first commit

This commit is contained in:
Ayxan
2022-05-23 00:16:32 +04:00
commit d660f2a4ca
24786 changed files with 4428337 additions and 0 deletions

View File

@ -0,0 +1,26 @@
from io import StringIO
import pytest
from pandas import read_sas
import pandas._testing as tm
class TestSas:
def test_sas_buffer_format(self):
# see gh-14947
b = StringIO("")
msg = (
"If this is a buffer object rather than a string "
"name, you must specify a format string"
)
with pytest.raises(ValueError, match=msg):
read_sas(b)
def test_sas_read_no_format_or_extension(self):
# see gh-24548
msg = "unable to infer format of SAS file"
with tm.ensure_clean("test_file_no_extension") as path:
with pytest.raises(ValueError, match=msg):
read_sas(path)

View File

@ -0,0 +1,343 @@
from datetime import datetime
import io
import os
from pathlib import Path
import dateutil.parser
import numpy as np
import pytest
from pandas.errors import EmptyDataError
import pandas.util._test_decorators as td
import pandas as pd
import pandas._testing as tm
# https://github.com/cython/cython/issues/1720
@pytest.mark.filterwarnings("ignore:can't resolve package:ImportWarning")
class TestSAS7BDAT:
@pytest.fixture(autouse=True)
def setup_method(self, datapath):
self.dirpath = datapath("io", "sas", "data")
self.data = []
self.test_ix = [list(range(1, 16)), [16]]
for j in 1, 2:
fname = os.path.join(self.dirpath, f"test_sas7bdat_{j}.csv")
df = pd.read_csv(fname)
epoch = datetime(1960, 1, 1)
t1 = pd.to_timedelta(df["Column4"], unit="d")
df["Column4"] = epoch + t1
t2 = pd.to_timedelta(df["Column12"], unit="d")
df["Column12"] = epoch + t2
for k in range(df.shape[1]):
col = df.iloc[:, k]
if col.dtype == np.int64:
df.iloc[:, k] = df.iloc[:, k].astype(np.float64)
self.data.append(df)
@pytest.mark.slow
def test_from_file(self):
for j in 0, 1:
df0 = self.data[j]
for k in self.test_ix[j]:
fname = os.path.join(self.dirpath, f"test{k}.sas7bdat")
df = pd.read_sas(fname, encoding="utf-8")
tm.assert_frame_equal(df, df0)
@pytest.mark.slow
def test_from_buffer(self):
for j in 0, 1:
df0 = self.data[j]
for k in self.test_ix[j]:
fname = os.path.join(self.dirpath, f"test{k}.sas7bdat")
with open(fname, "rb") as f:
byts = f.read()
buf = io.BytesIO(byts)
with pd.read_sas(
buf, format="sas7bdat", iterator=True, encoding="utf-8"
) as rdr:
df = rdr.read()
tm.assert_frame_equal(df, df0, check_exact=False)
@pytest.mark.slow
def test_from_iterator(self):
for j in 0, 1:
df0 = self.data[j]
for k in self.test_ix[j]:
fname = os.path.join(self.dirpath, f"test{k}.sas7bdat")
with pd.read_sas(fname, iterator=True, encoding="utf-8") as rdr:
df = rdr.read(2)
tm.assert_frame_equal(df, df0.iloc[0:2, :])
df = rdr.read(3)
tm.assert_frame_equal(df, df0.iloc[2:5, :])
@pytest.mark.slow
def test_path_pathlib(self):
for j in 0, 1:
df0 = self.data[j]
for k in self.test_ix[j]:
fname = Path(os.path.join(self.dirpath, f"test{k}.sas7bdat"))
df = pd.read_sas(fname, encoding="utf-8")
tm.assert_frame_equal(df, df0)
@td.skip_if_no("py.path")
@pytest.mark.slow
def test_path_localpath(self):
from py.path import local as LocalPath
for j in 0, 1:
df0 = self.data[j]
for k in self.test_ix[j]:
fname = LocalPath(os.path.join(self.dirpath, f"test{k}.sas7bdat"))
df = pd.read_sas(fname, encoding="utf-8")
tm.assert_frame_equal(df, df0)
@pytest.mark.slow
def test_iterator_loop(self):
# github #13654
for j in 0, 1:
for k in self.test_ix[j]:
for chunksize in (3, 5, 10, 11):
fname = os.path.join(self.dirpath, f"test{k}.sas7bdat")
with pd.read_sas(
fname, chunksize=chunksize, encoding="utf-8"
) as rdr:
y = 0
for x in rdr:
y += x.shape[0]
assert y == rdr.row_count
def test_iterator_read_too_much(self):
# github #14734
k = self.test_ix[0][0]
fname = os.path.join(self.dirpath, f"test{k}.sas7bdat")
with pd.read_sas(
fname, format="sas7bdat", iterator=True, encoding="utf-8"
) as rdr:
d1 = rdr.read(rdr.row_count + 20)
with pd.read_sas(fname, iterator=True, encoding="utf-8") as rdr:
d2 = rdr.read(rdr.row_count + 20)
tm.assert_frame_equal(d1, d2)
def test_encoding_options(datapath):
fname = datapath("io", "sas", "data", "test1.sas7bdat")
df1 = pd.read_sas(fname)
df2 = pd.read_sas(fname, encoding="utf-8")
for col in df1.columns:
try:
df1[col] = df1[col].str.decode("utf-8")
except AttributeError:
pass
tm.assert_frame_equal(df1, df2)
from pandas.io.sas.sas7bdat import SAS7BDATReader
rdr = SAS7BDATReader(fname, convert_header_text=False)
df3 = rdr.read()
rdr.close()
for x, y in zip(df1.columns, df3.columns):
assert x == y.decode()
def test_productsales(datapath):
fname = datapath("io", "sas", "data", "productsales.sas7bdat")
df = pd.read_sas(fname, encoding="utf-8")
fname = datapath("io", "sas", "data", "productsales.csv")
df0 = pd.read_csv(fname, parse_dates=["MONTH"])
vn = ["ACTUAL", "PREDICT", "QUARTER", "YEAR"]
df0[vn] = df0[vn].astype(np.float64)
tm.assert_frame_equal(df, df0)
def test_12659(datapath):
fname = datapath("io", "sas", "data", "test_12659.sas7bdat")
df = pd.read_sas(fname)
fname = datapath("io", "sas", "data", "test_12659.csv")
df0 = pd.read_csv(fname)
df0 = df0.astype(np.float64)
tm.assert_frame_equal(df, df0)
def test_airline(datapath):
fname = datapath("io", "sas", "data", "airline.sas7bdat")
df = pd.read_sas(fname)
fname = datapath("io", "sas", "data", "airline.csv")
df0 = pd.read_csv(fname)
df0 = df0.astype(np.float64)
tm.assert_frame_equal(df, df0, check_exact=False)
def test_date_time(datapath):
# Support of different SAS date/datetime formats (PR #15871)
fname = datapath("io", "sas", "data", "datetime.sas7bdat")
df = pd.read_sas(fname)
fname = datapath("io", "sas", "data", "datetime.csv")
df0 = pd.read_csv(
fname, parse_dates=["Date1", "Date2", "DateTime", "DateTimeHi", "Taiw"]
)
# GH 19732: Timestamps imported from sas will incur floating point errors
df.iloc[:, 3] = df.iloc[:, 3].dt.round("us")
tm.assert_frame_equal(df, df0)
def test_compact_numerical_values(datapath):
# Regression test for #21616
fname = datapath("io", "sas", "data", "cars.sas7bdat")
df = pd.read_sas(fname, encoding="latin-1")
# The two columns CYL and WGT in cars.sas7bdat have column
# width < 8 and only contain integral values.
# Test that pandas doesn't corrupt the numbers by adding
# decimals.
result = df["WGT"]
expected = df["WGT"].round()
tm.assert_series_equal(result, expected, check_exact=True)
result = df["CYL"]
expected = df["CYL"].round()
tm.assert_series_equal(result, expected, check_exact=True)
def test_many_columns(datapath):
# Test for looking for column information in more places (PR #22628)
fname = datapath("io", "sas", "data", "many_columns.sas7bdat")
df = pd.read_sas(fname, encoding="latin-1")
fname = datapath("io", "sas", "data", "many_columns.csv")
df0 = pd.read_csv(fname, encoding="latin-1")
tm.assert_frame_equal(df, df0)
def test_inconsistent_number_of_rows(datapath):
# Regression test for issue #16615. (PR #22628)
fname = datapath("io", "sas", "data", "load_log.sas7bdat")
df = pd.read_sas(fname, encoding="latin-1")
assert len(df) == 2097
def test_zero_variables(datapath):
# Check if the SAS file has zero variables (PR #18184)
fname = datapath("io", "sas", "data", "zero_variables.sas7bdat")
with pytest.raises(EmptyDataError, match="No columns to parse from file"):
pd.read_sas(fname)
def test_corrupt_read(datapath):
# We don't really care about the exact failure, the important thing is
# that the resource should be cleaned up afterwards (BUG #35566)
fname = datapath("io", "sas", "data", "corrupt.sas7bdat")
msg = "'SAS7BDATReader' object has no attribute 'row_count'"
with pytest.raises(AttributeError, match=msg):
pd.read_sas(fname)
def round_datetime_to_ms(ts):
if isinstance(ts, datetime):
return ts.replace(microsecond=int(round(ts.microsecond, -3) / 1000) * 1000)
elif isinstance(ts, str):
_ts = dateutil.parser.parse(timestr=ts)
return _ts.replace(microsecond=int(round(_ts.microsecond, -3) / 1000) * 1000)
else:
return ts
def test_max_sas_date(datapath):
# GH 20927
# NB. max datetime in SAS dataset is 31DEC9999:23:59:59.999
# but this is read as 29DEC9999:23:59:59.998993 by a buggy
# sas7bdat module
fname = datapath("io", "sas", "data", "max_sas_date.sas7bdat")
df = pd.read_sas(fname, encoding="iso-8859-1")
# SAS likes to left pad strings with spaces - lstrip before comparing
df = df.applymap(lambda x: x.lstrip() if isinstance(x, str) else x)
# GH 19732: Timestamps imported from sas will incur floating point errors
try:
df["dt_as_dt"] = df["dt_as_dt"].dt.round("us")
except pd._libs.tslibs.np_datetime.OutOfBoundsDatetime:
df = df.applymap(round_datetime_to_ms)
except AttributeError:
df["dt_as_dt"] = df["dt_as_dt"].apply(round_datetime_to_ms)
# if there are any date/times > pandas.Timestamp.max then ALL in that chunk
# are returned as datetime.datetime
expected = pd.DataFrame(
{
"text": ["max", "normal"],
"dt_as_float": [253717747199.999, 1880323199.999],
"dt_as_dt": [
datetime(9999, 12, 29, 23, 59, 59, 999000),
datetime(2019, 8, 1, 23, 59, 59, 999000),
],
"date_as_float": [2936547.0, 21762.0],
"date_as_date": [datetime(9999, 12, 29), datetime(2019, 8, 1)],
},
columns=["text", "dt_as_float", "dt_as_dt", "date_as_float", "date_as_date"],
)
tm.assert_frame_equal(df, expected)
def test_max_sas_date_iterator(datapath):
# GH 20927
# when called as an iterator, only those chunks with a date > pd.Timestamp.max
# are returned as datetime.datetime, if this happens that whole chunk is returned
# as datetime.datetime
col_order = ["text", "dt_as_float", "dt_as_dt", "date_as_float", "date_as_date"]
fname = datapath("io", "sas", "data", "max_sas_date.sas7bdat")
results = []
for df in pd.read_sas(fname, encoding="iso-8859-1", chunksize=1):
# SAS likes to left pad strings with spaces - lstrip before comparing
df = df.applymap(lambda x: x.lstrip() if isinstance(x, str) else x)
# GH 19732: Timestamps imported from sas will incur floating point errors
try:
df["dt_as_dt"] = df["dt_as_dt"].dt.round("us")
except pd._libs.tslibs.np_datetime.OutOfBoundsDatetime:
df = df.applymap(round_datetime_to_ms)
except AttributeError:
df["dt_as_dt"] = df["dt_as_dt"].apply(round_datetime_to_ms)
df.reset_index(inplace=True, drop=True)
results.append(df)
expected = [
pd.DataFrame(
{
"text": ["max"],
"dt_as_float": [253717747199.999],
"dt_as_dt": [datetime(9999, 12, 29, 23, 59, 59, 999000)],
"date_as_float": [2936547.0],
"date_as_date": [datetime(9999, 12, 29)],
},
columns=col_order,
),
pd.DataFrame(
{
"text": ["normal"],
"dt_as_float": [1880323199.999],
"dt_as_dt": [np.datetime64("2019-08-01 23:59:59.999")],
"date_as_float": [21762.0],
"date_as_date": [np.datetime64("2019-08-01")],
},
columns=col_order,
),
]
for result, expected in zip(results, expected):
tm.assert_frame_equal(result, expected)
def test_null_date(datapath):
fname = datapath("io", "sas", "data", "dates_null.sas7bdat")
df = pd.read_sas(fname, encoding="utf-8")
expected = pd.DataFrame(
{
"datecol": [
datetime(9999, 12, 29),
pd.NaT,
],
"datetimecol": [
datetime(9999, 12, 29, 23, 59, 59, 998993),
pd.NaT,
],
},
)
tm.assert_frame_equal(df, expected)

View File

@ -0,0 +1,168 @@
import os
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
import pandas._testing as tm
from pandas.io.sas.sasreader import read_sas
# CSV versions of test xpt files were obtained using the R foreign library
# Numbers in a SAS xport file are always float64, so need to convert
# before making comparisons.
def numeric_as_float(data):
for v in data.columns:
if data[v].dtype is np.dtype("int64"):
data[v] = data[v].astype(np.float64)
class TestXport:
@pytest.fixture(autouse=True)
def setup_method(self, datapath):
self.dirpath = datapath("io", "sas", "data")
self.file01 = os.path.join(self.dirpath, "DEMO_G.xpt")
self.file02 = os.path.join(self.dirpath, "SSHSV1_A.xpt")
self.file03 = os.path.join(self.dirpath, "DRXFCD_G.xpt")
self.file04 = os.path.join(self.dirpath, "paxraw_d_short.xpt")
self.file05 = os.path.join(self.dirpath, "DEMO_PUF.cpt")
with td.file_leak_context():
yield
@pytest.mark.slow
def test1_basic(self):
# Tests with DEMO_G.xpt (all numeric file)
# Compare to this
data_csv = pd.read_csv(self.file01.replace(".xpt", ".csv"))
numeric_as_float(data_csv)
# Read full file
data = read_sas(self.file01, format="xport")
tm.assert_frame_equal(data, data_csv)
num_rows = data.shape[0]
# Test reading beyond end of file
with read_sas(self.file01, format="xport", iterator=True) as reader:
data = reader.read(num_rows + 100)
assert data.shape[0] == num_rows
# Test incremental read with `read` method.
with read_sas(self.file01, format="xport", iterator=True) as reader:
data = reader.read(10)
tm.assert_frame_equal(data, data_csv.iloc[0:10, :])
# Test incremental read with `get_chunk` method.
with read_sas(self.file01, format="xport", chunksize=10) as reader:
data = reader.get_chunk()
tm.assert_frame_equal(data, data_csv.iloc[0:10, :])
# Test read in loop
m = 0
with read_sas(self.file01, format="xport", chunksize=100) as reader:
for x in reader:
m += x.shape[0]
assert m == num_rows
# Read full file with `read_sas` method
data = read_sas(self.file01)
tm.assert_frame_equal(data, data_csv)
def test1_index(self):
# Tests with DEMO_G.xpt using index (all numeric file)
# Compare to this
data_csv = pd.read_csv(self.file01.replace(".xpt", ".csv"))
data_csv = data_csv.set_index("SEQN")
numeric_as_float(data_csv)
# Read full file
data = read_sas(self.file01, index="SEQN", format="xport")
tm.assert_frame_equal(data, data_csv, check_index_type=False)
# Test incremental read with `read` method.
with read_sas(
self.file01, index="SEQN", format="xport", iterator=True
) as reader:
data = reader.read(10)
tm.assert_frame_equal(data, data_csv.iloc[0:10, :], check_index_type=False)
# Test incremental read with `get_chunk` method.
with read_sas(
self.file01, index="SEQN", format="xport", chunksize=10
) as reader:
data = reader.get_chunk()
tm.assert_frame_equal(data, data_csv.iloc[0:10, :], check_index_type=False)
def test1_incremental(self):
# Test with DEMO_G.xpt, reading full file incrementally
data_csv = pd.read_csv(self.file01.replace(".xpt", ".csv"))
data_csv = data_csv.set_index("SEQN")
numeric_as_float(data_csv)
with read_sas(self.file01, index="SEQN", chunksize=1000) as reader:
all_data = list(reader)
data = pd.concat(all_data, axis=0)
tm.assert_frame_equal(data, data_csv, check_index_type=False)
def test2(self):
# Test with SSHSV1_A.xpt
# Compare to this
data_csv = pd.read_csv(self.file02.replace(".xpt", ".csv"))
numeric_as_float(data_csv)
data = read_sas(self.file02)
tm.assert_frame_equal(data, data_csv)
def test2_binary(self):
# Test with SSHSV1_A.xpt, read as a binary file
# Compare to this
data_csv = pd.read_csv(self.file02.replace(".xpt", ".csv"))
numeric_as_float(data_csv)
with open(self.file02, "rb") as fd:
with td.file_leak_context():
# GH#35693 ensure that if we pass an open file, we
# dont incorrectly close it in read_sas
data = read_sas(fd, format="xport")
tm.assert_frame_equal(data, data_csv)
def test_multiple_types(self):
# Test with DRXFCD_G.xpt (contains text and numeric variables)
# Compare to this
data_csv = pd.read_csv(self.file03.replace(".xpt", ".csv"))
data = read_sas(self.file03, encoding="utf-8")
tm.assert_frame_equal(data, data_csv)
def test_truncated_float_support(self):
# Test with paxraw_d_short.xpt, a shortened version of:
# http://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/PAXRAW_D.ZIP
# This file has truncated floats (5 bytes in this case).
# GH 11713
data_csv = pd.read_csv(self.file04.replace(".xpt", ".csv"))
data = read_sas(self.file04, format="xport")
tm.assert_frame_equal(data.astype("int64"), data_csv)
def test_cport_header_found_raises(self):
# Test with DEMO_PUF.cpt, the beginning of puf2019_1_fall.xpt
# from https://www.cms.gov/files/zip/puf2019.zip
# (despite the extension, it's a cpt file)
msg = "Header record indicates a CPORT file, which is not readable."
with pytest.raises(ValueError, match=msg):
read_sas(self.file05, format="xport")