mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-07-03 06:31:28 +00:00
first commit
This commit is contained in:
@ -0,0 +1,63 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.core.arrays import TimedeltaArray
|
||||
|
||||
|
||||
class TestTimedeltaArrayConstructor:
|
||||
def test_only_1dim_accepted(self):
|
||||
# GH#25282
|
||||
arr = np.array([0, 1, 2, 3], dtype="m8[h]").astype("m8[ns]")
|
||||
|
||||
with pytest.raises(ValueError, match="Only 1-dimensional"):
|
||||
# 3-dim, we allow 2D to sneak in for ops purposes GH#29853
|
||||
TimedeltaArray(arr.reshape(2, 2, 1))
|
||||
|
||||
with pytest.raises(ValueError, match="Only 1-dimensional"):
|
||||
# 0-dim
|
||||
TimedeltaArray(arr[[0]].squeeze())
|
||||
|
||||
def test_freq_validation(self):
|
||||
# ensure that the public constructor cannot create an invalid instance
|
||||
arr = np.array([0, 0, 1], dtype=np.int64) * 3600 * 10**9
|
||||
|
||||
msg = (
|
||||
"Inferred frequency None from passed values does not "
|
||||
"conform to passed frequency D"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
TimedeltaArray(arr.view("timedelta64[ns]"), freq="D")
|
||||
|
||||
def test_non_array_raises(self):
|
||||
with pytest.raises(ValueError, match="list"):
|
||||
TimedeltaArray([1, 2, 3])
|
||||
|
||||
def test_other_type_raises(self):
|
||||
with pytest.raises(ValueError, match="dtype bool cannot be converted"):
|
||||
TimedeltaArray(np.array([1, 2, 3], dtype="bool"))
|
||||
|
||||
def test_incorrect_dtype_raises(self):
|
||||
# TODO: why TypeError for 'category' but ValueError for i8?
|
||||
with pytest.raises(
|
||||
ValueError, match=r"category cannot be converted to timedelta64\[ns\]"
|
||||
):
|
||||
TimedeltaArray(np.array([1, 2, 3], dtype="i8"), dtype="category")
|
||||
|
||||
with pytest.raises(
|
||||
ValueError, match=r"dtype int64 cannot be converted to timedelta64\[ns\]"
|
||||
):
|
||||
TimedeltaArray(np.array([1, 2, 3], dtype="i8"), dtype=np.dtype("int64"))
|
||||
|
||||
def test_copy(self):
|
||||
data = np.array([1, 2, 3], dtype="m8[ns]")
|
||||
arr = TimedeltaArray(data, copy=False)
|
||||
assert arr._data is data
|
||||
|
||||
arr = TimedeltaArray(data, copy=True)
|
||||
assert arr._data is not data
|
||||
assert arr._data.base is not data
|
||||
|
||||
def test_from_sequence_dtype(self):
|
||||
msg = "dtype .*object.* cannot be converted to timedelta64"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
TimedeltaArray._from_sequence([], dtype=object)
|
@ -0,0 +1,214 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import Timedelta
|
||||
import pandas._testing as tm
|
||||
from pandas.core import nanops
|
||||
from pandas.core.arrays import TimedeltaArray
|
||||
|
||||
|
||||
class TestReductions:
|
||||
@pytest.mark.parametrize("name", ["std", "min", "max", "median", "mean"])
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_reductions_empty(self, name, skipna):
|
||||
tdi = pd.TimedeltaIndex([])
|
||||
arr = tdi.array
|
||||
|
||||
result = getattr(tdi, name)(skipna=skipna)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = getattr(arr, name)(skipna=skipna)
|
||||
assert result is pd.NaT
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_sum_empty(self, skipna):
|
||||
tdi = pd.TimedeltaIndex([])
|
||||
arr = tdi.array
|
||||
|
||||
result = tdi.sum(skipna=skipna)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == Timedelta(0)
|
||||
|
||||
result = arr.sum(skipna=skipna)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == Timedelta(0)
|
||||
|
||||
def test_min_max(self):
|
||||
arr = TimedeltaArray._from_sequence(["3H", "3H", "NaT", "2H", "5H", "4H"])
|
||||
|
||||
result = arr.min()
|
||||
expected = Timedelta("2H")
|
||||
assert result == expected
|
||||
|
||||
result = arr.max()
|
||||
expected = Timedelta("5H")
|
||||
assert result == expected
|
||||
|
||||
result = arr.min(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = arr.max(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
def test_sum(self):
|
||||
tdi = pd.TimedeltaIndex(["3H", "3H", "NaT", "2H", "5H", "4H"])
|
||||
arr = tdi.array
|
||||
|
||||
result = arr.sum(skipna=True)
|
||||
expected = Timedelta(hours=17)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
result = tdi.sum(skipna=True)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
result = arr.sum(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = tdi.sum(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = arr.sum(min_count=9)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = tdi.sum(min_count=9)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = arr.sum(min_count=1)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
result = tdi.sum(min_count=1)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
def test_npsum(self):
|
||||
# GH#25282, GH#25335 np.sum should return a Timedelta, not timedelta64
|
||||
tdi = pd.TimedeltaIndex(["3H", "3H", "2H", "5H", "4H"])
|
||||
arr = tdi.array
|
||||
|
||||
result = np.sum(tdi)
|
||||
expected = Timedelta(hours=17)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
result = np.sum(arr)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
def test_sum_2d_skipna_false(self):
|
||||
arr = np.arange(8).astype(np.int64).view("m8[s]").astype("m8[ns]").reshape(4, 2)
|
||||
arr[-1, -1] = "Nat"
|
||||
|
||||
tda = TimedeltaArray(arr)
|
||||
|
||||
result = tda.sum(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = tda.sum(axis=0, skipna=False)
|
||||
expected = pd.TimedeltaIndex([Timedelta(seconds=12), pd.NaT])._values
|
||||
tm.assert_timedelta_array_equal(result, expected)
|
||||
|
||||
result = tda.sum(axis=1, skipna=False)
|
||||
expected = pd.TimedeltaIndex(
|
||||
[
|
||||
Timedelta(seconds=1),
|
||||
Timedelta(seconds=5),
|
||||
Timedelta(seconds=9),
|
||||
pd.NaT,
|
||||
]
|
||||
)._values
|
||||
tm.assert_timedelta_array_equal(result, expected)
|
||||
|
||||
# Adding a Timestamp makes this a test for DatetimeArray.std
|
||||
@pytest.mark.parametrize(
|
||||
"add",
|
||||
[
|
||||
Timedelta(0),
|
||||
pd.Timestamp("2021-01-01"),
|
||||
pd.Timestamp("2021-01-01", tz="UTC"),
|
||||
pd.Timestamp("2021-01-01", tz="Asia/Tokyo"),
|
||||
],
|
||||
)
|
||||
def test_std(self, add):
|
||||
tdi = pd.TimedeltaIndex(["0H", "4H", "NaT", "4H", "0H", "2H"]) + add
|
||||
arr = tdi.array
|
||||
|
||||
result = arr.std(skipna=True)
|
||||
expected = Timedelta(hours=2)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
result = tdi.std(skipna=True)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
if getattr(arr, "tz", None) is None:
|
||||
result = nanops.nanstd(np.asarray(arr), skipna=True)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
result = arr.std(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = tdi.std(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
if getattr(arr, "tz", None) is None:
|
||||
result = nanops.nanstd(np.asarray(arr), skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
def test_median(self):
|
||||
tdi = pd.TimedeltaIndex(["0H", "3H", "NaT", "5H06m", "0H", "2H"])
|
||||
arr = tdi.array
|
||||
|
||||
result = arr.median(skipna=True)
|
||||
expected = Timedelta(hours=2)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
result = tdi.median(skipna=True)
|
||||
assert isinstance(result, Timedelta)
|
||||
assert result == expected
|
||||
|
||||
result = arr.median(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = tdi.median(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
def test_mean(self):
|
||||
tdi = pd.TimedeltaIndex(["0H", "3H", "NaT", "5H06m", "0H", "2H"])
|
||||
arr = tdi._data
|
||||
|
||||
# manually verified result
|
||||
expected = Timedelta(arr.dropna()._ndarray.mean())
|
||||
|
||||
result = arr.mean()
|
||||
assert result == expected
|
||||
result = arr.mean(skipna=False)
|
||||
assert result is pd.NaT
|
||||
|
||||
result = arr.dropna().mean(skipna=False)
|
||||
assert result == expected
|
||||
|
||||
result = arr.mean(axis=0)
|
||||
assert result == expected
|
||||
|
||||
def test_mean_2d(self):
|
||||
tdi = pd.timedelta_range("14 days", periods=6)
|
||||
tda = tdi._data.reshape(3, 2)
|
||||
|
||||
result = tda.mean(axis=0)
|
||||
expected = tda[1]
|
||||
tm.assert_timedelta_array_equal(result, expected)
|
||||
|
||||
result = tda.mean(axis=1)
|
||||
expected = tda[:, 0] + Timedelta(hours=12)
|
||||
tm.assert_timedelta_array_equal(result, expected)
|
||||
|
||||
result = tda.mean(axis=None)
|
||||
expected = tdi.mean()
|
||||
assert result == expected
|
Reference in New Issue
Block a user