mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-07-04 07:08:05 +00:00
first commit
This commit is contained in:
@ -0,0 +1,689 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas._libs.tslibs import Timestamp
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
Index,
|
||||
Series,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.core.indexes.api import (
|
||||
Float64Index,
|
||||
Int64Index,
|
||||
NumericIndex,
|
||||
UInt64Index,
|
||||
)
|
||||
from pandas.tests.indexes.common import NumericBase
|
||||
|
||||
|
||||
class TestFloatNumericIndex(NumericBase):
|
||||
_index_cls = NumericIndex
|
||||
|
||||
@pytest.fixture(params=[np.float64, np.float32])
|
||||
def dtype(self, request):
|
||||
return request.param
|
||||
|
||||
@pytest.fixture(params=["category", "datetime64", "object"])
|
||||
def invalid_dtype(self, request):
|
||||
return request.param
|
||||
|
||||
@pytest.fixture
|
||||
def simple_index(self, dtype):
|
||||
values = np.arange(5, dtype=dtype)
|
||||
return self._index_cls(values)
|
||||
|
||||
@pytest.fixture(
|
||||
params=[
|
||||
[1.5, 2, 3, 4, 5],
|
||||
[0.0, 2.5, 5.0, 7.5, 10.0],
|
||||
[5, 4, 3, 2, 1.5],
|
||||
[10.0, 7.5, 5.0, 2.5, 0.0],
|
||||
],
|
||||
ids=["mixed", "float", "mixed_dec", "float_dec"],
|
||||
)
|
||||
def index(self, request, dtype):
|
||||
return self._index_cls(request.param, dtype=dtype)
|
||||
|
||||
@pytest.fixture
|
||||
def mixed_index(self, dtype):
|
||||
return self._index_cls([1.5, 2, 3, 4, 5], dtype=dtype)
|
||||
|
||||
@pytest.fixture
|
||||
def float_index(self, dtype):
|
||||
return self._index_cls([0.0, 2.5, 5.0, 7.5, 10.0], dtype=dtype)
|
||||
|
||||
def test_repr_roundtrip(self, index):
|
||||
tm.assert_index_equal(eval(repr(index)), index, exact=True)
|
||||
|
||||
def check_is_index(self, idx):
|
||||
assert isinstance(idx, Index)
|
||||
assert not isinstance(idx, self._index_cls)
|
||||
|
||||
def check_coerce(self, a, b, is_float_index=True):
|
||||
assert a.equals(b)
|
||||
tm.assert_index_equal(a, b, exact=False)
|
||||
if is_float_index:
|
||||
assert isinstance(b, self._index_cls)
|
||||
else:
|
||||
self.check_is_index(b)
|
||||
|
||||
def test_constructor(self, dtype):
|
||||
index_cls = self._index_cls
|
||||
|
||||
# explicit construction
|
||||
index = index_cls([1, 2, 3, 4, 5], dtype=dtype)
|
||||
|
||||
assert isinstance(index, index_cls)
|
||||
assert index.dtype == dtype
|
||||
|
||||
expected = np.array([1, 2, 3, 4, 5], dtype=dtype)
|
||||
tm.assert_numpy_array_equal(index.values, expected)
|
||||
|
||||
index = index_cls(np.array([1, 2, 3, 4, 5]), dtype=dtype)
|
||||
assert isinstance(index, index_cls)
|
||||
assert index.dtype == dtype
|
||||
|
||||
index = index_cls([1.0, 2, 3, 4, 5], dtype=dtype)
|
||||
assert isinstance(index, index_cls)
|
||||
assert index.dtype == dtype
|
||||
|
||||
index = index_cls(np.array([1.0, 2, 3, 4, 5]), dtype=dtype)
|
||||
assert isinstance(index, index_cls)
|
||||
assert index.dtype == dtype
|
||||
|
||||
index = index_cls([1.0, 2, 3, 4, 5], dtype=dtype)
|
||||
assert isinstance(index, index_cls)
|
||||
assert index.dtype == dtype
|
||||
|
||||
index = index_cls(np.array([1.0, 2, 3, 4, 5]), dtype=dtype)
|
||||
assert isinstance(index, index_cls)
|
||||
assert index.dtype == dtype
|
||||
|
||||
# nan handling
|
||||
result = index_cls([np.nan, np.nan], dtype=dtype)
|
||||
assert pd.isna(result.values).all()
|
||||
|
||||
result = index_cls(np.array([np.nan]), dtype=dtype)
|
||||
assert pd.isna(result.values).all()
|
||||
|
||||
def test_constructor_invalid(self):
|
||||
index_cls = self._index_cls
|
||||
cls_name = index_cls.__name__
|
||||
|
||||
# invalid
|
||||
msg = (
|
||||
rf"{cls_name}\(\.\.\.\) must be called with a collection of "
|
||||
r"some kind, 0\.0 was passed"
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
index_cls(0.0)
|
||||
|
||||
# 2021-02-1 we get ValueError in numpy 1.20, but not on all builds
|
||||
msg = "|".join(
|
||||
[
|
||||
"String dtype not supported, you may need to explicitly cast ",
|
||||
"could not convert string to float: 'a'",
|
||||
]
|
||||
)
|
||||
with pytest.raises((TypeError, ValueError), match=msg):
|
||||
index_cls(["a", "b", 0.0])
|
||||
|
||||
msg = f"data is not compatible with {index_cls.__name__}"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
index_cls([Timestamp("20130101")])
|
||||
|
||||
def test_constructor_coerce(self, mixed_index, float_index):
|
||||
|
||||
self.check_coerce(mixed_index, Index([1.5, 2, 3, 4, 5]))
|
||||
self.check_coerce(float_index, Index(np.arange(5) * 2.5))
|
||||
|
||||
with tm.assert_produces_warning(FutureWarning, match="will not infer"):
|
||||
result = Index(np.array(np.arange(5) * 2.5, dtype=object))
|
||||
self.check_coerce(float_index, result.astype("float64"))
|
||||
|
||||
def test_constructor_explicit(self, mixed_index, float_index):
|
||||
|
||||
# these don't auto convert
|
||||
self.check_coerce(
|
||||
float_index, Index((np.arange(5) * 2.5), dtype=object), is_float_index=False
|
||||
)
|
||||
self.check_coerce(
|
||||
mixed_index, Index([1.5, 2, 3, 4, 5], dtype=object), is_float_index=False
|
||||
)
|
||||
|
||||
def test_type_coercion_fail(self, any_int_numpy_dtype):
|
||||
# see gh-15832
|
||||
msg = "Trying to coerce float values to integers"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
Index([1, 2, 3.5], dtype=any_int_numpy_dtype)
|
||||
|
||||
def test_type_coercion_valid(self, float_numpy_dtype):
|
||||
# There is no Float32Index, so we always
|
||||
# generate Float64Index.
|
||||
idx = Index([1, 2, 3.5], dtype=float_numpy_dtype)
|
||||
tm.assert_index_equal(idx, Index([1, 2, 3.5]), exact=True)
|
||||
|
||||
def test_equals_numeric(self):
|
||||
index_cls = self._index_cls
|
||||
|
||||
idx = index_cls([1.0, 2.0])
|
||||
assert idx.equals(idx)
|
||||
assert idx.identical(idx)
|
||||
|
||||
idx2 = index_cls([1.0, 2.0])
|
||||
assert idx.equals(idx2)
|
||||
|
||||
idx = index_cls([1.0, np.nan])
|
||||
assert idx.equals(idx)
|
||||
assert idx.identical(idx)
|
||||
|
||||
idx2 = index_cls([1.0, np.nan])
|
||||
assert idx.equals(idx2)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"other",
|
||||
(
|
||||
Int64Index([1, 2]),
|
||||
Index([1.0, 2.0], dtype=object),
|
||||
Index([1, 2], dtype=object),
|
||||
),
|
||||
)
|
||||
def test_equals_numeric_other_index_type(self, other):
|
||||
idx = self._index_cls([1.0, 2.0])
|
||||
assert idx.equals(other)
|
||||
assert other.equals(idx)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"vals",
|
||||
[
|
||||
pd.date_range("2016-01-01", periods=3),
|
||||
pd.timedelta_range("1 Day", periods=3),
|
||||
],
|
||||
)
|
||||
def test_lookups_datetimelike_values(self, vals, dtype):
|
||||
|
||||
# If we have datetime64 or timedelta64 values, make sure they are
|
||||
# wrappped correctly GH#31163
|
||||
ser = Series(vals, index=range(3, 6))
|
||||
ser.index = ser.index.astype(dtype)
|
||||
|
||||
expected = vals[1]
|
||||
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
result = ser.index.get_value(ser, 4.0)
|
||||
assert isinstance(result, type(expected)) and result == expected
|
||||
with tm.assert_produces_warning(FutureWarning):
|
||||
result = ser.index.get_value(ser, 4)
|
||||
assert isinstance(result, type(expected)) and result == expected
|
||||
|
||||
result = ser[4.0]
|
||||
assert isinstance(result, type(expected)) and result == expected
|
||||
result = ser[4]
|
||||
assert isinstance(result, type(expected)) and result == expected
|
||||
|
||||
result = ser.loc[4.0]
|
||||
assert isinstance(result, type(expected)) and result == expected
|
||||
result = ser.loc[4]
|
||||
assert isinstance(result, type(expected)) and result == expected
|
||||
|
||||
result = ser.at[4.0]
|
||||
assert isinstance(result, type(expected)) and result == expected
|
||||
# GH#31329 .at[4] should cast to 4.0, matching .loc behavior
|
||||
result = ser.at[4]
|
||||
assert isinstance(result, type(expected)) and result == expected
|
||||
|
||||
result = ser.iloc[1]
|
||||
assert isinstance(result, type(expected)) and result == expected
|
||||
|
||||
result = ser.iat[1]
|
||||
assert isinstance(result, type(expected)) and result == expected
|
||||
|
||||
def test_doesnt_contain_all_the_things(self):
|
||||
idx = self._index_cls([np.nan])
|
||||
assert not idx.isin([0]).item()
|
||||
assert not idx.isin([1]).item()
|
||||
assert idx.isin([np.nan]).item()
|
||||
|
||||
def test_nan_multiple_containment(self):
|
||||
index_cls = self._index_cls
|
||||
|
||||
idx = index_cls([1.0, np.nan])
|
||||
tm.assert_numpy_array_equal(idx.isin([1.0]), np.array([True, False]))
|
||||
tm.assert_numpy_array_equal(idx.isin([2.0, np.pi]), np.array([False, False]))
|
||||
tm.assert_numpy_array_equal(idx.isin([np.nan]), np.array([False, True]))
|
||||
tm.assert_numpy_array_equal(idx.isin([1.0, np.nan]), np.array([True, True]))
|
||||
idx = index_cls([1.0, 2.0])
|
||||
tm.assert_numpy_array_equal(idx.isin([np.nan]), np.array([False, False]))
|
||||
|
||||
def test_fillna_float64(self):
|
||||
index_cls = self._index_cls
|
||||
# GH 11343
|
||||
idx = Index([1.0, np.nan, 3.0], dtype=float, name="x")
|
||||
# can't downcast
|
||||
exp = Index([1.0, 0.1, 3.0], name="x")
|
||||
tm.assert_index_equal(idx.fillna(0.1), exp, exact=True)
|
||||
|
||||
# downcast
|
||||
exact = True if index_cls is Int64Index else "equiv"
|
||||
exp = index_cls([1.0, 2.0, 3.0], name="x")
|
||||
tm.assert_index_equal(idx.fillna(2), exp, exact=exact)
|
||||
|
||||
# object
|
||||
exp = Index([1.0, "obj", 3.0], name="x")
|
||||
tm.assert_index_equal(idx.fillna("obj"), exp, exact=True)
|
||||
|
||||
|
||||
class TestFloat64Index(TestFloatNumericIndex):
|
||||
_index_cls = Float64Index
|
||||
|
||||
@pytest.fixture
|
||||
def dtype(self, request):
|
||||
return np.float64
|
||||
|
||||
@pytest.fixture(
|
||||
params=["int64", "uint64", "object", "category", "datetime64"],
|
||||
)
|
||||
def invalid_dtype(self, request):
|
||||
return request.param
|
||||
|
||||
def test_constructor_from_base_index(self, dtype):
|
||||
index_cls = self._index_cls
|
||||
|
||||
result = Index(np.array([np.nan], dtype=dtype))
|
||||
assert isinstance(result, index_cls)
|
||||
assert result.dtype == dtype
|
||||
assert pd.isna(result.values).all()
|
||||
|
||||
def test_constructor_32bit(self, dtype):
|
||||
index_cls = self._index_cls
|
||||
|
||||
index = index_cls(np.array([1.0, 2, 3, 4, 5]), dtype=np.float32)
|
||||
assert isinstance(index, index_cls)
|
||||
assert index.dtype == np.float64
|
||||
|
||||
index = index_cls(np.array([1, 2, 3, 4, 5]), dtype=np.float32)
|
||||
assert isinstance(index, index_cls)
|
||||
assert index.dtype == np.float64
|
||||
|
||||
|
||||
class NumericInt(NumericBase):
|
||||
def test_view(self, dtype):
|
||||
index_cls = self._index_cls
|
||||
|
||||
idx = index_cls([], dtype=dtype, name="Foo")
|
||||
idx_view = idx.view()
|
||||
assert idx_view.name == "Foo"
|
||||
|
||||
idx_view = idx.view(dtype)
|
||||
tm.assert_index_equal(idx, index_cls(idx_view, name="Foo"), exact=True)
|
||||
|
||||
idx_view = idx.view(index_cls)
|
||||
tm.assert_index_equal(idx, index_cls(idx_view, name="Foo"), exact=True)
|
||||
|
||||
def test_is_monotonic(self):
|
||||
index_cls = self._index_cls
|
||||
|
||||
index = index_cls([1, 2, 3, 4])
|
||||
assert index.is_monotonic is True
|
||||
assert index.is_monotonic_increasing is True
|
||||
assert index._is_strictly_monotonic_increasing is True
|
||||
assert index.is_monotonic_decreasing is False
|
||||
assert index._is_strictly_monotonic_decreasing is False
|
||||
|
||||
index = index_cls([4, 3, 2, 1])
|
||||
assert index.is_monotonic is False
|
||||
assert index._is_strictly_monotonic_increasing is False
|
||||
assert index._is_strictly_monotonic_decreasing is True
|
||||
|
||||
index = index_cls([1])
|
||||
assert index.is_monotonic is True
|
||||
assert index.is_monotonic_increasing is True
|
||||
assert index.is_monotonic_decreasing is True
|
||||
assert index._is_strictly_monotonic_increasing is True
|
||||
assert index._is_strictly_monotonic_decreasing is True
|
||||
|
||||
def test_is_strictly_monotonic(self):
|
||||
index_cls = self._index_cls
|
||||
|
||||
index = index_cls([1, 1, 2, 3])
|
||||
assert index.is_monotonic_increasing is True
|
||||
assert index._is_strictly_monotonic_increasing is False
|
||||
|
||||
index = index_cls([3, 2, 1, 1])
|
||||
assert index.is_monotonic_decreasing is True
|
||||
assert index._is_strictly_monotonic_decreasing is False
|
||||
|
||||
index = index_cls([1, 1])
|
||||
assert index.is_monotonic_increasing
|
||||
assert index.is_monotonic_decreasing
|
||||
assert not index._is_strictly_monotonic_increasing
|
||||
assert not index._is_strictly_monotonic_decreasing
|
||||
|
||||
def test_logical_compat(self, simple_index):
|
||||
idx = simple_index
|
||||
assert idx.all() == idx.values.all()
|
||||
assert idx.any() == idx.values.any()
|
||||
|
||||
def test_identical(self, simple_index, dtype):
|
||||
index = simple_index
|
||||
|
||||
idx = Index(index.copy())
|
||||
assert idx.identical(index)
|
||||
|
||||
same_values_different_type = Index(idx, dtype=object)
|
||||
assert not idx.identical(same_values_different_type)
|
||||
|
||||
idx = index.astype(dtype=object)
|
||||
idx = idx.rename("foo")
|
||||
same_values = Index(idx, dtype=object)
|
||||
assert same_values.identical(idx)
|
||||
|
||||
assert not idx.identical(index)
|
||||
assert Index(same_values, name="foo", dtype=object).identical(idx)
|
||||
|
||||
assert not index.astype(dtype=object).identical(index.astype(dtype=dtype))
|
||||
|
||||
def test_cant_or_shouldnt_cast(self):
|
||||
msg = (
|
||||
"String dtype not supported, "
|
||||
"you may need to explicitly cast to a numeric type"
|
||||
)
|
||||
# can't
|
||||
data = ["foo", "bar", "baz"]
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
self._index_cls(data)
|
||||
|
||||
# shouldn't
|
||||
data = ["0", "1", "2"]
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
self._index_cls(data)
|
||||
|
||||
def test_view_index(self, simple_index):
|
||||
index = simple_index
|
||||
index.view(Index)
|
||||
|
||||
def test_prevent_casting(self, simple_index):
|
||||
index = simple_index
|
||||
result = index.astype("O")
|
||||
assert result.dtype == np.object_
|
||||
|
||||
|
||||
class TestIntNumericIndex(NumericInt):
|
||||
_index_cls = NumericIndex
|
||||
|
||||
@pytest.fixture(params=[np.int64, np.int32, np.int16, np.int8])
|
||||
def dtype(self, request):
|
||||
return request.param
|
||||
|
||||
@pytest.fixture(params=["category", "datetime64", "object"])
|
||||
def invalid_dtype(self, request):
|
||||
return request.param
|
||||
|
||||
@pytest.fixture
|
||||
def simple_index(self, dtype):
|
||||
return self._index_cls(range(0, 20, 2), dtype=dtype)
|
||||
|
||||
@pytest.fixture(
|
||||
params=[range(0, 20, 2), range(19, -1, -1)], ids=["index_inc", "index_dec"]
|
||||
)
|
||||
def index(self, request, dtype):
|
||||
return self._index_cls(request.param, dtype=dtype)
|
||||
|
||||
def test_constructor(self, dtype):
|
||||
index_cls = self._index_cls
|
||||
|
||||
# scalar raise Exception
|
||||
msg = (
|
||||
rf"{index_cls.__name__}\(\.\.\.\) must be called with a collection of some "
|
||||
"kind, 5 was passed"
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
index_cls(5)
|
||||
|
||||
# copy
|
||||
# pass list, coerce fine
|
||||
index = index_cls([-5, 0, 1, 2], dtype=dtype)
|
||||
arr = index.values
|
||||
new_index = index_cls(arr, copy=True)
|
||||
tm.assert_index_equal(new_index, index, exact=True)
|
||||
val = arr[0] + 3000
|
||||
|
||||
# this should not change index
|
||||
arr[0] = val
|
||||
assert new_index[0] != val
|
||||
|
||||
if dtype == np.int64:
|
||||
exact = "equiv" if index_cls != Int64Index else True
|
||||
|
||||
# pass list, coerce fine
|
||||
index = index_cls([-5, 0, 1, 2], dtype=dtype)
|
||||
expected = Index([-5, 0, 1, 2], dtype=dtype)
|
||||
tm.assert_index_equal(index, expected, exact=exact)
|
||||
|
||||
# from iterable
|
||||
index = index_cls(iter([-5, 0, 1, 2]), dtype=dtype)
|
||||
expected = index_cls([-5, 0, 1, 2], dtype=dtype)
|
||||
tm.assert_index_equal(index, expected, exact=exact)
|
||||
|
||||
# interpret list-like
|
||||
expected = index_cls([5, 0], dtype=dtype)
|
||||
for cls in [Index, index_cls]:
|
||||
for idx in [
|
||||
cls([5, 0], dtype=dtype),
|
||||
cls(np.array([5, 0]), dtype=dtype),
|
||||
cls(Series([5, 0]), dtype=dtype),
|
||||
]:
|
||||
tm.assert_index_equal(idx, expected, exact=exact)
|
||||
|
||||
def test_constructor_corner(self, dtype):
|
||||
index_cls = self._index_cls
|
||||
|
||||
arr = np.array([1, 2, 3, 4], dtype=object)
|
||||
|
||||
index = index_cls(arr, dtype=dtype)
|
||||
assert index.values.dtype == index.dtype
|
||||
if dtype == np.int64:
|
||||
|
||||
msg = "will not infer"
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
without_dtype = Index(arr)
|
||||
|
||||
exact = True if index_cls is Int64Index else "equiv"
|
||||
tm.assert_index_equal(index, without_dtype, exact=exact)
|
||||
|
||||
# preventing casting
|
||||
arr = np.array([1, "2", 3, "4"], dtype=object)
|
||||
with pytest.raises(TypeError, match="casting"):
|
||||
index_cls(arr, dtype=dtype)
|
||||
|
||||
def test_constructor_coercion_signed_to_unsigned(
|
||||
self,
|
||||
any_unsigned_int_numpy_dtype,
|
||||
):
|
||||
|
||||
# see gh-15832
|
||||
msg = "Trying to coerce negative values to unsigned integers"
|
||||
|
||||
with pytest.raises(OverflowError, match=msg):
|
||||
Index([-1], dtype=any_unsigned_int_numpy_dtype)
|
||||
|
||||
def test_coerce_list(self):
|
||||
# coerce things
|
||||
arr = Index([1, 2, 3, 4])
|
||||
assert isinstance(arr, self._index_cls)
|
||||
|
||||
# but not if explicit dtype passed
|
||||
arr = Index([1, 2, 3, 4], dtype=object)
|
||||
assert type(arr) is Index
|
||||
|
||||
|
||||
class TestInt64Index(TestIntNumericIndex):
|
||||
_index_cls = Int64Index
|
||||
|
||||
@pytest.fixture
|
||||
def dtype(self):
|
||||
return np.int64
|
||||
|
||||
@pytest.fixture(
|
||||
params=["float64", "uint64", "object", "category", "datetime64"],
|
||||
)
|
||||
def invalid_dtype(self, request):
|
||||
return request.param
|
||||
|
||||
def test_constructor_32bit(self, dtype):
|
||||
index_cls = self._index_cls
|
||||
|
||||
index = index_cls(np.array([1, 2, 3, 4, 5]), dtype=np.int32)
|
||||
assert isinstance(index, index_cls)
|
||||
assert index.dtype == np.int64
|
||||
|
||||
index = index_cls(np.array([1, 2, 3, 4, 5]), dtype=np.int32)
|
||||
assert isinstance(index, index_cls)
|
||||
assert index.dtype == np.int64
|
||||
|
||||
|
||||
class TestUIntNumericIndex(NumericInt):
|
||||
|
||||
_index_cls = NumericIndex
|
||||
|
||||
@pytest.fixture(params=[np.uint64])
|
||||
def dtype(self, request):
|
||||
return request.param
|
||||
|
||||
@pytest.fixture(params=["category", "datetime64", "object"])
|
||||
def invalid_dtype(self, request):
|
||||
return request.param
|
||||
|
||||
@pytest.fixture
|
||||
def simple_index(self, dtype):
|
||||
# compat with shared Int64/Float64 tests
|
||||
return self._index_cls(np.arange(5, dtype=dtype))
|
||||
|
||||
@pytest.fixture(
|
||||
params=[
|
||||
[2**63, 2**63 + 10, 2**63 + 15, 2**63 + 20, 2**63 + 25],
|
||||
[2**63 + 25, 2**63 + 20, 2**63 + 15, 2**63 + 10, 2**63],
|
||||
],
|
||||
ids=["index_inc", "index_dec"],
|
||||
)
|
||||
def index(self, request):
|
||||
return self._index_cls(request.param, dtype=np.uint64)
|
||||
|
||||
|
||||
class TestUInt64Index(TestUIntNumericIndex):
|
||||
|
||||
_index_cls = UInt64Index
|
||||
|
||||
@pytest.fixture
|
||||
def dtype(self):
|
||||
return np.uint64
|
||||
|
||||
@pytest.fixture(
|
||||
params=["int64", "float64", "object", "category", "datetime64"],
|
||||
)
|
||||
def invalid_dtype(self, request):
|
||||
return request.param
|
||||
|
||||
def test_constructor(self, dtype):
|
||||
index_cls = self._index_cls
|
||||
exact = True if index_cls is UInt64Index else "equiv"
|
||||
|
||||
idx = index_cls([1, 2, 3])
|
||||
res = Index([1, 2, 3], dtype=dtype)
|
||||
tm.assert_index_equal(res, idx, exact=exact)
|
||||
|
||||
idx = index_cls([1, 2**63])
|
||||
res = Index([1, 2**63], dtype=dtype)
|
||||
tm.assert_index_equal(res, idx, exact=exact)
|
||||
|
||||
idx = index_cls([1, 2**63])
|
||||
res = Index([1, 2**63])
|
||||
tm.assert_index_equal(res, idx, exact=exact)
|
||||
|
||||
idx = Index([-1, 2**63], dtype=object)
|
||||
res = Index(np.array([-1, 2**63], dtype=object))
|
||||
tm.assert_index_equal(res, idx, exact=exact)
|
||||
|
||||
# https://github.com/pandas-dev/pandas/issues/29526
|
||||
idx = index_cls([1, 2**63 + 1], dtype=dtype)
|
||||
res = Index([1, 2**63 + 1], dtype=dtype)
|
||||
tm.assert_index_equal(res, idx, exact=exact)
|
||||
|
||||
def test_constructor_does_not_cast_to_float(self):
|
||||
# https://github.com/numpy/numpy/issues/19146
|
||||
values = [0, np.iinfo(np.uint64).max]
|
||||
|
||||
result = UInt64Index(values)
|
||||
assert list(result) == values
|
||||
|
||||
def test_constructor_32bit(self, dtype):
|
||||
index_cls = self._index_cls
|
||||
|
||||
index = index_cls(np.array([1, 2, 3, 4, 5]), dtype=np.uint32)
|
||||
assert isinstance(index, index_cls)
|
||||
assert index.dtype == np.uint64
|
||||
|
||||
index = index_cls(np.array([1, 2, 3, 4, 5]), dtype=np.uint32)
|
||||
assert isinstance(index, index_cls)
|
||||
assert index.dtype == np.uint64
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"box",
|
||||
[list, lambda x: np.array(x, dtype=object), lambda x: Index(x, dtype=object)],
|
||||
)
|
||||
def test_uint_index_does_not_convert_to_float64(box):
|
||||
# https://github.com/pandas-dev/pandas/issues/28279
|
||||
# https://github.com/pandas-dev/pandas/issues/28023
|
||||
series = Series(
|
||||
[0, 1, 2, 3, 4, 5],
|
||||
index=[
|
||||
7606741985629028552,
|
||||
17876870360202815256,
|
||||
17876870360202815256,
|
||||
13106359306506049338,
|
||||
8991270399732411471,
|
||||
8991270399732411472,
|
||||
],
|
||||
)
|
||||
|
||||
result = series.loc[box([7606741985629028552, 17876870360202815256])]
|
||||
|
||||
expected = UInt64Index(
|
||||
[7606741985629028552, 17876870360202815256, 17876870360202815256],
|
||||
dtype="uint64",
|
||||
)
|
||||
tm.assert_index_equal(result.index, expected)
|
||||
|
||||
tm.assert_equal(result, series[:3])
|
||||
|
||||
|
||||
def test_float64_index_equals():
|
||||
# https://github.com/pandas-dev/pandas/issues/35217
|
||||
float_index = Index([1.0, 2, 3])
|
||||
string_index = Index(["1", "2", "3"])
|
||||
|
||||
result = float_index.equals(string_index)
|
||||
assert result is False
|
||||
|
||||
result = string_index.equals(float_index)
|
||||
assert result is False
|
||||
|
||||
|
||||
def test_map_dtype_inference_unsigned_to_signed():
|
||||
# GH#44609 cases where we don't retain dtype
|
||||
idx = UInt64Index([1, 2, 3])
|
||||
result = idx.map(lambda x: -x)
|
||||
expected = Int64Index([-1, -2, -3])
|
||||
tm.assert_index_equal(result, expected)
|
||||
|
||||
|
||||
def test_map_dtype_inference_overflows():
|
||||
# GH#44609 case where we have to upcast
|
||||
idx = NumericIndex(np.array([1, 2, 3], dtype=np.int8))
|
||||
result = idx.map(lambda x: x * 1000)
|
||||
# TODO: we could plausibly try to infer down to int16 here
|
||||
expected = NumericIndex([1000, 2000, 3000], dtype=np.int64)
|
||||
tm.assert_index_equal(result, expected)
|
Reference in New Issue
Block a user