first commit

This commit is contained in:
Ayxan
2022-05-23 00:16:32 +04:00
commit d660f2a4ca
24786 changed files with 4428337 additions and 0 deletions

View File

@ -0,0 +1,225 @@
"""
Rudimentary Apache Arrow-backed ExtensionArray.
At the moment, just a boolean array / type is implemented.
Eventually, we'll want to parametrize the type and support
multiple dtypes. Not all methods are implemented yet, and the
current implementation is not efficient.
"""
from __future__ import annotations
import copy
import itertools
import operator
import numpy as np
import pyarrow as pa
from pandas._typing import type_t
import pandas as pd
from pandas.api.extensions import (
ExtensionArray,
ExtensionDtype,
register_extension_dtype,
take,
)
from pandas.api.types import is_scalar
from pandas.core.arraylike import OpsMixin
from pandas.core.construction import extract_array
@register_extension_dtype
class ArrowBoolDtype(ExtensionDtype):
type = np.bool_
kind = "b"
name = "arrow_bool"
na_value = pa.NULL
@classmethod
def construct_array_type(cls) -> type_t[ArrowBoolArray]:
"""
Return the array type associated with this dtype.
Returns
-------
type
"""
return ArrowBoolArray
@property
def _is_boolean(self) -> bool:
return True
@register_extension_dtype
class ArrowStringDtype(ExtensionDtype):
type = str
kind = "U"
name = "arrow_string"
na_value = pa.NULL
@classmethod
def construct_array_type(cls) -> type_t[ArrowStringArray]:
"""
Return the array type associated with this dtype.
Returns
-------
type
"""
return ArrowStringArray
class ArrowExtensionArray(OpsMixin, ExtensionArray):
_data: pa.ChunkedArray
@classmethod
def from_scalars(cls, values):
if isinstance(values, cls):
# in particular for empty cases the pa.array(np.asarray(...))
# does not round-trip
return cls(values._data)
elif not len(values):
if isinstance(values, list):
dtype = bool if cls is ArrowBoolArray else str
values = np.array([], dtype=dtype)
arr = pa.chunked_array([pa.array(np.asarray(values))])
return cls(arr)
@classmethod
def from_array(cls, arr):
assert isinstance(arr, pa.Array)
return cls(pa.chunked_array([arr]))
@classmethod
def _from_sequence(cls, scalars, dtype=None, copy=False):
return cls.from_scalars(scalars)
def __repr__(self):
return f"{type(self).__name__}({repr(self._data)})"
def __contains__(self, obj) -> bool:
if obj is None or obj is self.dtype.na_value:
# None -> EA.__contains__ only checks for self._dtype.na_value, not
# any compatible NA value.
# self.dtype.na_value -> <pa.NullScalar:None> isn't recognized by pd.isna
return bool(self.isna().any())
return bool(super().__contains__(obj))
def __getitem__(self, item):
if is_scalar(item):
return self._data.to_pandas()[item]
else:
vals = self._data.to_pandas()[item]
return type(self).from_scalars(vals)
def __len__(self):
return len(self._data)
def astype(self, dtype, copy=True):
# needed to fix this astype for the Series constructor.
if isinstance(dtype, type(self.dtype)) and dtype == self.dtype:
if copy:
return self.copy()
return self
return super().astype(dtype, copy)
@property
def dtype(self):
return self._dtype
def _logical_method(self, other, op):
if not isinstance(other, type(self)):
raise NotImplementedError()
result = op(np.array(self._data), np.array(other._data))
return ArrowBoolArray(
pa.chunked_array([pa.array(result, mask=pd.isna(self._data.to_pandas()))])
)
def __eq__(self, other):
if not isinstance(other, type(self)):
# TODO: use some pyarrow function here?
return np.asarray(self).__eq__(other)
return self._logical_method(other, operator.eq)
@property
def nbytes(self) -> int:
return sum(
x.size
for chunk in self._data.chunks
for x in chunk.buffers()
if x is not None
)
def isna(self):
nas = pd.isna(self._data.to_pandas())
return type(self).from_scalars(nas)
def take(self, indices, allow_fill=False, fill_value=None):
data = self._data.to_pandas()
data = extract_array(data, extract_numpy=True)
if allow_fill and fill_value is None:
fill_value = self.dtype.na_value
result = take(data, indices, fill_value=fill_value, allow_fill=allow_fill)
return self._from_sequence(result, dtype=self.dtype)
def copy(self):
return type(self)(copy.copy(self._data))
@classmethod
def _concat_same_type(cls, to_concat):
chunks = list(itertools.chain.from_iterable(x._data.chunks for x in to_concat))
arr = pa.chunked_array(chunks)
return cls(arr)
def __invert__(self):
return type(self).from_scalars(~self._data.to_pandas())
def _reduce(self, name: str, *, skipna: bool = True, **kwargs):
if skipna:
arr = self[~self.isna()]
else:
arr = self
try:
op = getattr(arr, name)
except AttributeError as err:
raise TypeError from err
return op(**kwargs)
def any(self, axis=0, out=None):
# Explicitly return a plain bool to reproduce GH-34660
return bool(self._data.to_pandas().any())
def all(self, axis=0, out=None):
# Explicitly return a plain bool to reproduce GH-34660
return bool(self._data.to_pandas().all())
class ArrowBoolArray(ArrowExtensionArray):
def __init__(self, values):
if not isinstance(values, pa.ChunkedArray):
raise ValueError
assert values.type == pa.bool_()
self._data = values
self._dtype = ArrowBoolDtype()
class ArrowStringArray(ArrowExtensionArray):
def __init__(self, values):
if not isinstance(values, pa.ChunkedArray):
raise ValueError
assert values.type == pa.string()
self._data = values
self._dtype = ArrowStringDtype()

View File

@ -0,0 +1,113 @@
import numpy as np
import pytest
from pandas.compat import (
is_ci_environment,
is_platform_windows,
)
import pandas as pd
import pandas._testing as tm
from pandas.api.types import is_bool_dtype
from pandas.tests.extension import base
pytest.importorskip("pyarrow", minversion="1.0.1")
from pandas.tests.extension.arrow.arrays import ( # isort:skip
ArrowBoolArray,
ArrowBoolDtype,
)
@pytest.fixture
def dtype():
return ArrowBoolDtype()
@pytest.fixture
def data():
values = np.random.randint(0, 2, size=100, dtype=bool)
values[1] = ~values[0]
return ArrowBoolArray.from_scalars(values)
@pytest.fixture
def data_missing():
return ArrowBoolArray.from_scalars([None, True])
def test_basic_equals(data):
# https://github.com/pandas-dev/pandas/issues/34660
assert pd.Series(data).equals(pd.Series(data))
class BaseArrowTests:
pass
class TestDtype(BaseArrowTests, base.BaseDtypeTests):
pass
class TestInterface(BaseArrowTests, base.BaseInterfaceTests):
def test_copy(self, data):
# __setitem__ does not work, so we only have a smoke-test
data.copy()
def test_view(self, data):
# __setitem__ does not work, so we only have a smoke-test
data.view()
@pytest.mark.xfail(
raises=AssertionError,
reason="Doesn't recognize data._na_value as NA",
)
def test_contains(self, data, data_missing):
super().test_contains(data, data_missing)
class TestConstructors(BaseArrowTests, base.BaseConstructorsTests):
# seems like some bug in isna on empty BoolArray returning floats.
@pytest.mark.xfail(reason="bad is-na for empty data")
def test_from_sequence_from_cls(self, data):
super().test_from_sequence_from_cls(data)
@pytest.mark.xfail(reason="pa.NULL is not recognised as scalar, GH-33899")
def test_series_constructor_no_data_with_index(self, dtype, na_value):
# pyarrow.lib.ArrowInvalid: only handle 1-dimensional arrays
super().test_series_constructor_no_data_with_index(dtype, na_value)
@pytest.mark.xfail(reason="pa.NULL is not recognised as scalar, GH-33899")
def test_series_constructor_scalar_na_with_index(self, dtype, na_value):
# pyarrow.lib.ArrowInvalid: only handle 1-dimensional arrays
super().test_series_constructor_scalar_na_with_index(dtype, na_value)
@pytest.mark.xfail(reason="ufunc 'invert' not supported for the input types")
def test_construct_empty_dataframe(self, dtype):
super().test_construct_empty_dataframe(dtype)
@pytest.mark.xfail(reason="_from_sequence ignores dtype keyword")
def test_empty(self, dtype):
super().test_empty(dtype)
class TestReduce(base.BaseNoReduceTests):
def test_reduce_series_boolean(self):
pass
@pytest.mark.skipif(
is_ci_environment() and is_platform_windows(),
reason="Causes stack overflow on Windows CI",
)
class TestReduceBoolean(base.BaseBooleanReduceTests):
pass
def test_is_bool_dtype(data):
assert is_bool_dtype(data)
assert pd.core.common.is_bool_indexer(data)
s = pd.Series(range(len(data)))
result = s[data]
expected = s[np.asarray(data)]
tm.assert_series_equal(result, expected)

View File

@ -0,0 +1,12 @@
import pytest
import pandas as pd
pytest.importorskip("pyarrow", minversion="1.0.0")
def test_constructor_from_list():
# GH 27673
result = pd.Series(["E"], dtype=pd.StringDtype(storage="pyarrow"))
assert isinstance(result.dtype, pd.StringDtype)
assert result.dtype.storage == "pyarrow"

View File

@ -0,0 +1,60 @@
from __future__ import annotations
import datetime
import pytest
from pandas._typing import type_t
import pandas as pd
from pandas.api.extensions import (
ExtensionDtype,
register_extension_dtype,
)
pytest.importorskip("pyarrow", minversion="1.0.1")
import pyarrow as pa # isort:skip
from pandas.tests.extension.arrow.arrays import ArrowExtensionArray # isort:skip
@register_extension_dtype
class ArrowTimestampUSDtype(ExtensionDtype):
type = datetime.datetime
kind = "M"
name = "arrow_timestamp_us"
na_value = pa.NULL
@classmethod
def construct_array_type(cls) -> type_t[ArrowTimestampUSArray]:
"""
Return the array type associated with this dtype.
Returns
-------
type
"""
return ArrowTimestampUSArray
class ArrowTimestampUSArray(ArrowExtensionArray):
def __init__(self, values):
if not isinstance(values, pa.ChunkedArray):
raise ValueError
assert values.type == pa.timestamp("us")
self._data = values
self._dtype = ArrowTimestampUSDtype()
def test_constructor_extensionblock():
# GH 34986
pd.DataFrame(
{
"timestamp": ArrowTimestampUSArray.from_scalars(
[None, datetime.datetime(2010, 9, 8, 7, 6, 5, 4)]
)
}
)