mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-07-04 15:17:14 +00:00
first commit
This commit is contained in:
@ -0,0 +1,145 @@
|
||||
from datetime import timedelta
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
Index,
|
||||
NaT,
|
||||
Series,
|
||||
Timedelta,
|
||||
TimedeltaIndex,
|
||||
timedelta_range,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.core.indexes.api import Int64Index
|
||||
from pandas.tests.indexes.datetimelike import DatetimeLike
|
||||
|
||||
randn = np.random.randn
|
||||
|
||||
|
||||
class TestTimedeltaIndex(DatetimeLike):
|
||||
_index_cls = TimedeltaIndex
|
||||
|
||||
@pytest.fixture
|
||||
def simple_index(self) -> TimedeltaIndex:
|
||||
index = pd.to_timedelta(range(5), unit="d")._with_freq("infer")
|
||||
assert index.freq == "D"
|
||||
ret = index + pd.offsets.Hour(1)
|
||||
assert ret.freq == "D"
|
||||
return ret
|
||||
|
||||
@pytest.fixture
|
||||
def index(self):
|
||||
return tm.makeTimedeltaIndex(10)
|
||||
|
||||
def test_numeric_compat(self):
|
||||
# Dummy method to override super's version; this test is now done
|
||||
# in test_arithmetic.py
|
||||
pass
|
||||
|
||||
def test_shift(self):
|
||||
pass # this is handled in test_arithmetic.py
|
||||
|
||||
def test_misc_coverage(self):
|
||||
|
||||
rng = timedelta_range("1 day", periods=5)
|
||||
result = rng.groupby(rng.days)
|
||||
assert isinstance(list(result.values())[0][0], Timedelta)
|
||||
|
||||
def test_map(self):
|
||||
# test_map_dictlike generally tests
|
||||
|
||||
rng = timedelta_range("1 day", periods=10)
|
||||
|
||||
f = lambda x: x.days
|
||||
result = rng.map(f)
|
||||
exp = Int64Index([f(x) for x in rng])
|
||||
tm.assert_index_equal(result, exp)
|
||||
|
||||
def test_pass_TimedeltaIndex_to_index(self):
|
||||
|
||||
rng = timedelta_range("1 days", "10 days")
|
||||
idx = Index(rng, dtype=object)
|
||||
|
||||
expected = Index(rng.to_pytimedelta(), dtype=object)
|
||||
|
||||
tm.assert_numpy_array_equal(idx.values, expected.values)
|
||||
|
||||
def test_fields(self):
|
||||
rng = timedelta_range("1 days, 10:11:12.100123456", periods=2, freq="s")
|
||||
tm.assert_index_equal(rng.days, Index([1, 1], dtype="int64"))
|
||||
tm.assert_index_equal(
|
||||
rng.seconds,
|
||||
Index([10 * 3600 + 11 * 60 + 12, 10 * 3600 + 11 * 60 + 13], dtype="int64"),
|
||||
)
|
||||
tm.assert_index_equal(
|
||||
rng.microseconds, Index([100 * 1000 + 123, 100 * 1000 + 123], dtype="int64")
|
||||
)
|
||||
tm.assert_index_equal(rng.nanoseconds, Index([456, 456], dtype="int64"))
|
||||
|
||||
msg = "'TimedeltaIndex' object has no attribute '{}'"
|
||||
with pytest.raises(AttributeError, match=msg.format("hours")):
|
||||
rng.hours
|
||||
with pytest.raises(AttributeError, match=msg.format("minutes")):
|
||||
rng.minutes
|
||||
with pytest.raises(AttributeError, match=msg.format("milliseconds")):
|
||||
rng.milliseconds
|
||||
|
||||
# with nat
|
||||
s = Series(rng)
|
||||
s[1] = np.nan
|
||||
|
||||
tm.assert_series_equal(s.dt.days, Series([1, np.nan], index=[0, 1]))
|
||||
tm.assert_series_equal(
|
||||
s.dt.seconds, Series([10 * 3600 + 11 * 60 + 12, np.nan], index=[0, 1])
|
||||
)
|
||||
|
||||
# preserve name (GH15589)
|
||||
rng.name = "name"
|
||||
assert rng.days.name == "name"
|
||||
|
||||
def test_freq_conversion_always_floating(self):
|
||||
# even if we have no NaTs, we get back float64; this matches TDA and Series
|
||||
tdi = timedelta_range("1 Day", periods=30)
|
||||
|
||||
res = tdi.astype("m8[s]")
|
||||
expected = Index((tdi.view("i8") / 10**9).astype(np.float64))
|
||||
tm.assert_index_equal(res, expected)
|
||||
|
||||
# check this matches Series and TimedeltaArray
|
||||
res = tdi._data.astype("m8[s]")
|
||||
tm.assert_numpy_array_equal(res, expected._values)
|
||||
|
||||
res = tdi.to_series().astype("m8[s]")
|
||||
tm.assert_numpy_array_equal(res._values, expected._values)
|
||||
|
||||
def test_freq_conversion(self, index_or_series):
|
||||
|
||||
# doc example
|
||||
|
||||
scalar = Timedelta(days=31)
|
||||
td = index_or_series(
|
||||
[scalar, scalar, scalar + timedelta(minutes=5, seconds=3), NaT],
|
||||
dtype="m8[ns]",
|
||||
)
|
||||
|
||||
result = td / np.timedelta64(1, "D")
|
||||
expected = index_or_series(
|
||||
[31, 31, (31 * 86400 + 5 * 60 + 3) / 86400.0, np.nan]
|
||||
)
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
result = td.astype("timedelta64[D]")
|
||||
expected = index_or_series([31, 31, 31, np.nan])
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
result = td / np.timedelta64(1, "s")
|
||||
expected = index_or_series(
|
||||
[31 * 86400, 31 * 86400, 31 * 86400 + 5 * 60 + 3, np.nan]
|
||||
)
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
result = td.astype("timedelta64[s]")
|
||||
tm.assert_equal(result, expected)
|
Reference in New Issue
Block a user