mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-07-04 15:17:14 +00:00
first commit
This commit is contained in:
160
.venv/Lib/site-packages/pandas/tests/indexes/multi/test_join.py
Normal file
160
.venv/Lib/site-packages/pandas/tests/indexes/multi/test_join.py
Normal file
@ -0,0 +1,160 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
Index,
|
||||
Interval,
|
||||
MultiIndex,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"other", [Index(["three", "one", "two"]), Index(["one"]), Index(["one", "three"])]
|
||||
)
|
||||
def test_join_level(idx, other, join_type):
|
||||
join_index, lidx, ridx = other.join(
|
||||
idx, how=join_type, level="second", return_indexers=True
|
||||
)
|
||||
|
||||
exp_level = other.join(idx.levels[1], how=join_type)
|
||||
assert join_index.levels[0].equals(idx.levels[0])
|
||||
assert join_index.levels[1].equals(exp_level)
|
||||
|
||||
# pare down levels
|
||||
mask = np.array([x[1] in exp_level for x in idx], dtype=bool)
|
||||
exp_values = idx.values[mask]
|
||||
tm.assert_numpy_array_equal(join_index.values, exp_values)
|
||||
|
||||
if join_type in ("outer", "inner"):
|
||||
join_index2, ridx2, lidx2 = idx.join(
|
||||
other, how=join_type, level="second", return_indexers=True
|
||||
)
|
||||
|
||||
assert join_index.equals(join_index2)
|
||||
tm.assert_numpy_array_equal(lidx, lidx2)
|
||||
tm.assert_numpy_array_equal(ridx, ridx2)
|
||||
tm.assert_numpy_array_equal(join_index2.values, exp_values)
|
||||
|
||||
|
||||
def test_join_level_corner_case(idx):
|
||||
# some corner cases
|
||||
index = Index(["three", "one", "two"])
|
||||
result = index.join(idx, level="second")
|
||||
assert isinstance(result, MultiIndex)
|
||||
|
||||
with pytest.raises(TypeError, match="Join.*MultiIndex.*ambiguous"):
|
||||
idx.join(idx, level=1)
|
||||
|
||||
|
||||
def test_join_self(idx, join_type):
|
||||
joined = idx.join(idx, how=join_type)
|
||||
tm.assert_index_equal(joined, idx)
|
||||
|
||||
|
||||
def test_join_multi():
|
||||
# GH 10665
|
||||
midx = MultiIndex.from_product([np.arange(4), np.arange(4)], names=["a", "b"])
|
||||
idx = Index([1, 2, 5], name="b")
|
||||
|
||||
# inner
|
||||
jidx, lidx, ridx = midx.join(idx, how="inner", return_indexers=True)
|
||||
exp_idx = MultiIndex.from_product([np.arange(4), [1, 2]], names=["a", "b"])
|
||||
exp_lidx = np.array([1, 2, 5, 6, 9, 10, 13, 14], dtype=np.intp)
|
||||
exp_ridx = np.array([0, 1, 0, 1, 0, 1, 0, 1], dtype=np.intp)
|
||||
tm.assert_index_equal(jidx, exp_idx)
|
||||
tm.assert_numpy_array_equal(lidx, exp_lidx)
|
||||
tm.assert_numpy_array_equal(ridx, exp_ridx)
|
||||
# flip
|
||||
jidx, ridx, lidx = idx.join(midx, how="inner", return_indexers=True)
|
||||
tm.assert_index_equal(jidx, exp_idx)
|
||||
tm.assert_numpy_array_equal(lidx, exp_lidx)
|
||||
tm.assert_numpy_array_equal(ridx, exp_ridx)
|
||||
|
||||
# keep MultiIndex
|
||||
jidx, lidx, ridx = midx.join(idx, how="left", return_indexers=True)
|
||||
exp_ridx = np.array(
|
||||
[-1, 0, 1, -1, -1, 0, 1, -1, -1, 0, 1, -1, -1, 0, 1, -1], dtype=np.intp
|
||||
)
|
||||
tm.assert_index_equal(jidx, midx)
|
||||
assert lidx is None
|
||||
tm.assert_numpy_array_equal(ridx, exp_ridx)
|
||||
# flip
|
||||
jidx, ridx, lidx = idx.join(midx, how="right", return_indexers=True)
|
||||
tm.assert_index_equal(jidx, midx)
|
||||
assert lidx is None
|
||||
tm.assert_numpy_array_equal(ridx, exp_ridx)
|
||||
|
||||
|
||||
def test_join_self_unique(idx, join_type):
|
||||
if idx.is_unique:
|
||||
joined = idx.join(idx, how=join_type)
|
||||
assert (idx == joined).all()
|
||||
|
||||
|
||||
def test_join_multi_wrong_order():
|
||||
# GH 25760
|
||||
# GH 28956
|
||||
|
||||
midx1 = MultiIndex.from_product([[1, 2], [3, 4]], names=["a", "b"])
|
||||
midx2 = MultiIndex.from_product([[1, 2], [3, 4]], names=["b", "a"])
|
||||
|
||||
join_idx, lidx, ridx = midx1.join(midx2, return_indexers=True)
|
||||
|
||||
exp_ridx = np.array([-1, -1, -1, -1], dtype=np.intp)
|
||||
|
||||
tm.assert_index_equal(midx1, join_idx)
|
||||
assert lidx is None
|
||||
tm.assert_numpy_array_equal(ridx, exp_ridx)
|
||||
|
||||
|
||||
def test_join_multi_return_indexers():
|
||||
# GH 34074
|
||||
|
||||
midx1 = MultiIndex.from_product([[1, 2], [3, 4], [5, 6]], names=["a", "b", "c"])
|
||||
midx2 = MultiIndex.from_product([[1, 2], [3, 4]], names=["a", "b"])
|
||||
|
||||
result = midx1.join(midx2, return_indexers=False)
|
||||
tm.assert_index_equal(result, midx1)
|
||||
|
||||
|
||||
def test_join_overlapping_interval_level():
|
||||
# GH 44096
|
||||
idx_1 = MultiIndex.from_tuples(
|
||||
[
|
||||
(1, Interval(0.0, 1.0)),
|
||||
(1, Interval(1.0, 2.0)),
|
||||
(1, Interval(2.0, 5.0)),
|
||||
(2, Interval(0.0, 1.0)),
|
||||
(2, Interval(1.0, 3.0)), # interval limit is here at 3.0, not at 2.0
|
||||
(2, Interval(3.0, 5.0)),
|
||||
],
|
||||
names=["num", "interval"],
|
||||
)
|
||||
|
||||
idx_2 = MultiIndex.from_tuples(
|
||||
[
|
||||
(1, Interval(2.0, 5.0)),
|
||||
(1, Interval(0.0, 1.0)),
|
||||
(1, Interval(1.0, 2.0)),
|
||||
(2, Interval(3.0, 5.0)),
|
||||
(2, Interval(0.0, 1.0)),
|
||||
(2, Interval(1.0, 3.0)),
|
||||
],
|
||||
names=["num", "interval"],
|
||||
)
|
||||
|
||||
expected = MultiIndex.from_tuples(
|
||||
[
|
||||
(1, Interval(0.0, 1.0)),
|
||||
(1, Interval(1.0, 2.0)),
|
||||
(1, Interval(2.0, 5.0)),
|
||||
(2, Interval(0.0, 1.0)),
|
||||
(2, Interval(1.0, 3.0)),
|
||||
(2, Interval(3.0, 5.0)),
|
||||
],
|
||||
names=["num", "interval"],
|
||||
)
|
||||
result = idx_1.join(idx_2, how="outer")
|
||||
|
||||
tm.assert_index_equal(result, expected)
|
Reference in New Issue
Block a user