr = period_array(["2000", "2001"], freq="D")
|
||||
result = str(arr)
|
||||
expected = (
|
||||
"<PeriodArray>\n['2000-01-01', '2001-01-01']\nLength: 2, dtype: period[D]"
|
||||
)
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_repr_large():
|
||||
arr = period_array(["2000", "2001"] * 500, freq="D")
|
||||
result = str(arr)
|
||||
expected = (
|
||||
"<PeriodArray>\n"
|
||||
"['2000-01-01', '2001-01-01', '2000-01-01', '2001-01-01', "
|
||||
"'2000-01-01',\n"
|
||||
" '2001-01-01', '2000-01-01', '2001-01-01', '2000-01-01', "
|
||||
"'2001-01-01',\n"
|
||||
" ...\n"
|
||||
" '2000-01-01', '2001-01-01', '2000-01-01', '2001-01-01', "
|
||||
"'2000-01-01',\n"
|
||||
" '2001-01-01', '2000-01-01', '2001-01-01', '2000-01-01', "
|
||||
"'2001-01-01']\n"
|
||||
"Length: 1000, dtype: period[D]"
|
||||
)
|
||||
assert result == expected
|
126
.venv/Lib/site-packages/pandas/tests/arrays/test_timedeltas.py
Normal file
126
.venv/Lib/site-packages/pandas/tests/arrays/test_timedeltas.py
Normal file
@ -0,0 +1,126 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import Timedelta
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import TimedeltaArray
|
||||
|
||||
|
||||
class TestTimedeltaArray:
|
||||
@pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"])
|
||||
def test_astype_int(self, dtype):
|
||||
arr = TimedeltaArray._from_sequence([Timedelta("1H"), Timedelta("2H")])
|
||||
result = arr.astype(dtype)
|
||||
|
||||
if np.dtype(dtype).kind == "u":
|
||||
expected_dtype = np.dtype("uint64")
|
||||
else:
|
||||
expected_dtype = np.dtype("int64")
|
||||
expected = arr.astype(expected_dtype)
|
||||
|
||||
assert result.dtype == expected_dtype
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
def test_setitem_clears_freq(self):
|
||||
a = TimedeltaArray(pd.timedelta_range("1H", periods=2, freq="H"))
|
||||
a[0] = Timedelta("1H")
|
||||
assert a.freq is None
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"obj",
|
||||
[
|
||||
Timedelta(seconds=1),
|
||||
Timedelta(seconds=1).to_timedelta64(),
|
||||
Timedelta(seconds=1).to_pytimedelta(),
|
||||
],
|
||||
)
|
||||
def test_setitem_objects(self, obj):
|
||||
# make sure we accept timedelta64 and timedelta in addition to Timedelta
|
||||
tdi = pd.timedelta_range("2 Days", periods=4, freq="H")
|
||||
arr = TimedeltaArray(tdi, freq=tdi.freq)
|
||||
|
||||
arr[0] = obj
|
||||
assert arr[0] == Timedelta(seconds=1)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"other",
|
||||
[
|
||||
1,
|
||||
np.int64(1),
|
||||
1.0,
|
||||
np.datetime64("NaT"),
|
||||
pd.Timestamp("2021-01-01"),
|
||||
"invalid",
|
||||
np.arange(10, dtype="i8") * 24 * 3600 * 10**9,
|
||||
(np.arange(10) * 24 * 3600 * 10**9).view("datetime64[ns]"),
|
||||
pd.Timestamp("2021-01-01").to_period("D"),
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize("index", [True, False])
|
||||
def test_searchsorted_invalid_types(self, other, index):
|
||||
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
|
||||
arr = TimedeltaArray(data, freq="D")
|
||||
if index:
|
||||
arr = pd.Index(arr)
|
||||
|
||||
msg = "|".join(
|
||||
[
|
||||
"searchsorted requires compatible dtype or scalar",
|
||||
"value should be a 'Timedelta', 'NaT', or array of those. Got",
|
||||
]
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
arr.searchsorted(other)
|
||||
|
||||
|
||||
class TestUnaryOps:
|
||||
def test_abs(self):
|
||||
vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
|
||||
arr = TimedeltaArray(vals)
|
||||
|
||||
evals = np.array([3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
|
||||
expected = TimedeltaArray(evals)
|
||||
|
||||
result = abs(arr)
|
||||
tm.assert_timedelta_array_equal(result, expected)
|
||||
|
||||
result2 = np.abs(arr)
|
||||
tm.assert_timedelta_array_equal(result2, expected)
|
||||
|
||||
def test_pos(self):
|
||||
vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
|
||||
arr = TimedeltaArray(vals)
|
||||
|
||||
result = +arr
|
||||
tm.assert_timedelta_array_equal(result, arr)
|
||||
assert not tm.shares_memory(result, arr)
|
||||
|
||||
result2 = np.positive(arr)
|
||||
tm.assert_timedelta_array_equal(result2, arr)
|
||||
assert not tm.shares_memory(result2, arr)
|
||||
|
||||
def test_neg(self):
|
||||
vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
|
||||
arr = TimedeltaArray(vals)
|
||||
|
||||
evals = np.array([3600 * 10**9, "NaT", -7200 * 10**9], dtype="m8[ns]")
|
||||
expected = TimedeltaArray(evals)
|
||||
|
||||
result = -arr
|
||||
tm.assert_timedelta_array_equal(result, expected)
|
||||
|
||||
result2 = np.negative(arr)
|
||||
tm.assert_timedelta_array_equal(result2, expected)
|
||||
|
||||
def test_neg_freq(self):
|
||||
tdi = pd.timedelta_range("2 Days", periods=4, freq="H")
|
||||
arr = TimedeltaArray(tdi, freq=tdi.freq)
|
||||
|
||||
expected = TimedeltaArray(-tdi._data, freq=-tdi.freq)
|
||||
|
||||
result = -arr
|
||||
tm.assert_timedelta_array_equal(result, expected)
|
||||
|
||||
result2 = np.negative(arr)
|
||||
tm.assert_timedelta_array_equal(result2, expected)
|
@ -0,0 +1,63 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.core.arrays import TimedeltaArray
|
||||
|
||||
|
||||
class TestTimedeltaArrayConstructor:
|
||||
def test_only_1dim_accepted(self):
|
||||
# GH#25282
|
||||
arr = np.array([0, 1, 2, 3], dtype="m8[h]").astype("m8[ns]")
|
||||
|
||||
with pytest.raises(ValueError, match="Only 1-dimensional"):
|
||||
# 3-dim, we allow 2D to sneak in for ops purposes GH#29853
|
||||
TimedeltaArray(arr.reshape(2, 2, 1))
|
||||
|
||||
with pytest.raises(ValueError, match="Only 1-dimensional"):
|
||||
# 0-dim
|
||||
TimedeltaArray(arr[[0]].squeeze())
|
||||
|
||||
def test_freq_validation(self):
|
||||
# ensure that the public constructor cannot create an invalid instance
|
||||
arr = np.array([0, 0, 1], dtype=np.int64) * 3600 * 10**9
|
||||
|
||||
msg = (
|
||||
"Inferred frequency None from passed values does not "
|
||||
"conform to passed frequency D"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
TimedeltaArray(arr.view("timedelta64[ns]"), freq="D")
|
||||
|
||||
def test_non_array_raises(self):
|
||||
with pytest.raises(ValueError, match="list"):
|
||||
TimedeltaArray([1, 2, 3])
|
||||
|
||||
def test_other_type_raises(self):
|
||||
with pytest.raises(ValueError, match="dtype bool cannot be converted"):
|
||||
TimedeltaArray(np.array([1, 2, 3], dtype="bool"))
|
||||
|
||||
def test_incorrect_dtype_raises(self):
|
||||
# TODO: why TypeError for 'category' but ValueError for i8?
|
||||
with pytest.raises(
|
||||
ValueError, match=r"category cannot be converted to timedelta64\[ns\]"
|
||||
):
|
||||
TimedeltaArray(np.array([1, 2, 3], dtype="i8"), dtype="category")
|
||||
|
||||
with pytest.raises(
|
||||
ValueError, match=r"dtype int64 cannot be converted to timedelta64\[ns\]"
|
||||
):
|
||||
TimedeltaArray(np.array([1, 2, 3], dtype="i8"), dtype=np.dtype("int64"))
|
||||
|
||||
def test_copy(self):
|
||||
data = np.array([1, 2, 3], dtype="m8[ns]")
|
||||
arr = TimedeltaArray(data, copy=False)
|
||||
assert arr._data is data
|
||||
|
||||
arr = TimedeltaArray(data, copy=True)
|
||||
assert arr._data is not data
|
||||
assert arr._data.base is not data
|
||||
|
||||
def test_from_sequence_dtype(self):
|
||||
msg = "dtype .*object.* cannot be converted to timedelta64"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
TimedeltaArray._from_sequence([], dtype=object)
|
@ -0,0 +1,214 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import Timedelta
|
||||
import pandas._testing as tm
|
||||
from pandas.core import nanops
|
||||
from pandas.core.arrays import TimedeltaArray
|
||||
|
||||
|
||||
class TestReductions:
|
||||
@pytest.mark.parametrize("name", ["std", "min", "max", "median", "mean"])
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_reductions_empty(self, name, skipna):
|
||||
tdi = pd.TimedeltaIndex([])
|
||||
arr = tdi.array
|
||||
|
||||
result = getattr(tdi, name)(skipna=skipna)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = getattr(arr, name)(skipna=skipna)
|
||||
assert result is pd.NaT
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_sum_empty(self, skipna):
|
||||
tdi = pd.TimedeltaIndex([])
|
||||
arr = tdi.array
|
||||
|
||||
result = tdi.sum(skipna=skipna)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == Timedelta(0)
|
||||
|
||||
result = arr.sum(skipna=skipna)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == Timedelta(0)
|
||||
|
||||
def test_min_max(self):
|
||||
arr = TimedeltaArray._from_sequence(["3H", "3H", "NaT", "2H", "5H", "4H"])
|
||||
|
||||
result = arr.min()
|
||||
expected = Timedelta("2H")
|
||||
assert result == expected
|
||||
|
||||
result = arr.max()
|
||||
expected = Timedelta("5H")
|
||||
assert result == expected
|
||||
|
||||
result = arr.min(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = arr.max(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
def test_sum(self):
|
||||
tdi = pd.TimedeltaIndex(["3H", "3H", "NaT", "2H", "5H", "4H"])
|
||||
arr = tdi.array
|
||||
|
||||
result = arr.sum(skipna=True)
|
||||
expected = Timedelta(hours=17)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
result = tdi.sum(skipna=True)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
result = arr.sum(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = tdi.sum(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = arr.sum(min_count=9)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = tdi.sum(min_count=9)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = arr.sum(min_count=1)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
result = tdi.sum(min_count=1)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
def test_npsum(self):
|
||||
# GH#25282, GH#25335 np.sum should return a Timedelta, not timedelta64
|
||||
tdi = pd.TimedeltaIndex(["3H", "3H", "2H", "5H", "4H"])
|
||||
arr = tdi.array
|
||||
|
||||
result = np.sum(tdi)
|
||||
expected = Timedelta(hours=17)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
result = np.sum(arr)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
def test_sum_2d_skipna_false(self):
|
||||
arr = np.arange(8).astype(np.int64).view("m8[s]").astype("m8[ns]").reshape(4, 2)
|
||||
arr[-1, -1] = "Nat"
|
||||
|
||||
tda = TimedeltaArray(arr)
|
||||
|
||||
result = tda.sum(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = tda.sum(axis=0, skipna=False)
|
||||
expected = pd.TimedeltaIndex([Timedelta(seconds=12), pd.NaT])._values
|
||||
tm.assert_timedelta_array_equal(result, expected)
|
||||
|
||||
result = tda.sum(axis=1, skipna=False)
|
||||
expected = pd.TimedeltaIndex(
|
||||
[
|
||||
Timedelta(seconds=1),
|
||||
Timedelta(seconds=5),
|
||||
Timedelta(seconds=9),
|
||||
pd.NaT,
|
||||
]
|
||||
)._values
|
||||
tm.assert_timedelta_array_equal(result, expected)
|
||||
|
||||
# Adding a Timestamp makes this a test for DatetimeArray.std
|
||||
@pytest.mark.parametrize(
|
||||
"add",
|
||||
[
|
||||
Timedelta(0),
|
||||
pd.Timestamp("2021-01-01"),
|
||||
pd.Timestamp("2021-01-01", tz="UTC"),
|
||||
pd.Timestamp("2021-01-01", tz="Asia/Tokyo"),
|
||||
],
|
||||
)
|
||||
def test_std(self, add):
|
||||
tdi = pd.TimedeltaIndex(["0H", "4H", "NaT", "4H", "0H", "2H"]) + add
|
||||
arr = tdi.array
|
||||
|
||||
result = arr.std(skipna=True)
|
||||
expected = Timedelta(hours=2)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
result = tdi.std(skipna=True)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
if getattr(arr, "tz", None) is None:
|
||||
result = nanops.nanstd(np.asarray(arr), skipna=True)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
result = arr.std(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = tdi.std(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
if getattr(arr, "tz", None) is None:
|
||||
result = nanops.nanstd(np.asarray(arr), skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
def test_median(self):
|
||||
tdi = pd.TimedeltaIndex(["0H", "3H", "NaT", "5H06m", "0H", "2H"])
|
||||
arr = tdi.array
|
||||
|
||||
result = arr.median(skipna=True)
|
||||
expected = Timedelta(hours=2)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
result = tdi.median(skipna=True)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
result = arr.median(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = tdi.median(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
def test_mean(self):
|
||||
tdi = pd.TimedeltaIndex(["0H", "3H", "NaT", "5H06m", "0H", "2H"])
|
||||
arr = tdi._data
|
||||
|
||||
# manually verified result
|
||||
expected = Timedelta(arr.dropna()._ndarray.mean())
|
||||
|
||||
result = arr.mean()
|
||||
assert result == expected
|
||||
result = arr.mean(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = arr.dropna().mean(skipna=False)
|
||||
assert result == expected
|
||||
|
||||
result = arr.mean(axis=0)
|
||||
assert result == expected
|
||||
|
||||
def test_mean_2d(self):
|
||||
tdi = pd.timedelta_range("14 days", periods=6)
|
||||
tda = tdi._data.reshape(3, 2)
|
||||
|
||||
result = tda.mean(axis=0)
|
||||
expected = tda[1]
|
||||
tm.assert_timedelta_array_equal(result, expected)
|
||||
|
||||
result = tda.mean(axis=1)
|
||||
expected = tda[:, 0] + Timedelta(hours=12)
|
||||
tm.assert_timedelta_array_equal(result, expected)
|
||||
|
||||
result = tda.mean(axis=None)
|
||||
expected = tdi.mean()
|
||||
assert result == expected
|
Reference in New Issue
Block a user