mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-07-02 14:27:31 +00:00
first commit
This commit is contained in:
663
.venv/Lib/site-packages/pandas/tests/plotting/common.py
Normal file
663
.venv/Lib/site-packages/pandas/tests/plotting/common.py
Normal file
@ -0,0 +1,663 @@
|
||||
"""
|
||||
Module consolidating common testing functions for checking plotting.
|
||||
|
||||
Currently all plotting tests are marked as slow via
|
||||
``pytestmark = pytest.mark.slow`` at the module level.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Sequence,
|
||||
)
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas.util._decorators import cache_readonly
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas.core.dtypes.api import is_list_like
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Series,
|
||||
to_datetime,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from matplotlib.axes import Axes
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestPlotBase:
|
||||
"""
|
||||
This is a common base class used for various plotting tests
|
||||
"""
|
||||
|
||||
def setup_method(self, method):
|
||||
|
||||
import matplotlib as mpl
|
||||
|
||||
from pandas.plotting._matplotlib import compat
|
||||
|
||||
self.compat = compat
|
||||
|
||||
mpl.rcdefaults()
|
||||
|
||||
self.start_date_to_int64 = 812419200000000000
|
||||
self.end_date_to_int64 = 819331200000000000
|
||||
|
||||
self.mpl_ge_2_2_3 = compat.mpl_ge_2_2_3()
|
||||
self.mpl_ge_3_0_0 = compat.mpl_ge_3_0_0()
|
||||
self.mpl_ge_3_1_0 = compat.mpl_ge_3_1_0()
|
||||
self.mpl_ge_3_2_0 = compat.mpl_ge_3_2_0()
|
||||
|
||||
self.bp_n_objects = 7
|
||||
self.polycollection_factor = 2
|
||||
self.default_figsize = (6.4, 4.8)
|
||||
self.default_tick_position = "left"
|
||||
|
||||
n = 100
|
||||
with tm.RNGContext(42):
|
||||
gender = np.random.choice(["Male", "Female"], size=n)
|
||||
classroom = np.random.choice(["A", "B", "C"], size=n)
|
||||
|
||||
self.hist_df = DataFrame(
|
||||
{
|
||||
"gender": gender,
|
||||
"classroom": classroom,
|
||||
"height": np.random.normal(66, 4, size=n),
|
||||
"weight": np.random.normal(161, 32, size=n),
|
||||
"category": np.random.randint(4, size=n),
|
||||
"datetime": to_datetime(
|
||||
np.random.randint(
|
||||
self.start_date_to_int64,
|
||||
self.end_date_to_int64,
|
||||
size=n,
|
||||
dtype=np.int64,
|
||||
)
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
self.tdf = tm.makeTimeDataFrame()
|
||||
self.hexbin_df = DataFrame(
|
||||
{
|
||||
"A": np.random.uniform(size=20),
|
||||
"B": np.random.uniform(size=20),
|
||||
"C": np.arange(20) + np.random.uniform(size=20),
|
||||
}
|
||||
)
|
||||
|
||||
def teardown_method(self, method):
|
||||
tm.close()
|
||||
|
||||
@cache_readonly
|
||||
def plt(self):
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
return plt
|
||||
|
||||
@cache_readonly
|
||||
def colorconverter(self):
|
||||
import matplotlib.colors as colors
|
||||
|
||||
return colors.colorConverter
|
||||
|
||||
def _check_legend_labels(self, axes, labels=None, visible=True):
|
||||
"""
|
||||
Check each axes has expected legend labels
|
||||
|
||||
Parameters
|
||||
----------
|
||||
axes : matplotlib Axes object, or its list-like
|
||||
labels : list-like
|
||||
expected legend labels
|
||||
visible : bool
|
||||
expected legend visibility. labels are checked only when visible is
|
||||
True
|
||||
"""
|
||||
if visible and (labels is None):
|
||||
raise ValueError("labels must be specified when visible is True")
|
||||
axes = self._flatten_visible(axes)
|
||||
for ax in axes:
|
||||
if visible:
|
||||
assert ax.get_legend() is not None
|
||||
self._check_text_labels(ax.get_legend().get_texts(), labels)
|
||||
else:
|
||||
assert ax.get_legend() is None
|
||||
|
||||
def _check_legend_marker(self, ax, expected_markers=None, visible=True):
|
||||
"""
|
||||
Check ax has expected legend markers
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ax : matplotlib Axes object
|
||||
expected_markers : list-like
|
||||
expected legend markers
|
||||
visible : bool
|
||||
expected legend visibility. labels are checked only when visible is
|
||||
True
|
||||
"""
|
||||
if visible and (expected_markers is None):
|
||||
raise ValueError("Markers must be specified when visible is True")
|
||||
if visible:
|
||||
handles, _ = ax.get_legend_handles_labels()
|
||||
markers = [handle.get_marker() for handle in handles]
|
||||
assert markers == expected_markers
|
||||
else:
|
||||
assert ax.get_legend() is None
|
||||
|
||||
def _check_data(self, xp, rs):
|
||||
"""
|
||||
Check each axes has identical lines
|
||||
|
||||
Parameters
|
||||
----------
|
||||
xp : matplotlib Axes object
|
||||
rs : matplotlib Axes object
|
||||
"""
|
||||
xp_lines = xp.get_lines()
|
||||
rs_lines = rs.get_lines()
|
||||
|
||||
def check_line(xpl, rsl):
|
||||
xpdata = xpl.get_xydata()
|
||||
rsdata = rsl.get_xydata()
|
||||
tm.assert_almost_equal(xpdata, rsdata)
|
||||
|
||||
assert len(xp_lines) == len(rs_lines)
|
||||
[check_line(xpl, rsl) for xpl, rsl in zip(xp_lines, rs_lines)]
|
||||
tm.close()
|
||||
|
||||
def _check_visible(self, collections, visible=True):
|
||||
"""
|
||||
Check each artist is visible or not
|
||||
|
||||
Parameters
|
||||
----------
|
||||
collections : matplotlib Artist or its list-like
|
||||
target Artist or its list or collection
|
||||
visible : bool
|
||||
expected visibility
|
||||
"""
|
||||
from matplotlib.collections import Collection
|
||||
|
||||
if not isinstance(collections, Collection) and not is_list_like(collections):
|
||||
collections = [collections]
|
||||
|
||||
for patch in collections:
|
||||
assert patch.get_visible() == visible
|
||||
|
||||
def _check_patches_all_filled(
|
||||
self, axes: Axes | Sequence[Axes], filled: bool = True
|
||||
) -> None:
|
||||
"""
|
||||
Check for each artist whether it is filled or not
|
||||
|
||||
Parameters
|
||||
----------
|
||||
axes : matplotlib Axes object, or its list-like
|
||||
filled : bool
|
||||
expected filling
|
||||
"""
|
||||
|
||||
axes = self._flatten_visible(axes)
|
||||
for ax in axes:
|
||||
for patch in ax.patches:
|
||||
assert patch.fill == filled
|
||||
|
||||
def _get_colors_mapped(self, series, colors):
|
||||
unique = series.unique()
|
||||
# unique and colors length can be differed
|
||||
# depending on slice value
|
||||
mapped = dict(zip(unique, colors))
|
||||
return [mapped[v] for v in series.values]
|
||||
|
||||
def _check_colors(
|
||||
self, collections, linecolors=None, facecolors=None, mapping=None
|
||||
):
|
||||
"""
|
||||
Check each artist has expected line colors and face colors
|
||||
|
||||
Parameters
|
||||
----------
|
||||
collections : list-like
|
||||
list or collection of target artist
|
||||
linecolors : list-like which has the same length as collections
|
||||
list of expected line colors
|
||||
facecolors : list-like which has the same length as collections
|
||||
list of expected face colors
|
||||
mapping : Series
|
||||
Series used for color grouping key
|
||||
used for andrew_curves, parallel_coordinates, radviz test
|
||||
"""
|
||||
from matplotlib.collections import (
|
||||
Collection,
|
||||
LineCollection,
|
||||
PolyCollection,
|
||||
)
|
||||
from matplotlib.lines import Line2D
|
||||
|
||||
conv = self.colorconverter
|
||||
if linecolors is not None:
|
||||
|
||||
if mapping is not None:
|
||||
linecolors = self._get_colors_mapped(mapping, linecolors)
|
||||
linecolors = linecolors[: len(collections)]
|
||||
|
||||
assert len(collections) == len(linecolors)
|
||||
for patch, color in zip(collections, linecolors):
|
||||
if isinstance(patch, Line2D):
|
||||
result = patch.get_color()
|
||||
# Line2D may contains string color expression
|
||||
result = conv.to_rgba(result)
|
||||
elif isinstance(patch, (PolyCollection, LineCollection)):
|
||||
result = tuple(patch.get_edgecolor()[0])
|
||||
else:
|
||||
result = patch.get_edgecolor()
|
||||
|
||||
expected = conv.to_rgba(color)
|
||||
assert result == expected
|
||||
|
||||
if facecolors is not None:
|
||||
|
||||
if mapping is not None:
|
||||
facecolors = self._get_colors_mapped(mapping, facecolors)
|
||||
facecolors = facecolors[: len(collections)]
|
||||
|
||||
assert len(collections) == len(facecolors)
|
||||
for patch, color in zip(collections, facecolors):
|
||||
if isinstance(patch, Collection):
|
||||
# returned as list of np.array
|
||||
result = patch.get_facecolor()[0]
|
||||
else:
|
||||
result = patch.get_facecolor()
|
||||
|
||||
if isinstance(result, np.ndarray):
|
||||
result = tuple(result)
|
||||
|
||||
expected = conv.to_rgba(color)
|
||||
assert result == expected
|
||||
|
||||
def _check_text_labels(self, texts, expected):
|
||||
"""
|
||||
Check each text has expected labels
|
||||
|
||||
Parameters
|
||||
----------
|
||||
texts : matplotlib Text object, or its list-like
|
||||
target text, or its list
|
||||
expected : str or list-like which has the same length as texts
|
||||
expected text label, or its list
|
||||
"""
|
||||
if not is_list_like(texts):
|
||||
assert texts.get_text() == expected
|
||||
else:
|
||||
labels = [t.get_text() for t in texts]
|
||||
assert len(labels) == len(expected)
|
||||
for label, e in zip(labels, expected):
|
||||
assert label == e
|
||||
|
||||
def _check_ticks_props(
|
||||
self, axes, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None
|
||||
):
|
||||
"""
|
||||
Check each axes has expected tick properties
|
||||
|
||||
Parameters
|
||||
----------
|
||||
axes : matplotlib Axes object, or its list-like
|
||||
xlabelsize : number
|
||||
expected xticks font size
|
||||
xrot : number
|
||||
expected xticks rotation
|
||||
ylabelsize : number
|
||||
expected yticks font size
|
||||
yrot : number
|
||||
expected yticks rotation
|
||||
"""
|
||||
from matplotlib.ticker import NullFormatter
|
||||
|
||||
axes = self._flatten_visible(axes)
|
||||
for ax in axes:
|
||||
if xlabelsize is not None or xrot is not None:
|
||||
if isinstance(ax.xaxis.get_minor_formatter(), NullFormatter):
|
||||
# If minor ticks has NullFormatter, rot / fontsize are not
|
||||
# retained
|
||||
labels = ax.get_xticklabels()
|
||||
else:
|
||||
labels = ax.get_xticklabels() + ax.get_xticklabels(minor=True)
|
||||
|
||||
for label in labels:
|
||||
if xlabelsize is not None:
|
||||
tm.assert_almost_equal(label.get_fontsize(), xlabelsize)
|
||||
if xrot is not None:
|
||||
tm.assert_almost_equal(label.get_rotation(), xrot)
|
||||
|
||||
if ylabelsize is not None or yrot is not None:
|
||||
if isinstance(ax.yaxis.get_minor_formatter(), NullFormatter):
|
||||
labels = ax.get_yticklabels()
|
||||
else:
|
||||
labels = ax.get_yticklabels() + ax.get_yticklabels(minor=True)
|
||||
|
||||
for label in labels:
|
||||
if ylabelsize is not None:
|
||||
tm.assert_almost_equal(label.get_fontsize(), ylabelsize)
|
||||
if yrot is not None:
|
||||
tm.assert_almost_equal(label.get_rotation(), yrot)
|
||||
|
||||
def _check_ax_scales(self, axes, xaxis="linear", yaxis="linear"):
|
||||
"""
|
||||
Check each axes has expected scales
|
||||
|
||||
Parameters
|
||||
----------
|
||||
axes : matplotlib Axes object, or its list-like
|
||||
xaxis : {'linear', 'log'}
|
||||
expected xaxis scale
|
||||
yaxis : {'linear', 'log'}
|
||||
expected yaxis scale
|
||||
"""
|
||||
axes = self._flatten_visible(axes)
|
||||
for ax in axes:
|
||||
assert ax.xaxis.get_scale() == xaxis
|
||||
assert ax.yaxis.get_scale() == yaxis
|
||||
|
||||
def _check_axes_shape(self, axes, axes_num=None, layout=None, figsize=None):
|
||||
"""
|
||||
Check expected number of axes is drawn in expected layout
|
||||
|
||||
Parameters
|
||||
----------
|
||||
axes : matplotlib Axes object, or its list-like
|
||||
axes_num : number
|
||||
expected number of axes. Unnecessary axes should be set to
|
||||
invisible.
|
||||
layout : tuple
|
||||
expected layout, (expected number of rows , columns)
|
||||
figsize : tuple
|
||||
expected figsize. default is matplotlib default
|
||||
"""
|
||||
from pandas.plotting._matplotlib.tools import flatten_axes
|
||||
|
||||
if figsize is None:
|
||||
figsize = self.default_figsize
|
||||
visible_axes = self._flatten_visible(axes)
|
||||
|
||||
if axes_num is not None:
|
||||
assert len(visible_axes) == axes_num
|
||||
for ax in visible_axes:
|
||||
# check something drawn on visible axes
|
||||
assert len(ax.get_children()) > 0
|
||||
|
||||
if layout is not None:
|
||||
result = self._get_axes_layout(flatten_axes(axes))
|
||||
assert result == layout
|
||||
|
||||
tm.assert_numpy_array_equal(
|
||||
visible_axes[0].figure.get_size_inches(),
|
||||
np.array(figsize, dtype=np.float64),
|
||||
)
|
||||
|
||||
def _get_axes_layout(self, axes):
|
||||
x_set = set()
|
||||
y_set = set()
|
||||
for ax in axes:
|
||||
# check axes coordinates to estimate layout
|
||||
points = ax.get_position().get_points()
|
||||
x_set.add(points[0][0])
|
||||
y_set.add(points[0][1])
|
||||
return (len(y_set), len(x_set))
|
||||
|
||||
def _flatten_visible(self, axes):
|
||||
"""
|
||||
Flatten axes, and filter only visible
|
||||
|
||||
Parameters
|
||||
----------
|
||||
axes : matplotlib Axes object, or its list-like
|
||||
|
||||
"""
|
||||
from pandas.plotting._matplotlib.tools import flatten_axes
|
||||
|
||||
axes = flatten_axes(axes)
|
||||
axes = [ax for ax in axes if ax.get_visible()]
|
||||
return axes
|
||||
|
||||
def _check_has_errorbars(self, axes, xerr=0, yerr=0):
|
||||
"""
|
||||
Check axes has expected number of errorbars
|
||||
|
||||
Parameters
|
||||
----------
|
||||
axes : matplotlib Axes object, or its list-like
|
||||
xerr : number
|
||||
expected number of x errorbar
|
||||
yerr : number
|
||||
expected number of y errorbar
|
||||
"""
|
||||
axes = self._flatten_visible(axes)
|
||||
for ax in axes:
|
||||
containers = ax.containers
|
||||
xerr_count = 0
|
||||
yerr_count = 0
|
||||
for c in containers:
|
||||
has_xerr = getattr(c, "has_xerr", False)
|
||||
has_yerr = getattr(c, "has_yerr", False)
|
||||
if has_xerr:
|
||||
xerr_count += 1
|
||||
if has_yerr:
|
||||
yerr_count += 1
|
||||
assert xerr == xerr_count
|
||||
assert yerr == yerr_count
|
||||
|
||||
def _check_box_return_type(
|
||||
self, returned, return_type, expected_keys=None, check_ax_title=True
|
||||
):
|
||||
"""
|
||||
Check box returned type is correct
|
||||
|
||||
Parameters
|
||||
----------
|
||||
returned : object to be tested, returned from boxplot
|
||||
return_type : str
|
||||
return_type passed to boxplot
|
||||
expected_keys : list-like, optional
|
||||
group labels in subplot case. If not passed,
|
||||
the function checks assuming boxplot uses single ax
|
||||
check_ax_title : bool
|
||||
Whether to check the ax.title is the same as expected_key
|
||||
Intended to be checked by calling from ``boxplot``.
|
||||
Normal ``plot`` doesn't attach ``ax.title``, it must be disabled.
|
||||
"""
|
||||
from matplotlib.axes import Axes
|
||||
|
||||
types = {"dict": dict, "axes": Axes, "both": tuple}
|
||||
if expected_keys is None:
|
||||
# should be fixed when the returning default is changed
|
||||
if return_type is None:
|
||||
return_type = "dict"
|
||||
|
||||
assert isinstance(returned, types[return_type])
|
||||
if return_type == "both":
|
||||
assert isinstance(returned.ax, Axes)
|
||||
assert isinstance(returned.lines, dict)
|
||||
else:
|
||||
# should be fixed when the returning default is changed
|
||||
if return_type is None:
|
||||
for r in self._flatten_visible(returned):
|
||||
assert isinstance(r, Axes)
|
||||
return
|
||||
|
||||
assert isinstance(returned, Series)
|
||||
|
||||
assert sorted(returned.keys()) == sorted(expected_keys)
|
||||
for key, value in returned.items():
|
||||
assert isinstance(value, types[return_type])
|
||||
# check returned dict has correct mapping
|
||||
if return_type == "axes":
|
||||
if check_ax_title:
|
||||
assert value.get_title() == key
|
||||
elif return_type == "both":
|
||||
if check_ax_title:
|
||||
assert value.ax.get_title() == key
|
||||
assert isinstance(value.ax, Axes)
|
||||
assert isinstance(value.lines, dict)
|
||||
elif return_type == "dict":
|
||||
line = value["medians"][0]
|
||||
axes = line.axes
|
||||
if check_ax_title:
|
||||
assert axes.get_title() == key
|
||||
else:
|
||||
raise AssertionError
|
||||
|
||||
def _check_grid_settings(self, obj, kinds, kws={}):
|
||||
# Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792
|
||||
|
||||
import matplotlib as mpl
|
||||
|
||||
def is_grid_on():
|
||||
xticks = self.plt.gca().xaxis.get_major_ticks()
|
||||
yticks = self.plt.gca().yaxis.get_major_ticks()
|
||||
# for mpl 2.2.2, gridOn and gridline.get_visible disagree.
|
||||
# for new MPL, they are the same.
|
||||
|
||||
if self.mpl_ge_3_1_0:
|
||||
xoff = all(not g.gridline.get_visible() for g in xticks)
|
||||
yoff = all(not g.gridline.get_visible() for g in yticks)
|
||||
else:
|
||||
xoff = all(not g.gridOn for g in xticks)
|
||||
yoff = all(not g.gridOn for g in yticks)
|
||||
|
||||
return not (xoff and yoff)
|
||||
|
||||
spndx = 1
|
||||
for kind in kinds:
|
||||
|
||||
self.plt.subplot(1, 4 * len(kinds), spndx)
|
||||
spndx += 1
|
||||
mpl.rc("axes", grid=False)
|
||||
obj.plot(kind=kind, **kws)
|
||||
assert not is_grid_on()
|
||||
|
||||
self.plt.subplot(1, 4 * len(kinds), spndx)
|
||||
spndx += 1
|
||||
mpl.rc("axes", grid=True)
|
||||
obj.plot(kind=kind, grid=False, **kws)
|
||||
assert not is_grid_on()
|
||||
|
||||
if kind not in ["pie", "hexbin", "scatter"]:
|
||||
self.plt.subplot(1, 4 * len(kinds), spndx)
|
||||
spndx += 1
|
||||
mpl.rc("axes", grid=True)
|
||||
obj.plot(kind=kind, **kws)
|
||||
assert is_grid_on()
|
||||
|
||||
self.plt.subplot(1, 4 * len(kinds), spndx)
|
||||
spndx += 1
|
||||
mpl.rc("axes", grid=False)
|
||||
obj.plot(kind=kind, grid=True, **kws)
|
||||
assert is_grid_on()
|
||||
|
||||
def _unpack_cycler(self, rcParams, field="color"):
|
||||
"""
|
||||
Auxiliary function for correctly unpacking cycler after MPL >= 1.5
|
||||
"""
|
||||
return [v[field] for v in rcParams["axes.prop_cycle"]]
|
||||
|
||||
def get_x_axis(self, ax):
|
||||
return ax._shared_axes["x"] if self.compat.mpl_ge_3_5_0() else ax._shared_x_axes
|
||||
|
||||
def get_y_axis(self, ax):
|
||||
return ax._shared_axes["y"] if self.compat.mpl_ge_3_5_0() else ax._shared_y_axes
|
||||
|
||||
|
||||
def _check_plot_works(f, filterwarnings="always", default_axes=False, **kwargs):
|
||||
"""
|
||||
Create plot and ensure that plot return object is valid.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
f : func
|
||||
Plotting function.
|
||||
filterwarnings : str
|
||||
Warnings filter.
|
||||
See https://docs.python.org/3/library/warnings.html#warning-filter
|
||||
default_axes : bool, optional
|
||||
If False (default):
|
||||
- If `ax` not in `kwargs`, then create subplot(211) and plot there
|
||||
- Create new subplot(212) and plot there as well
|
||||
- Mind special corner case for bootstrap_plot (see `_gen_two_subplots`)
|
||||
If True:
|
||||
- Simply run plotting function with kwargs provided
|
||||
- All required axes instances will be created automatically
|
||||
- It is recommended to use it when the plotting function
|
||||
creates multiple axes itself. It helps avoid warnings like
|
||||
'UserWarning: To output multiple subplots,
|
||||
the figure containing the passed axes is being cleared'
|
||||
**kwargs
|
||||
Keyword arguments passed to the plotting function.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Plot object returned by the last plotting.
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
if default_axes:
|
||||
gen_plots = _gen_default_plot
|
||||
else:
|
||||
gen_plots = _gen_two_subplots
|
||||
|
||||
ret = None
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter(filterwarnings)
|
||||
try:
|
||||
fig = kwargs.get("figure", plt.gcf())
|
||||
plt.clf()
|
||||
|
||||
for ret in gen_plots(f, fig, **kwargs):
|
||||
tm.assert_is_valid_plot_return_object(ret)
|
||||
|
||||
with tm.ensure_clean(return_filelike=True) as path:
|
||||
plt.savefig(path)
|
||||
|
||||
except Exception as err:
|
||||
raise err
|
||||
finally:
|
||||
tm.close(fig)
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
def _gen_default_plot(f, fig, **kwargs):
|
||||
"""
|
||||
Create plot in a default way.
|
||||
"""
|
||||
yield f(**kwargs)
|
||||
|
||||
|
||||
def _gen_two_subplots(f, fig, **kwargs):
|
||||
"""
|
||||
Create plot on two subplots forcefully created.
|
||||
"""
|
||||
if "ax" not in kwargs:
|
||||
fig.add_subplot(211)
|
||||
yield f(**kwargs)
|
||||
|
||||
if f is pd.plotting.bootstrap_plot:
|
||||
assert "ax" not in kwargs
|
||||
else:
|
||||
kwargs["ax"] = fig.add_subplot(212)
|
||||
yield f(**kwargs)
|
||||
|
||||
|
||||
def curpath():
|
||||
pth, _ = os.path.split(os.path.abspath(__file__))
|
||||
return pth
|
2102
.venv/Lib/site-packages/pandas/tests/plotting/frame/test_frame.py
Normal file
2102
.venv/Lib/site-packages/pandas/tests/plotting/frame/test_frame.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,664 @@
|
||||
""" Test cases for DataFrame.plot """
|
||||
import re
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
import pandas as pd
|
||||
from pandas import DataFrame
|
||||
import pandas._testing as tm
|
||||
from pandas.tests.plotting.common import (
|
||||
TestPlotBase,
|
||||
_check_plot_works,
|
||||
)
|
||||
|
||||
pytestmark = pytest.mark.slow
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestDataFrameColor(TestPlotBase):
|
||||
def setup_method(self, method):
|
||||
TestPlotBase.setup_method(self, method)
|
||||
import matplotlib as mpl
|
||||
|
||||
mpl.rcdefaults()
|
||||
|
||||
self.tdf = tm.makeTimeDataFrame()
|
||||
self.hexbin_df = DataFrame(
|
||||
{
|
||||
"A": np.random.uniform(size=20),
|
||||
"B": np.random.uniform(size=20),
|
||||
"C": np.arange(20) + np.random.uniform(size=20),
|
||||
}
|
||||
)
|
||||
|
||||
def test_mpl2_color_cycle_str(self):
|
||||
# GH 15516
|
||||
df = DataFrame(np.random.randn(10, 3), columns=["a", "b", "c"])
|
||||
colors = ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7", "C8", "C9"]
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
warnings.simplefilter("always", "MatplotlibDeprecationWarning")
|
||||
|
||||
for color in colors:
|
||||
_check_plot_works(df.plot, color=color)
|
||||
|
||||
# if warning is raised, check that it is the exact problematic one
|
||||
# GH 36972
|
||||
if w:
|
||||
match = "Support for uppercase single-letter colors is deprecated"
|
||||
warning_message = str(w[0].message)
|
||||
msg = "MatplotlibDeprecationWarning related to CN colors was raised"
|
||||
assert match not in warning_message, msg
|
||||
|
||||
def test_color_single_series_list(self):
|
||||
# GH 3486
|
||||
df = DataFrame({"A": [1, 2, 3]})
|
||||
_check_plot_works(df.plot, color=["red"])
|
||||
|
||||
@pytest.mark.parametrize("color", [(1, 0, 0), (1, 0, 0, 0.5)])
|
||||
def test_rgb_tuple_color(self, color):
|
||||
# GH 16695
|
||||
df = DataFrame({"x": [1, 2], "y": [3, 4]})
|
||||
_check_plot_works(df.plot, x="x", y="y", color=color)
|
||||
|
||||
def test_color_empty_string(self):
|
||||
df = DataFrame(np.random.randn(10, 2))
|
||||
with pytest.raises(ValueError, match="Invalid color argument:"):
|
||||
df.plot(color="")
|
||||
|
||||
def test_color_and_style_arguments(self):
|
||||
df = DataFrame({"x": [1, 2], "y": [3, 4]})
|
||||
# passing both 'color' and 'style' arguments should be allowed
|
||||
# if there is no color symbol in the style strings:
|
||||
ax = df.plot(color=["red", "black"], style=["-", "--"])
|
||||
# check that the linestyles are correctly set:
|
||||
linestyle = [line.get_linestyle() for line in ax.lines]
|
||||
assert linestyle == ["-", "--"]
|
||||
# check that the colors are correctly set:
|
||||
color = [line.get_color() for line in ax.lines]
|
||||
assert color == ["red", "black"]
|
||||
# passing both 'color' and 'style' arguments should not be allowed
|
||||
# if there is a color symbol in the style strings:
|
||||
msg = (
|
||||
"Cannot pass 'style' string with a color symbol and 'color' keyword "
|
||||
"argument. Please use one or the other or pass 'style' without a color "
|
||||
"symbol"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.plot(color=["red", "black"], style=["k-", "r--"])
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"color, expected",
|
||||
[
|
||||
("green", ["green"] * 4),
|
||||
(["yellow", "red", "green", "blue"], ["yellow", "red", "green", "blue"]),
|
||||
],
|
||||
)
|
||||
def test_color_and_marker(self, color, expected):
|
||||
# GH 21003
|
||||
df = DataFrame(np.random.random((7, 4)))
|
||||
ax = df.plot(color=color, style="d--")
|
||||
# check colors
|
||||
result = [i.get_color() for i in ax.lines]
|
||||
assert result == expected
|
||||
# check markers and linestyles
|
||||
assert all(i.get_linestyle() == "--" for i in ax.lines)
|
||||
assert all(i.get_marker() == "d" for i in ax.lines)
|
||||
|
||||
def test_bar_colors(self):
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
default_colors = self._unpack_cycler(plt.rcParams)
|
||||
|
||||
df = DataFrame(np.random.randn(5, 5))
|
||||
ax = df.plot.bar()
|
||||
self._check_colors(ax.patches[::5], facecolors=default_colors[:5])
|
||||
tm.close()
|
||||
|
||||
custom_colors = "rgcby"
|
||||
ax = df.plot.bar(color=custom_colors)
|
||||
self._check_colors(ax.patches[::5], facecolors=custom_colors)
|
||||
tm.close()
|
||||
|
||||
from matplotlib import cm
|
||||
|
||||
# Test str -> colormap functionality
|
||||
ax = df.plot.bar(colormap="jet")
|
||||
rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)]
|
||||
self._check_colors(ax.patches[::5], facecolors=rgba_colors)
|
||||
tm.close()
|
||||
|
||||
# Test colormap functionality
|
||||
ax = df.plot.bar(colormap=cm.jet)
|
||||
rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)]
|
||||
self._check_colors(ax.patches[::5], facecolors=rgba_colors)
|
||||
tm.close()
|
||||
|
||||
ax = df.loc[:, [0]].plot.bar(color="DodgerBlue")
|
||||
self._check_colors([ax.patches[0]], facecolors=["DodgerBlue"])
|
||||
tm.close()
|
||||
|
||||
ax = df.plot(kind="bar", color="green")
|
||||
self._check_colors(ax.patches[::5], facecolors=["green"] * 5)
|
||||
tm.close()
|
||||
|
||||
def test_bar_user_colors(self):
|
||||
df = DataFrame(
|
||||
{"A": range(4), "B": range(1, 5), "color": ["red", "blue", "blue", "red"]}
|
||||
)
|
||||
# This should *only* work when `y` is specified, else
|
||||
# we use one color per column
|
||||
ax = df.plot.bar(y="A", color=df["color"])
|
||||
result = [p.get_facecolor() for p in ax.patches]
|
||||
expected = [
|
||||
(1.0, 0.0, 0.0, 1.0),
|
||||
(0.0, 0.0, 1.0, 1.0),
|
||||
(0.0, 0.0, 1.0, 1.0),
|
||||
(1.0, 0.0, 0.0, 1.0),
|
||||
]
|
||||
assert result == expected
|
||||
|
||||
def test_if_scatterplot_colorbar_affects_xaxis_visibility(self):
|
||||
# addressing issue #10611, to ensure colobar does not
|
||||
# interfere with x-axis label and ticklabels with
|
||||
# ipython inline backend.
|
||||
random_array = np.random.random((1000, 3))
|
||||
df = DataFrame(random_array, columns=["A label", "B label", "C label"])
|
||||
|
||||
ax1 = df.plot.scatter(x="A label", y="B label")
|
||||
ax2 = df.plot.scatter(x="A label", y="B label", c="C label")
|
||||
|
||||
vis1 = [vis.get_visible() for vis in ax1.xaxis.get_minorticklabels()]
|
||||
vis2 = [vis.get_visible() for vis in ax2.xaxis.get_minorticklabels()]
|
||||
assert vis1 == vis2
|
||||
|
||||
vis1 = [vis.get_visible() for vis in ax1.xaxis.get_majorticklabels()]
|
||||
vis2 = [vis.get_visible() for vis in ax2.xaxis.get_majorticklabels()]
|
||||
assert vis1 == vis2
|
||||
|
||||
assert (
|
||||
ax1.xaxis.get_label().get_visible() == ax2.xaxis.get_label().get_visible()
|
||||
)
|
||||
|
||||
def test_if_hexbin_xaxis_label_is_visible(self):
|
||||
# addressing issue #10678, to ensure colobar does not
|
||||
# interfere with x-axis label and ticklabels with
|
||||
# ipython inline backend.
|
||||
random_array = np.random.random((1000, 3))
|
||||
df = DataFrame(random_array, columns=["A label", "B label", "C label"])
|
||||
|
||||
ax = df.plot.hexbin("A label", "B label", gridsize=12)
|
||||
assert all(vis.get_visible() for vis in ax.xaxis.get_minorticklabels())
|
||||
assert all(vis.get_visible() for vis in ax.xaxis.get_majorticklabels())
|
||||
assert ax.xaxis.get_label().get_visible()
|
||||
|
||||
def test_if_scatterplot_colorbars_are_next_to_parent_axes(self):
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
random_array = np.random.random((1000, 3))
|
||||
df = DataFrame(random_array, columns=["A label", "B label", "C label"])
|
||||
|
||||
fig, axes = plt.subplots(1, 2)
|
||||
df.plot.scatter("A label", "B label", c="C label", ax=axes[0])
|
||||
df.plot.scatter("A label", "B label", c="C label", ax=axes[1])
|
||||
plt.tight_layout()
|
||||
|
||||
points = np.array([ax.get_position().get_points() for ax in fig.axes])
|
||||
axes_x_coords = points[:, :, 0]
|
||||
parent_distance = axes_x_coords[1, :] - axes_x_coords[0, :]
|
||||
colorbar_distance = axes_x_coords[3, :] - axes_x_coords[2, :]
|
||||
assert np.isclose(parent_distance, colorbar_distance, atol=1e-7).all()
|
||||
|
||||
@pytest.mark.parametrize("cmap", [None, "Greys"])
|
||||
def test_scatter_with_c_column_name_with_colors(self, cmap):
|
||||
# https://github.com/pandas-dev/pandas/issues/34316
|
||||
df = DataFrame(
|
||||
[[5.1, 3.5], [4.9, 3.0], [7.0, 3.2], [6.4, 3.2], [5.9, 3.0]],
|
||||
columns=["length", "width"],
|
||||
)
|
||||
df["species"] = ["r", "r", "g", "g", "b"]
|
||||
ax = df.plot.scatter(x=0, y=1, c="species", cmap=cmap)
|
||||
assert ax.collections[0].colorbar is None
|
||||
|
||||
def test_scatter_colors(self):
|
||||
df = DataFrame({"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3]})
|
||||
with pytest.raises(TypeError, match="Specify exactly one of `c` and `color`"):
|
||||
df.plot.scatter(x="a", y="b", c="c", color="green")
|
||||
|
||||
default_colors = self._unpack_cycler(self.plt.rcParams)
|
||||
|
||||
ax = df.plot.scatter(x="a", y="b", c="c")
|
||||
tm.assert_numpy_array_equal(
|
||||
ax.collections[0].get_facecolor()[0],
|
||||
np.array(self.colorconverter.to_rgba(default_colors[0])),
|
||||
)
|
||||
|
||||
ax = df.plot.scatter(x="a", y="b", color="white")
|
||||
tm.assert_numpy_array_equal(
|
||||
ax.collections[0].get_facecolor()[0],
|
||||
np.array([1, 1, 1, 1], dtype=np.float64),
|
||||
)
|
||||
|
||||
def test_scatter_colorbar_different_cmap(self):
|
||||
# GH 33389
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
df = DataFrame({"x": [1, 2, 3], "y": [1, 3, 2], "c": [1, 2, 3]})
|
||||
df["x2"] = df["x"] + 1
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
df.plot("x", "y", c="c", kind="scatter", cmap="cividis", ax=ax)
|
||||
df.plot("x2", "y", c="c", kind="scatter", cmap="magma", ax=ax)
|
||||
|
||||
assert ax.collections[0].cmap.name == "cividis"
|
||||
assert ax.collections[1].cmap.name == "magma"
|
||||
|
||||
def test_line_colors(self):
|
||||
from matplotlib import cm
|
||||
|
||||
custom_colors = "rgcby"
|
||||
df = DataFrame(np.random.randn(5, 5))
|
||||
|
||||
ax = df.plot(color=custom_colors)
|
||||
self._check_colors(ax.get_lines(), linecolors=custom_colors)
|
||||
|
||||
tm.close()
|
||||
|
||||
ax2 = df.plot(color=custom_colors)
|
||||
lines2 = ax2.get_lines()
|
||||
|
||||
for l1, l2 in zip(ax.get_lines(), lines2):
|
||||
assert l1.get_color() == l2.get_color()
|
||||
|
||||
tm.close()
|
||||
|
||||
ax = df.plot(colormap="jet")
|
||||
rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
|
||||
self._check_colors(ax.get_lines(), linecolors=rgba_colors)
|
||||
tm.close()
|
||||
|
||||
ax = df.plot(colormap=cm.jet)
|
||||
rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
|
||||
self._check_colors(ax.get_lines(), linecolors=rgba_colors)
|
||||
tm.close()
|
||||
|
||||
# make color a list if plotting one column frame
|
||||
# handles cases like df.plot(color='DodgerBlue')
|
||||
ax = df.loc[:, [0]].plot(color="DodgerBlue")
|
||||
self._check_colors(ax.lines, linecolors=["DodgerBlue"])
|
||||
|
||||
ax = df.plot(color="red")
|
||||
self._check_colors(ax.get_lines(), linecolors=["red"] * 5)
|
||||
tm.close()
|
||||
|
||||
# GH 10299
|
||||
custom_colors = ["#FF0000", "#0000FF", "#FFFF00", "#000000", "#FFFFFF"]
|
||||
ax = df.plot(color=custom_colors)
|
||||
self._check_colors(ax.get_lines(), linecolors=custom_colors)
|
||||
tm.close()
|
||||
|
||||
def test_dont_modify_colors(self):
|
||||
colors = ["r", "g", "b"]
|
||||
DataFrame(np.random.rand(10, 2)).plot(color=colors)
|
||||
assert len(colors) == 3
|
||||
|
||||
def test_line_colors_and_styles_subplots(self):
|
||||
# GH 9894
|
||||
from matplotlib import cm
|
||||
|
||||
default_colors = self._unpack_cycler(self.plt.rcParams)
|
||||
|
||||
df = DataFrame(np.random.randn(5, 5))
|
||||
|
||||
axes = df.plot(subplots=True)
|
||||
for ax, c in zip(axes, list(default_colors)):
|
||||
self._check_colors(ax.get_lines(), linecolors=[c])
|
||||
tm.close()
|
||||
|
||||
# single color char
|
||||
axes = df.plot(subplots=True, color="k")
|
||||
for ax in axes:
|
||||
self._check_colors(ax.get_lines(), linecolors=["k"])
|
||||
tm.close()
|
||||
|
||||
# single color str
|
||||
axes = df.plot(subplots=True, color="green")
|
||||
for ax in axes:
|
||||
self._check_colors(ax.get_lines(), linecolors=["green"])
|
||||
tm.close()
|
||||
|
||||
custom_colors = "rgcby"
|
||||
axes = df.plot(color=custom_colors, subplots=True)
|
||||
for ax, c in zip(axes, list(custom_colors)):
|
||||
self._check_colors(ax.get_lines(), linecolors=[c])
|
||||
tm.close()
|
||||
|
||||
axes = df.plot(color=list(custom_colors), subplots=True)
|
||||
for ax, c in zip(axes, list(custom_colors)):
|
||||
self._check_colors(ax.get_lines(), linecolors=[c])
|
||||
tm.close()
|
||||
|
||||
# GH 10299
|
||||
custom_colors = ["#FF0000", "#0000FF", "#FFFF00", "#000000", "#FFFFFF"]
|
||||
axes = df.plot(color=custom_colors, subplots=True)
|
||||
for ax, c in zip(axes, list(custom_colors)):
|
||||
self._check_colors(ax.get_lines(), linecolors=[c])
|
||||
tm.close()
|
||||
|
||||
rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
|
||||
for cmap in ["jet", cm.jet]:
|
||||
axes = df.plot(colormap=cmap, subplots=True)
|
||||
for ax, c in zip(axes, rgba_colors):
|
||||
self._check_colors(ax.get_lines(), linecolors=[c])
|
||||
tm.close()
|
||||
|
||||
# make color a list if plotting one column frame
|
||||
# handles cases like df.plot(color='DodgerBlue')
|
||||
axes = df.loc[:, [0]].plot(color="DodgerBlue", subplots=True)
|
||||
self._check_colors(axes[0].lines, linecolors=["DodgerBlue"])
|
||||
|
||||
# single character style
|
||||
axes = df.plot(style="r", subplots=True)
|
||||
for ax in axes:
|
||||
self._check_colors(ax.get_lines(), linecolors=["r"])
|
||||
tm.close()
|
||||
|
||||
# list of styles
|
||||
styles = list("rgcby")
|
||||
axes = df.plot(style=styles, subplots=True)
|
||||
for ax, c in zip(axes, styles):
|
||||
self._check_colors(ax.get_lines(), linecolors=[c])
|
||||
tm.close()
|
||||
|
||||
def test_area_colors(self):
|
||||
from matplotlib import cm
|
||||
from matplotlib.collections import PolyCollection
|
||||
|
||||
custom_colors = "rgcby"
|
||||
df = DataFrame(np.random.rand(5, 5))
|
||||
|
||||
ax = df.plot.area(color=custom_colors)
|
||||
self._check_colors(ax.get_lines(), linecolors=custom_colors)
|
||||
poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)]
|
||||
self._check_colors(poly, facecolors=custom_colors)
|
||||
|
||||
handles, labels = ax.get_legend_handles_labels()
|
||||
self._check_colors(handles, facecolors=custom_colors)
|
||||
|
||||
for h in handles:
|
||||
assert h.get_alpha() is None
|
||||
tm.close()
|
||||
|
||||
ax = df.plot.area(colormap="jet")
|
||||
jet_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
|
||||
self._check_colors(ax.get_lines(), linecolors=jet_colors)
|
||||
poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)]
|
||||
self._check_colors(poly, facecolors=jet_colors)
|
||||
|
||||
handles, labels = ax.get_legend_handles_labels()
|
||||
self._check_colors(handles, facecolors=jet_colors)
|
||||
for h in handles:
|
||||
assert h.get_alpha() is None
|
||||
tm.close()
|
||||
|
||||
# When stacked=False, alpha is set to 0.5
|
||||
ax = df.plot.area(colormap=cm.jet, stacked=False)
|
||||
self._check_colors(ax.get_lines(), linecolors=jet_colors)
|
||||
poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)]
|
||||
jet_with_alpha = [(c[0], c[1], c[2], 0.5) for c in jet_colors]
|
||||
self._check_colors(poly, facecolors=jet_with_alpha)
|
||||
|
||||
handles, labels = ax.get_legend_handles_labels()
|
||||
linecolors = jet_with_alpha
|
||||
self._check_colors(handles[: len(jet_colors)], linecolors=linecolors)
|
||||
for h in handles:
|
||||
assert h.get_alpha() == 0.5
|
||||
|
||||
def test_hist_colors(self):
|
||||
default_colors = self._unpack_cycler(self.plt.rcParams)
|
||||
|
||||
df = DataFrame(np.random.randn(5, 5))
|
||||
ax = df.plot.hist()
|
||||
self._check_colors(ax.patches[::10], facecolors=default_colors[:5])
|
||||
tm.close()
|
||||
|
||||
custom_colors = "rgcby"
|
||||
ax = df.plot.hist(color=custom_colors)
|
||||
self._check_colors(ax.patches[::10], facecolors=custom_colors)
|
||||
tm.close()
|
||||
|
||||
from matplotlib import cm
|
||||
|
||||
# Test str -> colormap functionality
|
||||
ax = df.plot.hist(colormap="jet")
|
||||
rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)]
|
||||
self._check_colors(ax.patches[::10], facecolors=rgba_colors)
|
||||
tm.close()
|
||||
|
||||
# Test colormap functionality
|
||||
ax = df.plot.hist(colormap=cm.jet)
|
||||
rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)]
|
||||
self._check_colors(ax.patches[::10], facecolors=rgba_colors)
|
||||
tm.close()
|
||||
|
||||
ax = df.loc[:, [0]].plot.hist(color="DodgerBlue")
|
||||
self._check_colors([ax.patches[0]], facecolors=["DodgerBlue"])
|
||||
|
||||
ax = df.plot(kind="hist", color="green")
|
||||
self._check_colors(ax.patches[::10], facecolors=["green"] * 5)
|
||||
tm.close()
|
||||
|
||||
@td.skip_if_no_scipy
|
||||
def test_kde_colors(self):
|
||||
from matplotlib import cm
|
||||
|
||||
custom_colors = "rgcby"
|
||||
df = DataFrame(np.random.rand(5, 5))
|
||||
|
||||
ax = df.plot.kde(color=custom_colors)
|
||||
self._check_colors(ax.get_lines(), linecolors=custom_colors)
|
||||
tm.close()
|
||||
|
||||
ax = df.plot.kde(colormap="jet")
|
||||
rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
|
||||
self._check_colors(ax.get_lines(), linecolors=rgba_colors)
|
||||
tm.close()
|
||||
|
||||
ax = df.plot.kde(colormap=cm.jet)
|
||||
rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
|
||||
self._check_colors(ax.get_lines(), linecolors=rgba_colors)
|
||||
|
||||
@td.skip_if_no_scipy
|
||||
def test_kde_colors_and_styles_subplots(self):
|
||||
from matplotlib import cm
|
||||
|
||||
default_colors = self._unpack_cycler(self.plt.rcParams)
|
||||
|
||||
df = DataFrame(np.random.randn(5, 5))
|
||||
|
||||
axes = df.plot(kind="kde", subplots=True)
|
||||
for ax, c in zip(axes, list(default_colors)):
|
||||
self._check_colors(ax.get_lines(), linecolors=[c])
|
||||
tm.close()
|
||||
|
||||
# single color char
|
||||
axes = df.plot(kind="kde", color="k", subplots=True)
|
||||
for ax in axes:
|
||||
self._check_colors(ax.get_lines(), linecolors=["k"])
|
||||
tm.close()
|
||||
|
||||
# single color str
|
||||
axes = df.plot(kind="kde", color="red", subplots=True)
|
||||
for ax in axes:
|
||||
self._check_colors(ax.get_lines(), linecolors=["red"])
|
||||
tm.close()
|
||||
|
||||
custom_colors = "rgcby"
|
||||
axes = df.plot(kind="kde", color=custom_colors, subplots=True)
|
||||
for ax, c in zip(axes, list(custom_colors)):
|
||||
self._check_colors(ax.get_lines(), linecolors=[c])
|
||||
tm.close()
|
||||
|
||||
rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
|
||||
for cmap in ["jet", cm.jet]:
|
||||
axes = df.plot(kind="kde", colormap=cmap, subplots=True)
|
||||
for ax, c in zip(axes, rgba_colors):
|
||||
self._check_colors(ax.get_lines(), linecolors=[c])
|
||||
tm.close()
|
||||
|
||||
# make color a list if plotting one column frame
|
||||
# handles cases like df.plot(color='DodgerBlue')
|
||||
axes = df.loc[:, [0]].plot(kind="kde", color="DodgerBlue", subplots=True)
|
||||
self._check_colors(axes[0].lines, linecolors=["DodgerBlue"])
|
||||
|
||||
# single character style
|
||||
axes = df.plot(kind="kde", style="r", subplots=True)
|
||||
for ax in axes:
|
||||
self._check_colors(ax.get_lines(), linecolors=["r"])
|
||||
tm.close()
|
||||
|
||||
# list of styles
|
||||
styles = list("rgcby")
|
||||
axes = df.plot(kind="kde", style=styles, subplots=True)
|
||||
for ax, c in zip(axes, styles):
|
||||
self._check_colors(ax.get_lines(), linecolors=[c])
|
||||
tm.close()
|
||||
|
||||
def test_boxplot_colors(self):
|
||||
def _check_colors(bp, box_c, whiskers_c, medians_c, caps_c="k", fliers_c=None):
|
||||
# TODO: outside this func?
|
||||
if fliers_c is None:
|
||||
fliers_c = "k"
|
||||
self._check_colors(bp["boxes"], linecolors=[box_c] * len(bp["boxes"]))
|
||||
self._check_colors(
|
||||
bp["whiskers"], linecolors=[whiskers_c] * len(bp["whiskers"])
|
||||
)
|
||||
self._check_colors(
|
||||
bp["medians"], linecolors=[medians_c] * len(bp["medians"])
|
||||
)
|
||||
self._check_colors(bp["fliers"], linecolors=[fliers_c] * len(bp["fliers"]))
|
||||
self._check_colors(bp["caps"], linecolors=[caps_c] * len(bp["caps"]))
|
||||
|
||||
default_colors = self._unpack_cycler(self.plt.rcParams)
|
||||
|
||||
df = DataFrame(np.random.randn(5, 5))
|
||||
bp = df.plot.box(return_type="dict")
|
||||
_check_colors(
|
||||
bp,
|
||||
default_colors[0],
|
||||
default_colors[0],
|
||||
default_colors[2],
|
||||
default_colors[0],
|
||||
)
|
||||
tm.close()
|
||||
|
||||
dict_colors = {
|
||||
"boxes": "#572923",
|
||||
"whiskers": "#982042",
|
||||
"medians": "#804823",
|
||||
"caps": "#123456",
|
||||
}
|
||||
bp = df.plot.box(color=dict_colors, sym="r+", return_type="dict")
|
||||
_check_colors(
|
||||
bp,
|
||||
dict_colors["boxes"],
|
||||
dict_colors["whiskers"],
|
||||
dict_colors["medians"],
|
||||
dict_colors["caps"],
|
||||
"r",
|
||||
)
|
||||
tm.close()
|
||||
|
||||
# partial colors
|
||||
dict_colors = {"whiskers": "c", "medians": "m"}
|
||||
bp = df.plot.box(color=dict_colors, return_type="dict")
|
||||
_check_colors(bp, default_colors[0], "c", "m", default_colors[0])
|
||||
tm.close()
|
||||
|
||||
from matplotlib import cm
|
||||
|
||||
# Test str -> colormap functionality
|
||||
bp = df.plot.box(colormap="jet", return_type="dict")
|
||||
jet_colors = [cm.jet(n) for n in np.linspace(0, 1, 3)]
|
||||
_check_colors(bp, jet_colors[0], jet_colors[0], jet_colors[2], jet_colors[0])
|
||||
tm.close()
|
||||
|
||||
# Test colormap functionality
|
||||
bp = df.plot.box(colormap=cm.jet, return_type="dict")
|
||||
_check_colors(bp, jet_colors[0], jet_colors[0], jet_colors[2], jet_colors[0])
|
||||
tm.close()
|
||||
|
||||
# string color is applied to all artists except fliers
|
||||
bp = df.plot.box(color="DodgerBlue", return_type="dict")
|
||||
_check_colors(bp, "DodgerBlue", "DodgerBlue", "DodgerBlue", "DodgerBlue")
|
||||
|
||||
# tuple is also applied to all artists except fliers
|
||||
bp = df.plot.box(color=(0, 1, 0), sym="#123456", return_type="dict")
|
||||
_check_colors(bp, (0, 1, 0), (0, 1, 0), (0, 1, 0), (0, 1, 0), "#123456")
|
||||
|
||||
msg = re.escape(
|
||||
"color dict contains invalid key 'xxxx'. The key must be either "
|
||||
"['boxes', 'whiskers', 'medians', 'caps']"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
# Color contains invalid key results in ValueError
|
||||
df.plot.box(color={"boxes": "red", "xxxx": "blue"})
|
||||
|
||||
def test_default_color_cycle(self):
|
||||
import cycler
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
colors = list("rgbk")
|
||||
plt.rcParams["axes.prop_cycle"] = cycler.cycler("color", colors)
|
||||
|
||||
df = DataFrame(np.random.randn(5, 3))
|
||||
ax = df.plot()
|
||||
|
||||
expected = self._unpack_cycler(plt.rcParams)[:3]
|
||||
self._check_colors(ax.get_lines(), linecolors=expected)
|
||||
|
||||
def test_no_color_bar(self):
|
||||
df = self.hexbin_df
|
||||
ax = df.plot.hexbin(x="A", y="B", colorbar=None)
|
||||
assert ax.collections[0].colorbar is None
|
||||
|
||||
def test_mixing_cmap_and_colormap_raises(self):
|
||||
df = self.hexbin_df
|
||||
msg = "Only specify one of `cmap` and `colormap`"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
df.plot.hexbin(x="A", y="B", cmap="YlGn", colormap="BuGn")
|
||||
|
||||
def test_passed_bar_colors(self):
|
||||
import matplotlib as mpl
|
||||
|
||||
color_tuples = [(0.9, 0, 0, 1), (0, 0.9, 0, 1), (0, 0, 0.9, 1)]
|
||||
colormap = mpl.colors.ListedColormap(color_tuples)
|
||||
barplot = DataFrame([[1, 2, 3]]).plot(kind="bar", cmap=colormap)
|
||||
assert color_tuples == [c.get_facecolor() for c in barplot.patches]
|
||||
|
||||
def test_rcParams_bar_colors(self):
|
||||
import matplotlib as mpl
|
||||
|
||||
color_tuples = [(0.9, 0, 0, 1), (0, 0.9, 0, 1), (0, 0, 0.9, 1)]
|
||||
with mpl.rc_context(rc={"axes.prop_cycle": mpl.cycler("color", color_tuples)}):
|
||||
barplot = DataFrame([[1, 2, 3]]).plot(kind="bar")
|
||||
assert color_tuples == [c.get_facecolor() for c in barplot.patches]
|
||||
|
||||
def test_colors_of_columns_with_same_name(self):
|
||||
# ISSUE 11136 -> https://github.com/pandas-dev/pandas/issues/11136
|
||||
# Creating a DataFrame with duplicate column labels and testing colors of them.
|
||||
df = DataFrame({"b": [0, 1, 0], "a": [1, 2, 3]})
|
||||
df1 = DataFrame({"a": [2, 4, 6]})
|
||||
df_concat = pd.concat([df, df1], axis=1)
|
||||
result = df_concat.plot()
|
||||
for legend, line in zip(result.get_legend().legendHandles, result.lines):
|
||||
assert legend.get_color() == line.get_color()
|
||||
|
||||
def test_invalid_colormap(self):
|
||||
df = DataFrame(np.random.randn(3, 2), columns=["A", "B"])
|
||||
msg = "'invalid_colormap' is not a valid value for name; supported values are "
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.plot(colormap="invalid_colormap")
|
@ -0,0 +1,92 @@
|
||||
""" Test cases for DataFrame.plot """
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas import DataFrame
|
||||
import pandas._testing as tm
|
||||
from pandas.tests.plotting.common import TestPlotBase
|
||||
|
||||
pytestmark = pytest.mark.slow
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestDataFramePlotsGroupby(TestPlotBase):
|
||||
def setup_method(self, method):
|
||||
TestPlotBase.setup_method(self, method)
|
||||
import matplotlib as mpl
|
||||
|
||||
mpl.rcdefaults()
|
||||
|
||||
self.tdf = tm.makeTimeDataFrame()
|
||||
self.hexbin_df = DataFrame(
|
||||
{
|
||||
"A": np.random.uniform(size=20),
|
||||
"B": np.random.uniform(size=20),
|
||||
"C": np.arange(20) + np.random.uniform(size=20),
|
||||
}
|
||||
)
|
||||
|
||||
def _assert_ytickslabels_visibility(self, axes, expected):
|
||||
for ax, exp in zip(axes, expected):
|
||||
self._check_visible(ax.get_yticklabels(), visible=exp)
|
||||
|
||||
def _assert_xtickslabels_visibility(self, axes, expected):
|
||||
for ax, exp in zip(axes, expected):
|
||||
self._check_visible(ax.get_xticklabels(), visible=exp)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"kwargs, expected",
|
||||
[
|
||||
# behavior without keyword
|
||||
({}, [True, False, True, False]),
|
||||
# set sharey=True should be identical
|
||||
({"sharey": True}, [True, False, True, False]),
|
||||
# sharey=False, all yticklabels should be visible
|
||||
({"sharey": False}, [True, True, True, True]),
|
||||
],
|
||||
)
|
||||
def test_groupby_boxplot_sharey(self, kwargs, expected):
|
||||
# https://github.com/pandas-dev/pandas/issues/20968
|
||||
# sharey can now be switched check whether the right
|
||||
# pair of axes is turned on or off
|
||||
df = DataFrame(
|
||||
{
|
||||
"a": [-1.43, -0.15, -3.70, -1.43, -0.14],
|
||||
"b": [0.56, 0.84, 0.29, 0.56, 0.85],
|
||||
"c": [0, 1, 2, 3, 1],
|
||||
},
|
||||
index=[0, 1, 2, 3, 4],
|
||||
)
|
||||
axes = df.groupby("c").boxplot(**kwargs)
|
||||
self._assert_ytickslabels_visibility(axes, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"kwargs, expected",
|
||||
[
|
||||
# behavior without keyword
|
||||
({}, [True, True, True, True]),
|
||||
# set sharex=False should be identical
|
||||
({"sharex": False}, [True, True, True, True]),
|
||||
# sharex=True, xticklabels should be visible
|
||||
# only for bottom plots
|
||||
({"sharex": True}, [False, False, True, True]),
|
||||
],
|
||||
)
|
||||
def test_groupby_boxplot_sharex(self, kwargs, expected):
|
||||
# https://github.com/pandas-dev/pandas/issues/20968
|
||||
# sharex can now be switched check whether the right
|
||||
# pair of axes is turned on or off
|
||||
|
||||
df = DataFrame(
|
||||
{
|
||||
"a": [-1.43, -0.15, -3.70, -1.43, -0.14],
|
||||
"b": [0.56, 0.84, 0.29, 0.56, 0.85],
|
||||
"c": [0, 1, 2, 3, 1],
|
||||
},
|
||||
index=[0, 1, 2, 3, 4],
|
||||
)
|
||||
axes = df.groupby("c").boxplot(**kwargs)
|
||||
self._assert_xtickslabels_visibility(axes, expected)
|
@ -0,0 +1,195 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
date_range,
|
||||
)
|
||||
from pandas.tests.plotting.common import TestPlotBase
|
||||
|
||||
pytestmark = pytest.mark.slow
|
||||
|
||||
|
||||
class TestFrameLegend(TestPlotBase):
|
||||
@pytest.mark.xfail(
|
||||
reason=(
|
||||
"Open bug in matplotlib "
|
||||
"https://github.com/matplotlib/matplotlib/issues/11357"
|
||||
)
|
||||
)
|
||||
def test_mixed_yerr(self):
|
||||
# https://github.com/pandas-dev/pandas/issues/39522
|
||||
from matplotlib.collections import LineCollection
|
||||
from matplotlib.lines import Line2D
|
||||
|
||||
df = DataFrame([{"x": 1, "a": 1, "b": 1}, {"x": 2, "a": 2, "b": 3}])
|
||||
|
||||
ax = df.plot("x", "a", c="orange", yerr=0.1, label="orange")
|
||||
df.plot("x", "b", c="blue", yerr=None, ax=ax, label="blue")
|
||||
|
||||
legend = ax.get_legend()
|
||||
result_handles = legend.legendHandles
|
||||
|
||||
assert isinstance(result_handles[0], LineCollection)
|
||||
assert isinstance(result_handles[1], Line2D)
|
||||
|
||||
def test_legend_false(self):
|
||||
# https://github.com/pandas-dev/pandas/issues/40044
|
||||
df = DataFrame({"a": [1, 1], "b": [2, 3]})
|
||||
df2 = DataFrame({"d": [2.5, 2.5]})
|
||||
|
||||
ax = df.plot(legend=True, color={"a": "blue", "b": "green"}, secondary_y="b")
|
||||
df2.plot(legend=True, color={"d": "red"}, ax=ax)
|
||||
legend = ax.get_legend()
|
||||
result = [handle.get_color() for handle in legend.legendHandles]
|
||||
expected = ["blue", "green", "red"]
|
||||
assert result == expected
|
||||
|
||||
def test_df_legend_labels(self):
|
||||
kinds = ["line", "bar", "barh", "kde", "area", "hist"]
|
||||
df = DataFrame(np.random.rand(3, 3), columns=["a", "b", "c"])
|
||||
df2 = DataFrame(np.random.rand(3, 3), columns=["d", "e", "f"])
|
||||
df3 = DataFrame(np.random.rand(3, 3), columns=["g", "h", "i"])
|
||||
df4 = DataFrame(np.random.rand(3, 3), columns=["j", "k", "l"])
|
||||
|
||||
for kind in kinds:
|
||||
|
||||
ax = df.plot(kind=kind, legend=True)
|
||||
self._check_legend_labels(ax, labels=df.columns)
|
||||
|
||||
ax = df2.plot(kind=kind, legend=False, ax=ax)
|
||||
self._check_legend_labels(ax, labels=df.columns)
|
||||
|
||||
ax = df3.plot(kind=kind, legend=True, ax=ax)
|
||||
self._check_legend_labels(ax, labels=df.columns.union(df3.columns))
|
||||
|
||||
ax = df4.plot(kind=kind, legend="reverse", ax=ax)
|
||||
expected = list(df.columns.union(df3.columns)) + list(reversed(df4.columns))
|
||||
self._check_legend_labels(ax, labels=expected)
|
||||
|
||||
# Secondary Y
|
||||
ax = df.plot(legend=True, secondary_y="b")
|
||||
self._check_legend_labels(ax, labels=["a", "b (right)", "c"])
|
||||
ax = df2.plot(legend=False, ax=ax)
|
||||
self._check_legend_labels(ax, labels=["a", "b (right)", "c"])
|
||||
ax = df3.plot(kind="bar", legend=True, secondary_y="h", ax=ax)
|
||||
self._check_legend_labels(
|
||||
ax, labels=["a", "b (right)", "c", "g", "h (right)", "i"]
|
||||
)
|
||||
|
||||
# Time Series
|
||||
ind = date_range("1/1/2014", periods=3)
|
||||
df = DataFrame(np.random.randn(3, 3), columns=["a", "b", "c"], index=ind)
|
||||
df2 = DataFrame(np.random.randn(3, 3), columns=["d", "e", "f"], index=ind)
|
||||
df3 = DataFrame(np.random.randn(3, 3), columns=["g", "h", "i"], index=ind)
|
||||
ax = df.plot(legend=True, secondary_y="b")
|
||||
self._check_legend_labels(ax, labels=["a", "b (right)", "c"])
|
||||
ax = df2.plot(legend=False, ax=ax)
|
||||
self._check_legend_labels(ax, labels=["a", "b (right)", "c"])
|
||||
ax = df3.plot(legend=True, ax=ax)
|
||||
self._check_legend_labels(ax, labels=["a", "b (right)", "c", "g", "h", "i"])
|
||||
|
||||
# scatter
|
||||
ax = df.plot.scatter(x="a", y="b", label="data1")
|
||||
self._check_legend_labels(ax, labels=["data1"])
|
||||
ax = df2.plot.scatter(x="d", y="e", legend=False, label="data2", ax=ax)
|
||||
self._check_legend_labels(ax, labels=["data1"])
|
||||
ax = df3.plot.scatter(x="g", y="h", label="data3", ax=ax)
|
||||
self._check_legend_labels(ax, labels=["data1", "data3"])
|
||||
|
||||
# ensure label args pass through and
|
||||
# index name does not mutate
|
||||
# column names don't mutate
|
||||
df5 = df.set_index("a")
|
||||
ax = df5.plot(y="b")
|
||||
self._check_legend_labels(ax, labels=["b"])
|
||||
ax = df5.plot(y="b", label="LABEL_b")
|
||||
self._check_legend_labels(ax, labels=["LABEL_b"])
|
||||
self._check_text_labels(ax.xaxis.get_label(), "a")
|
||||
ax = df5.plot(y="c", label="LABEL_c", ax=ax)
|
||||
self._check_legend_labels(ax, labels=["LABEL_b", "LABEL_c"])
|
||||
assert df5.columns.tolist() == ["b", "c"]
|
||||
|
||||
def test_missing_marker_multi_plots_on_same_ax(self):
|
||||
# GH 18222
|
||||
df = DataFrame(data=[[1, 1, 1, 1], [2, 2, 4, 8]], columns=["x", "r", "g", "b"])
|
||||
fig, ax = self.plt.subplots(nrows=1, ncols=3)
|
||||
# Left plot
|
||||
df.plot(x="x", y="r", linewidth=0, marker="o", color="r", ax=ax[0])
|
||||
df.plot(x="x", y="g", linewidth=1, marker="x", color="g", ax=ax[0])
|
||||
df.plot(x="x", y="b", linewidth=1, marker="o", color="b", ax=ax[0])
|
||||
self._check_legend_labels(ax[0], labels=["r", "g", "b"])
|
||||
self._check_legend_marker(ax[0], expected_markers=["o", "x", "o"])
|
||||
# Center plot
|
||||
df.plot(x="x", y="b", linewidth=1, marker="o", color="b", ax=ax[1])
|
||||
df.plot(x="x", y="r", linewidth=0, marker="o", color="r", ax=ax[1])
|
||||
df.plot(x="x", y="g", linewidth=1, marker="x", color="g", ax=ax[1])
|
||||
self._check_legend_labels(ax[1], labels=["b", "r", "g"])
|
||||
self._check_legend_marker(ax[1], expected_markers=["o", "o", "x"])
|
||||
# Right plot
|
||||
df.plot(x="x", y="g", linewidth=1, marker="x", color="g", ax=ax[2])
|
||||
df.plot(x="x", y="b", linewidth=1, marker="o", color="b", ax=ax[2])
|
||||
df.plot(x="x", y="r", linewidth=0, marker="o", color="r", ax=ax[2])
|
||||
self._check_legend_labels(ax[2], labels=["g", "b", "r"])
|
||||
self._check_legend_marker(ax[2], expected_markers=["x", "o", "o"])
|
||||
|
||||
def test_legend_name(self):
|
||||
multi = DataFrame(
|
||||
np.random.randn(4, 4),
|
||||
columns=[np.array(["a", "a", "b", "b"]), np.array(["x", "y", "x", "y"])],
|
||||
)
|
||||
multi.columns.names = ["group", "individual"]
|
||||
|
||||
ax = multi.plot()
|
||||
leg_title = ax.legend_.get_title()
|
||||
self._check_text_labels(leg_title, "group,individual")
|
||||
|
||||
df = DataFrame(np.random.randn(5, 5))
|
||||
ax = df.plot(legend=True, ax=ax)
|
||||
leg_title = ax.legend_.get_title()
|
||||
self._check_text_labels(leg_title, "group,individual")
|
||||
|
||||
df.columns.name = "new"
|
||||
ax = df.plot(legend=False, ax=ax)
|
||||
leg_title = ax.legend_.get_title()
|
||||
self._check_text_labels(leg_title, "group,individual")
|
||||
|
||||
ax = df.plot(legend=True, ax=ax)
|
||||
leg_title = ax.legend_.get_title()
|
||||
self._check_text_labels(leg_title, "new")
|
||||
|
||||
def test_no_legend(self):
|
||||
kinds = ["line", "bar", "barh", "kde", "area", "hist"]
|
||||
df = DataFrame(np.random.rand(3, 3), columns=["a", "b", "c"])
|
||||
|
||||
for kind in kinds:
|
||||
ax = df.plot(kind=kind, legend=False)
|
||||
self._check_legend_labels(ax, visible=False)
|
||||
|
||||
def test_missing_markers_legend(self):
|
||||
# 14958
|
||||
df = DataFrame(np.random.randn(8, 3), columns=["A", "B", "C"])
|
||||
ax = df.plot(y=["A"], marker="x", linestyle="solid")
|
||||
df.plot(y=["B"], marker="o", linestyle="dotted", ax=ax)
|
||||
df.plot(y=["C"], marker="<", linestyle="dotted", ax=ax)
|
||||
|
||||
self._check_legend_labels(ax, labels=["A", "B", "C"])
|
||||
self._check_legend_marker(ax, expected_markers=["x", "o", "<"])
|
||||
|
||||
def test_missing_markers_legend_using_style(self):
|
||||
# 14563
|
||||
df = DataFrame(
|
||||
{
|
||||
"A": [1, 2, 3, 4, 5, 6],
|
||||
"B": [2, 4, 1, 3, 2, 4],
|
||||
"C": [3, 3, 2, 6, 4, 2],
|
||||
"X": [1, 2, 3, 4, 5, 6],
|
||||
}
|
||||
)
|
||||
|
||||
fig, ax = self.plt.subplots()
|
||||
for kind in "ABC":
|
||||
df.plot("X", kind, label=kind, ax=ax, style=".")
|
||||
|
||||
self._check_legend_labels(ax, labels=["A", "B", "C"])
|
||||
self._check_legend_marker(ax, expected_markers=[".", ".", "."])
|
@ -0,0 +1,687 @@
|
||||
""" Test cases for DataFrame.plot """
|
||||
|
||||
import string
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Series,
|
||||
date_range,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.tests.plotting.common import TestPlotBase
|
||||
|
||||
from pandas.io.formats.printing import pprint_thing
|
||||
|
||||
pytestmark = pytest.mark.slow
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestDataFramePlotsSubplots(TestPlotBase):
|
||||
def setup_method(self, method):
|
||||
TestPlotBase.setup_method(self, method)
|
||||
import matplotlib as mpl
|
||||
|
||||
mpl.rcdefaults()
|
||||
|
||||
self.tdf = tm.makeTimeDataFrame()
|
||||
self.hexbin_df = DataFrame(
|
||||
{
|
||||
"A": np.random.uniform(size=20),
|
||||
"B": np.random.uniform(size=20),
|
||||
"C": np.arange(20) + np.random.uniform(size=20),
|
||||
}
|
||||
)
|
||||
|
||||
def test_subplots(self):
|
||||
df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10]))
|
||||
|
||||
for kind in ["bar", "barh", "line", "area"]:
|
||||
axes = df.plot(kind=kind, subplots=True, sharex=True, legend=True)
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(3, 1))
|
||||
assert axes.shape == (3,)
|
||||
|
||||
for ax, column in zip(axes, df.columns):
|
||||
self._check_legend_labels(ax, labels=[pprint_thing(column)])
|
||||
|
||||
for ax in axes[:-2]:
|
||||
self._check_visible(ax.xaxis) # xaxis must be visible for grid
|
||||
self._check_visible(ax.get_xticklabels(), visible=False)
|
||||
if not (kind == "bar" and self.mpl_ge_3_1_0):
|
||||
# change https://github.com/pandas-dev/pandas/issues/26714
|
||||
self._check_visible(ax.get_xticklabels(minor=True), visible=False)
|
||||
self._check_visible(ax.xaxis.get_label(), visible=False)
|
||||
self._check_visible(ax.get_yticklabels())
|
||||
|
||||
self._check_visible(axes[-1].xaxis)
|
||||
self._check_visible(axes[-1].get_xticklabels())
|
||||
self._check_visible(axes[-1].get_xticklabels(minor=True))
|
||||
self._check_visible(axes[-1].xaxis.get_label())
|
||||
self._check_visible(axes[-1].get_yticklabels())
|
||||
|
||||
axes = df.plot(kind=kind, subplots=True, sharex=False)
|
||||
for ax in axes:
|
||||
self._check_visible(ax.xaxis)
|
||||
self._check_visible(ax.get_xticklabels())
|
||||
self._check_visible(ax.get_xticklabels(minor=True))
|
||||
self._check_visible(ax.xaxis.get_label())
|
||||
self._check_visible(ax.get_yticklabels())
|
||||
|
||||
axes = df.plot(kind=kind, subplots=True, legend=False)
|
||||
for ax in axes:
|
||||
assert ax.get_legend() is None
|
||||
|
||||
def test_subplots_timeseries(self):
|
||||
idx = date_range(start="2014-07-01", freq="M", periods=10)
|
||||
df = DataFrame(np.random.rand(10, 3), index=idx)
|
||||
|
||||
for kind in ["line", "area"]:
|
||||
axes = df.plot(kind=kind, subplots=True, sharex=True)
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(3, 1))
|
||||
|
||||
for ax in axes[:-2]:
|
||||
# GH 7801
|
||||
self._check_visible(ax.xaxis) # xaxis must be visible for grid
|
||||
self._check_visible(ax.get_xticklabels(), visible=False)
|
||||
self._check_visible(ax.get_xticklabels(minor=True), visible=False)
|
||||
self._check_visible(ax.xaxis.get_label(), visible=False)
|
||||
self._check_visible(ax.get_yticklabels())
|
||||
|
||||
self._check_visible(axes[-1].xaxis)
|
||||
self._check_visible(axes[-1].get_xticklabels())
|
||||
self._check_visible(axes[-1].get_xticklabels(minor=True))
|
||||
self._check_visible(axes[-1].xaxis.get_label())
|
||||
self._check_visible(axes[-1].get_yticklabels())
|
||||
self._check_ticks_props(axes, xrot=0)
|
||||
|
||||
axes = df.plot(kind=kind, subplots=True, sharex=False, rot=45, fontsize=7)
|
||||
for ax in axes:
|
||||
self._check_visible(ax.xaxis)
|
||||
self._check_visible(ax.get_xticklabels())
|
||||
self._check_visible(ax.get_xticklabels(minor=True))
|
||||
self._check_visible(ax.xaxis.get_label())
|
||||
self._check_visible(ax.get_yticklabels())
|
||||
self._check_ticks_props(ax, xlabelsize=7, xrot=45, ylabelsize=7)
|
||||
|
||||
def test_subplots_timeseries_y_axis(self):
|
||||
# GH16953
|
||||
data = {
|
||||
"numeric": np.array([1, 2, 5]),
|
||||
"timedelta": [
|
||||
pd.Timedelta(-10, unit="s"),
|
||||
pd.Timedelta(10, unit="m"),
|
||||
pd.Timedelta(10, unit="h"),
|
||||
],
|
||||
"datetime_no_tz": [
|
||||
pd.to_datetime("2017-08-01 00:00:00"),
|
||||
pd.to_datetime("2017-08-01 02:00:00"),
|
||||
pd.to_datetime("2017-08-02 00:00:00"),
|
||||
],
|
||||
"datetime_all_tz": [
|
||||
pd.to_datetime("2017-08-01 00:00:00", utc=True),
|
||||
pd.to_datetime("2017-08-01 02:00:00", utc=True),
|
||||
pd.to_datetime("2017-08-02 00:00:00", utc=True),
|
||||
],
|
||||
"text": ["This", "should", "fail"],
|
||||
}
|
||||
testdata = DataFrame(data)
|
||||
|
||||
y_cols = ["numeric", "timedelta", "datetime_no_tz", "datetime_all_tz"]
|
||||
for col in y_cols:
|
||||
ax = testdata.plot(y=col)
|
||||
result = ax.get_lines()[0].get_data()[1]
|
||||
expected = testdata[col].values
|
||||
assert (result == expected).all()
|
||||
|
||||
msg = "no numeric data to plot"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
testdata.plot(y="text")
|
||||
|
||||
@pytest.mark.xfail(reason="not support for period, categorical, datetime_mixed_tz")
|
||||
def test_subplots_timeseries_y_axis_not_supported(self):
|
||||
"""
|
||||
This test will fail for:
|
||||
period:
|
||||
since period isn't yet implemented in ``select_dtypes``
|
||||
and because it will need a custom value converter +
|
||||
tick formatter (as was done for x-axis plots)
|
||||
|
||||
categorical:
|
||||
because it will need a custom value converter +
|
||||
tick formatter (also doesn't work for x-axis, as of now)
|
||||
|
||||
datetime_mixed_tz:
|
||||
because of the way how pandas handles ``Series`` of
|
||||
``datetime`` objects with different timezone,
|
||||
generally converting ``datetime`` objects in a tz-aware
|
||||
form could help with this problem
|
||||
"""
|
||||
data = {
|
||||
"numeric": np.array([1, 2, 5]),
|
||||
"period": [
|
||||
pd.Period("2017-08-01 00:00:00", freq="H"),
|
||||
pd.Period("2017-08-01 02:00", freq="H"),
|
||||
pd.Period("2017-08-02 00:00:00", freq="H"),
|
||||
],
|
||||
"categorical": pd.Categorical(
|
||||
["c", "b", "a"], categories=["a", "b", "c"], ordered=False
|
||||
),
|
||||
"datetime_mixed_tz": [
|
||||
pd.to_datetime("2017-08-01 00:00:00", utc=True),
|
||||
pd.to_datetime("2017-08-01 02:00:00"),
|
||||
pd.to_datetime("2017-08-02 00:00:00"),
|
||||
],
|
||||
}
|
||||
testdata = DataFrame(data)
|
||||
ax_period = testdata.plot(x="numeric", y="period")
|
||||
assert (
|
||||
ax_period.get_lines()[0].get_data()[1] == testdata["period"].values
|
||||
).all()
|
||||
ax_categorical = testdata.plot(x="numeric", y="categorical")
|
||||
assert (
|
||||
ax_categorical.get_lines()[0].get_data()[1]
|
||||
== testdata["categorical"].values
|
||||
).all()
|
||||
ax_datetime_mixed_tz = testdata.plot(x="numeric", y="datetime_mixed_tz")
|
||||
assert (
|
||||
ax_datetime_mixed_tz.get_lines()[0].get_data()[1]
|
||||
== testdata["datetime_mixed_tz"].values
|
||||
).all()
|
||||
|
||||
def test_subplots_layout_multi_column(self):
|
||||
# GH 6667
|
||||
df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10]))
|
||||
|
||||
axes = df.plot(subplots=True, layout=(2, 2))
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
|
||||
assert axes.shape == (2, 2)
|
||||
|
||||
axes = df.plot(subplots=True, layout=(-1, 2))
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
|
||||
assert axes.shape == (2, 2)
|
||||
|
||||
axes = df.plot(subplots=True, layout=(2, -1))
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
|
||||
assert axes.shape == (2, 2)
|
||||
|
||||
axes = df.plot(subplots=True, layout=(1, 4))
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(1, 4))
|
||||
assert axes.shape == (1, 4)
|
||||
|
||||
axes = df.plot(subplots=True, layout=(-1, 4))
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(1, 4))
|
||||
assert axes.shape == (1, 4)
|
||||
|
||||
axes = df.plot(subplots=True, layout=(4, -1))
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(4, 1))
|
||||
assert axes.shape == (4, 1)
|
||||
|
||||
msg = "Layout of 1x1 must be larger than required size 3"
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.plot(subplots=True, layout=(1, 1))
|
||||
|
||||
msg = "At least one dimension of layout must be positive"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.plot(subplots=True, layout=(-1, -1))
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"kwargs, expected_axes_num, expected_layout, expected_shape",
|
||||
[
|
||||
({}, 1, (1, 1), (1,)),
|
||||
({"layout": (3, 3)}, 1, (3, 3), (3, 3)),
|
||||
],
|
||||
)
|
||||
def test_subplots_layout_single_column(
|
||||
self, kwargs, expected_axes_num, expected_layout, expected_shape
|
||||
):
|
||||
|
||||
# GH 6667
|
||||
df = DataFrame(np.random.rand(10, 1), index=list(string.ascii_letters[:10]))
|
||||
axes = df.plot(subplots=True, **kwargs)
|
||||
self._check_axes_shape(
|
||||
axes,
|
||||
axes_num=expected_axes_num,
|
||||
layout=expected_layout,
|
||||
)
|
||||
assert axes.shape == expected_shape
|
||||
|
||||
def test_subplots_warnings(self):
|
||||
# GH 9464
|
||||
with tm.assert_produces_warning(None):
|
||||
df = DataFrame(np.random.randn(100, 4))
|
||||
df.plot(subplots=True, layout=(3, 2))
|
||||
|
||||
df = DataFrame(
|
||||
np.random.randn(100, 4), index=date_range("1/1/2000", periods=100)
|
||||
)
|
||||
df.plot(subplots=True, layout=(3, 2))
|
||||
|
||||
def test_subplots_multiple_axes(self):
|
||||
# GH 5353, 6970, GH 7069
|
||||
fig, axes = self.plt.subplots(2, 3)
|
||||
df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10]))
|
||||
|
||||
returned = df.plot(subplots=True, ax=axes[0], sharex=False, sharey=False)
|
||||
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
|
||||
assert returned.shape == (3,)
|
||||
assert returned[0].figure is fig
|
||||
# draw on second row
|
||||
returned = df.plot(subplots=True, ax=axes[1], sharex=False, sharey=False)
|
||||
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
|
||||
assert returned.shape == (3,)
|
||||
assert returned[0].figure is fig
|
||||
self._check_axes_shape(axes, axes_num=6, layout=(2, 3))
|
||||
tm.close()
|
||||
|
||||
msg = "The number of passed axes must be 3, the same as the output plot"
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
fig, axes = self.plt.subplots(2, 3)
|
||||
# pass different number of axes from required
|
||||
df.plot(subplots=True, ax=axes)
|
||||
|
||||
# pass 2-dim axes and invalid layout
|
||||
# invalid lauout should not affect to input and return value
|
||||
# (show warning is tested in
|
||||
# TestDataFrameGroupByPlots.test_grouped_box_multiple_axes
|
||||
fig, axes = self.plt.subplots(2, 2)
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", UserWarning)
|
||||
df = DataFrame(np.random.rand(10, 4), index=list(string.ascii_letters[:10]))
|
||||
|
||||
returned = df.plot(
|
||||
subplots=True, ax=axes, layout=(2, 1), sharex=False, sharey=False
|
||||
)
|
||||
self._check_axes_shape(returned, axes_num=4, layout=(2, 2))
|
||||
assert returned.shape == (4,)
|
||||
|
||||
returned = df.plot(
|
||||
subplots=True, ax=axes, layout=(2, -1), sharex=False, sharey=False
|
||||
)
|
||||
self._check_axes_shape(returned, axes_num=4, layout=(2, 2))
|
||||
assert returned.shape == (4,)
|
||||
|
||||
returned = df.plot(
|
||||
subplots=True, ax=axes, layout=(-1, 2), sharex=False, sharey=False
|
||||
)
|
||||
self._check_axes_shape(returned, axes_num=4, layout=(2, 2))
|
||||
assert returned.shape == (4,)
|
||||
|
||||
# single column
|
||||
fig, axes = self.plt.subplots(1, 1)
|
||||
df = DataFrame(np.random.rand(10, 1), index=list(string.ascii_letters[:10]))
|
||||
|
||||
axes = df.plot(subplots=True, ax=[axes], sharex=False, sharey=False)
|
||||
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
|
||||
assert axes.shape == (1,)
|
||||
|
||||
def test_subplots_ts_share_axes(self):
|
||||
# GH 3964
|
||||
fig, axes = self.plt.subplots(3, 3, sharex=True, sharey=True)
|
||||
self.plt.subplots_adjust(left=0.05, right=0.95, hspace=0.3, wspace=0.3)
|
||||
df = DataFrame(
|
||||
np.random.randn(10, 9),
|
||||
index=date_range(start="2014-07-01", freq="M", periods=10),
|
||||
)
|
||||
for i, ax in enumerate(axes.ravel()):
|
||||
df[i].plot(ax=ax, fontsize=5)
|
||||
|
||||
# Rows other than bottom should not be visible
|
||||
for ax in axes[0:-1].ravel():
|
||||
self._check_visible(ax.get_xticklabels(), visible=False)
|
||||
|
||||
# Bottom row should be visible
|
||||
for ax in axes[-1].ravel():
|
||||
self._check_visible(ax.get_xticklabels(), visible=True)
|
||||
|
||||
# First column should be visible
|
||||
for ax in axes[[0, 1, 2], [0]].ravel():
|
||||
self._check_visible(ax.get_yticklabels(), visible=True)
|
||||
|
||||
# Other columns should not be visible
|
||||
for ax in axes[[0, 1, 2], [1]].ravel():
|
||||
self._check_visible(ax.get_yticklabels(), visible=False)
|
||||
for ax in axes[[0, 1, 2], [2]].ravel():
|
||||
self._check_visible(ax.get_yticklabels(), visible=False)
|
||||
|
||||
def test_subplots_sharex_axes_existing_axes(self):
|
||||
# GH 9158
|
||||
d = {"A": [1.0, 2.0, 3.0, 4.0], "B": [4.0, 3.0, 2.0, 1.0], "C": [5, 1, 3, 4]}
|
||||
df = DataFrame(d, index=date_range("2014 10 11", "2014 10 14"))
|
||||
|
||||
axes = df[["A", "B"]].plot(subplots=True)
|
||||
df["C"].plot(ax=axes[0], secondary_y=True)
|
||||
|
||||
self._check_visible(axes[0].get_xticklabels(), visible=False)
|
||||
self._check_visible(axes[1].get_xticklabels(), visible=True)
|
||||
for ax in axes.ravel():
|
||||
self._check_visible(ax.get_yticklabels(), visible=True)
|
||||
|
||||
def test_subplots_dup_columns(self):
|
||||
# GH 10962
|
||||
df = DataFrame(np.random.rand(5, 5), columns=list("aaaaa"))
|
||||
axes = df.plot(subplots=True)
|
||||
for ax in axes:
|
||||
self._check_legend_labels(ax, labels=["a"])
|
||||
assert len(ax.lines) == 1
|
||||
tm.close()
|
||||
|
||||
axes = df.plot(subplots=True, secondary_y="a")
|
||||
for ax in axes:
|
||||
# (right) is only attached when subplots=False
|
||||
self._check_legend_labels(ax, labels=["a"])
|
||||
assert len(ax.lines) == 1
|
||||
tm.close()
|
||||
|
||||
ax = df.plot(secondary_y="a")
|
||||
self._check_legend_labels(ax, labels=["a (right)"] * 5)
|
||||
assert len(ax.lines) == 0
|
||||
assert len(ax.right_ax.lines) == 5
|
||||
|
||||
def test_bar_log_no_subplots(self):
|
||||
# GH3254, GH3298 matplotlib/matplotlib#1882, #1892
|
||||
# regressions in 1.2.1
|
||||
expected = np.array([0.1, 1.0, 10.0, 100])
|
||||
|
||||
# no subplots
|
||||
df = DataFrame({"A": [3] * 5, "B": list(range(1, 6))}, index=range(5))
|
||||
ax = df.plot.bar(grid=True, log=True)
|
||||
tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected)
|
||||
|
||||
def test_bar_log_subplots(self):
|
||||
expected = np.array([0.1, 1.0, 10.0, 100.0, 1000.0, 1e4])
|
||||
|
||||
ax = DataFrame([Series([200, 300]), Series([300, 500])]).plot.bar(
|
||||
log=True, subplots=True
|
||||
)
|
||||
|
||||
tm.assert_numpy_array_equal(ax[0].yaxis.get_ticklocs(), expected)
|
||||
tm.assert_numpy_array_equal(ax[1].yaxis.get_ticklocs(), expected)
|
||||
|
||||
def test_boxplot_subplots_return_type(self):
|
||||
df = self.hist_df
|
||||
|
||||
# normal style: return_type=None
|
||||
result = df.plot.box(subplots=True)
|
||||
assert isinstance(result, Series)
|
||||
self._check_box_return_type(
|
||||
result, None, expected_keys=["height", "weight", "category"]
|
||||
)
|
||||
|
||||
for t in ["dict", "axes", "both"]:
|
||||
returned = df.plot.box(return_type=t, subplots=True)
|
||||
self._check_box_return_type(
|
||||
returned,
|
||||
t,
|
||||
expected_keys=["height", "weight", "category"],
|
||||
check_ax_title=False,
|
||||
)
|
||||
|
||||
def test_df_subplots_patterns_minorticks(self):
|
||||
# GH 10657
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
df = DataFrame(
|
||||
np.random.randn(10, 2),
|
||||
index=date_range("1/1/2000", periods=10),
|
||||
columns=list("AB"),
|
||||
)
|
||||
|
||||
# shared subplots
|
||||
fig, axes = plt.subplots(2, 1, sharex=True)
|
||||
axes = df.plot(subplots=True, ax=axes)
|
||||
for ax in axes:
|
||||
assert len(ax.lines) == 1
|
||||
self._check_visible(ax.get_yticklabels(), visible=True)
|
||||
# xaxis of 1st ax must be hidden
|
||||
self._check_visible(axes[0].get_xticklabels(), visible=False)
|
||||
self._check_visible(axes[0].get_xticklabels(minor=True), visible=False)
|
||||
self._check_visible(axes[1].get_xticklabels(), visible=True)
|
||||
self._check_visible(axes[1].get_xticklabels(minor=True), visible=True)
|
||||
tm.close()
|
||||
|
||||
fig, axes = plt.subplots(2, 1)
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = df.plot(subplots=True, ax=axes, sharex=True)
|
||||
for ax in axes:
|
||||
assert len(ax.lines) == 1
|
||||
self._check_visible(ax.get_yticklabels(), visible=True)
|
||||
# xaxis of 1st ax must be hidden
|
||||
self._check_visible(axes[0].get_xticklabels(), visible=False)
|
||||
self._check_visible(axes[0].get_xticklabels(minor=True), visible=False)
|
||||
self._check_visible(axes[1].get_xticklabels(), visible=True)
|
||||
self._check_visible(axes[1].get_xticklabels(minor=True), visible=True)
|
||||
tm.close()
|
||||
|
||||
# not shared
|
||||
fig, axes = plt.subplots(2, 1)
|
||||
axes = df.plot(subplots=True, ax=axes)
|
||||
for ax in axes:
|
||||
assert len(ax.lines) == 1
|
||||
self._check_visible(ax.get_yticklabels(), visible=True)
|
||||
self._check_visible(ax.get_xticklabels(), visible=True)
|
||||
self._check_visible(ax.get_xticklabels(minor=True), visible=True)
|
||||
tm.close()
|
||||
|
||||
def test_subplots_sharex_false(self):
|
||||
# test when sharex is set to False, two plots should have different
|
||||
# labels, GH 25160
|
||||
df = DataFrame(np.random.rand(10, 2))
|
||||
df.iloc[5:, 1] = np.nan
|
||||
df.iloc[:5, 0] = np.nan
|
||||
|
||||
figs, axs = self.plt.subplots(2, 1)
|
||||
df.plot.line(ax=axs, subplots=True, sharex=False)
|
||||
|
||||
expected_ax1 = np.arange(4.5, 10, 0.5)
|
||||
expected_ax2 = np.arange(-0.5, 5, 0.5)
|
||||
|
||||
tm.assert_numpy_array_equal(axs[0].get_xticks(), expected_ax1)
|
||||
tm.assert_numpy_array_equal(axs[1].get_xticks(), expected_ax2)
|
||||
|
||||
def test_subplots_constrained_layout(self):
|
||||
# GH 25261
|
||||
idx = date_range(start="now", periods=10)
|
||||
df = DataFrame(np.random.rand(10, 3), index=idx)
|
||||
kwargs = {}
|
||||
if hasattr(self.plt.Figure, "get_constrained_layout"):
|
||||
kwargs["constrained_layout"] = True
|
||||
fig, axes = self.plt.subplots(2, **kwargs)
|
||||
with tm.assert_produces_warning(None):
|
||||
df.plot(ax=axes[0])
|
||||
with tm.ensure_clean(return_filelike=True) as path:
|
||||
self.plt.savefig(path)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"index_name, old_label, new_label",
|
||||
[
|
||||
(None, "", "new"),
|
||||
("old", "old", "new"),
|
||||
(None, "", ""),
|
||||
(None, "", 1),
|
||||
(None, "", [1, 2]),
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize("kind", ["line", "area", "bar"])
|
||||
def test_xlabel_ylabel_dataframe_subplots(
|
||||
self, kind, index_name, old_label, new_label
|
||||
):
|
||||
# GH 9093
|
||||
df = DataFrame([[1, 2], [2, 5]], columns=["Type A", "Type B"])
|
||||
df.index.name = index_name
|
||||
|
||||
# default is the ylabel is not shown and xlabel is index name
|
||||
axes = df.plot(kind=kind, subplots=True)
|
||||
assert all(ax.get_ylabel() == "" for ax in axes)
|
||||
assert all(ax.get_xlabel() == old_label for ax in axes)
|
||||
|
||||
# old xlabel will be overridden and assigned ylabel will be used as ylabel
|
||||
axes = df.plot(kind=kind, ylabel=new_label, xlabel=new_label, subplots=True)
|
||||
assert all(ax.get_ylabel() == str(new_label) for ax in axes)
|
||||
assert all(ax.get_xlabel() == str(new_label) for ax in axes)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"kwargs",
|
||||
[
|
||||
# stacked center
|
||||
{"kind": "bar", "stacked": True},
|
||||
{"kind": "bar", "stacked": True, "width": 0.9},
|
||||
{"kind": "barh", "stacked": True},
|
||||
{"kind": "barh", "stacked": True, "width": 0.9},
|
||||
# center
|
||||
{"kind": "bar", "stacked": False},
|
||||
{"kind": "bar", "stacked": False, "width": 0.9},
|
||||
{"kind": "barh", "stacked": False},
|
||||
{"kind": "barh", "stacked": False, "width": 0.9},
|
||||
# subplots center
|
||||
{"kind": "bar", "subplots": True},
|
||||
{"kind": "bar", "subplots": True, "width": 0.9},
|
||||
{"kind": "barh", "subplots": True},
|
||||
{"kind": "barh", "subplots": True, "width": 0.9},
|
||||
# align edge
|
||||
{"kind": "bar", "stacked": True, "align": "edge"},
|
||||
{"kind": "bar", "stacked": True, "width": 0.9, "align": "edge"},
|
||||
{"kind": "barh", "stacked": True, "align": "edge"},
|
||||
{"kind": "barh", "stacked": True, "width": 0.9, "align": "edge"},
|
||||
{"kind": "bar", "stacked": False, "align": "edge"},
|
||||
{"kind": "bar", "stacked": False, "width": 0.9, "align": "edge"},
|
||||
{"kind": "barh", "stacked": False, "align": "edge"},
|
||||
{"kind": "barh", "stacked": False, "width": 0.9, "align": "edge"},
|
||||
{"kind": "bar", "subplots": True, "align": "edge"},
|
||||
{"kind": "bar", "subplots": True, "width": 0.9, "align": "edge"},
|
||||
{"kind": "barh", "subplots": True, "align": "edge"},
|
||||
{"kind": "barh", "subplots": True, "width": 0.9, "align": "edge"},
|
||||
],
|
||||
)
|
||||
def test_bar_align_multiple_columns(self, kwargs):
|
||||
# GH2157
|
||||
df = DataFrame({"A": [3] * 5, "B": list(range(5))}, index=range(5))
|
||||
self._check_bar_alignment(df, **kwargs)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"kwargs",
|
||||
[
|
||||
{"kind": "bar", "stacked": False},
|
||||
{"kind": "bar", "stacked": True},
|
||||
{"kind": "barh", "stacked": False},
|
||||
{"kind": "barh", "stacked": True},
|
||||
{"kind": "bar", "subplots": True},
|
||||
{"kind": "barh", "subplots": True},
|
||||
],
|
||||
)
|
||||
def test_bar_align_single_column(self, kwargs):
|
||||
df = DataFrame(np.random.randn(5))
|
||||
self._check_bar_alignment(df, **kwargs)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"kwargs",
|
||||
[
|
||||
{"kind": "bar", "stacked": False},
|
||||
{"kind": "bar", "stacked": True},
|
||||
{"kind": "barh", "stacked": False},
|
||||
{"kind": "barh", "stacked": True},
|
||||
{"kind": "bar", "subplots": True},
|
||||
{"kind": "barh", "subplots": True},
|
||||
],
|
||||
)
|
||||
def test_bar_barwidth_position(self, kwargs):
|
||||
df = DataFrame(np.random.randn(5, 5))
|
||||
self._check_bar_alignment(df, width=0.9, position=0.2, **kwargs)
|
||||
|
||||
def test_bar_barwidth_position_int(self):
|
||||
# GH 12979
|
||||
df = DataFrame(np.random.randn(5, 5))
|
||||
|
||||
for w in [1, 1.0]:
|
||||
ax = df.plot.bar(stacked=True, width=w)
|
||||
ticks = ax.xaxis.get_ticklocs()
|
||||
tm.assert_numpy_array_equal(ticks, np.array([0, 1, 2, 3, 4]))
|
||||
assert ax.get_xlim() == (-0.75, 4.75)
|
||||
# check left-edge of bars
|
||||
assert ax.patches[0].get_x() == -0.5
|
||||
assert ax.patches[-1].get_x() == 3.5
|
||||
|
||||
self._check_bar_alignment(df, kind="bar", stacked=True, width=1)
|
||||
self._check_bar_alignment(df, kind="barh", stacked=False, width=1)
|
||||
self._check_bar_alignment(df, kind="barh", stacked=True, width=1)
|
||||
self._check_bar_alignment(df, kind="bar", subplots=True, width=1)
|
||||
self._check_bar_alignment(df, kind="barh", subplots=True, width=1)
|
||||
|
||||
def _check_bar_alignment(
|
||||
self,
|
||||
df,
|
||||
kind="bar",
|
||||
stacked=False,
|
||||
subplots=False,
|
||||
align="center",
|
||||
width=0.5,
|
||||
position=0.5,
|
||||
):
|
||||
|
||||
axes = df.plot(
|
||||
kind=kind,
|
||||
stacked=stacked,
|
||||
subplots=subplots,
|
||||
align=align,
|
||||
width=width,
|
||||
position=position,
|
||||
grid=True,
|
||||
)
|
||||
|
||||
axes = self._flatten_visible(axes)
|
||||
|
||||
for ax in axes:
|
||||
if kind == "bar":
|
||||
axis = ax.xaxis
|
||||
ax_min, ax_max = ax.get_xlim()
|
||||
min_edge = min(p.get_x() for p in ax.patches)
|
||||
max_edge = max(p.get_x() + p.get_width() for p in ax.patches)
|
||||
elif kind == "barh":
|
||||
axis = ax.yaxis
|
||||
ax_min, ax_max = ax.get_ylim()
|
||||
min_edge = min(p.get_y() for p in ax.patches)
|
||||
max_edge = max(p.get_y() + p.get_height() for p in ax.patches)
|
||||
else:
|
||||
raise ValueError
|
||||
|
||||
# GH 7498
|
||||
# compare margins between lim and bar edges
|
||||
tm.assert_almost_equal(ax_min, min_edge - 0.25)
|
||||
tm.assert_almost_equal(ax_max, max_edge + 0.25)
|
||||
|
||||
p = ax.patches[0]
|
||||
if kind == "bar" and (stacked is True or subplots is True):
|
||||
edge = p.get_x()
|
||||
center = edge + p.get_width() * position
|
||||
elif kind == "bar" and stacked is False:
|
||||
center = p.get_x() + p.get_width() * len(df.columns) * position
|
||||
edge = p.get_x()
|
||||
elif kind == "barh" and (stacked is True or subplots is True):
|
||||
center = p.get_y() + p.get_height() * position
|
||||
edge = p.get_y()
|
||||
elif kind == "barh" and stacked is False:
|
||||
center = p.get_y() + p.get_height() * len(df.columns) * position
|
||||
edge = p.get_y()
|
||||
else:
|
||||
raise ValueError
|
||||
|
||||
# Check the ticks locates on integer
|
||||
assert (axis.get_ticklocs() == np.arange(len(df))).all()
|
||||
|
||||
if align == "center":
|
||||
# Check whether the bar locates on center
|
||||
tm.assert_almost_equal(axis.get_ticklocs()[0], center)
|
||||
elif align == "edge":
|
||||
# Check whether the bar's edge starts from the tick
|
||||
tm.assert_almost_equal(axis.get_ticklocs()[0], edge)
|
||||
else:
|
||||
raise ValueError
|
||||
|
||||
return axes
|
@ -0,0 +1,389 @@
|
||||
import re
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas import DataFrame
|
||||
import pandas._testing as tm
|
||||
from pandas.tests.plotting.common import (
|
||||
TestPlotBase,
|
||||
_check_plot_works,
|
||||
)
|
||||
|
||||
|
||||
def _create_hist_box_with_by_df():
|
||||
np.random.seed(0)
|
||||
df = DataFrame(np.random.randn(30, 2), columns=["A", "B"])
|
||||
df["C"] = np.random.choice(["a", "b", "c"], 30)
|
||||
df["D"] = np.random.choice(["a", "b", "c"], 30)
|
||||
return df
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestHistWithBy(TestPlotBase):
|
||||
def setup_method(self, method):
|
||||
TestPlotBase.setup_method(self, method)
|
||||
import matplotlib as mpl
|
||||
|
||||
mpl.rcdefaults()
|
||||
self.hist_df = _create_hist_box_with_by_df()
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"by, column, titles, legends",
|
||||
[
|
||||
("C", "A", ["a", "b", "c"], [["A"]] * 3),
|
||||
("C", ["A", "B"], ["a", "b", "c"], [["A", "B"]] * 3),
|
||||
("C", None, ["a", "b", "c"], [["A", "B"]] * 3),
|
||||
(
|
||||
["C", "D"],
|
||||
"A",
|
||||
[
|
||||
"(a, a)",
|
||||
"(a, b)",
|
||||
"(a, c)",
|
||||
"(b, a)",
|
||||
"(b, b)",
|
||||
"(b, c)",
|
||||
"(c, a)",
|
||||
"(c, b)",
|
||||
"(c, c)",
|
||||
],
|
||||
[["A"]] * 9,
|
||||
),
|
||||
(
|
||||
["C", "D"],
|
||||
["A", "B"],
|
||||
[
|
||||
"(a, a)",
|
||||
"(a, b)",
|
||||
"(a, c)",
|
||||
"(b, a)",
|
||||
"(b, b)",
|
||||
"(b, c)",
|
||||
"(c, a)",
|
||||
"(c, b)",
|
||||
"(c, c)",
|
||||
],
|
||||
[["A", "B"]] * 9,
|
||||
),
|
||||
(
|
||||
["C", "D"],
|
||||
None,
|
||||
[
|
||||
"(a, a)",
|
||||
"(a, b)",
|
||||
"(a, c)",
|
||||
"(b, a)",
|
||||
"(b, b)",
|
||||
"(b, c)",
|
||||
"(c, a)",
|
||||
"(c, b)",
|
||||
"(c, c)",
|
||||
],
|
||||
[["A", "B"]] * 9,
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_hist_plot_by_argument(self, by, column, titles, legends):
|
||||
# GH 15079
|
||||
axes = _check_plot_works(self.hist_df.plot.hist, column=column, by=by)
|
||||
result_titles = [ax.get_title() for ax in axes]
|
||||
result_legends = [
|
||||
[legend.get_text() for legend in ax.get_legend().texts] for ax in axes
|
||||
]
|
||||
|
||||
assert result_legends == legends
|
||||
assert result_titles == titles
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"by, column, titles, legends",
|
||||
[
|
||||
(0, "A", ["a", "b", "c"], [["A"]] * 3),
|
||||
(0, None, ["a", "b", "c"], [["A", "B"]] * 3),
|
||||
(
|
||||
[0, "D"],
|
||||
"A",
|
||||
[
|
||||
"(a, a)",
|
||||
"(a, b)",
|
||||
"(a, c)",
|
||||
"(b, a)",
|
||||
"(b, b)",
|
||||
"(b, c)",
|
||||
"(c, a)",
|
||||
"(c, b)",
|
||||
"(c, c)",
|
||||
],
|
||||
[["A"]] * 9,
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_hist_plot_by_0(self, by, column, titles, legends):
|
||||
# GH 15079
|
||||
df = self.hist_df.copy()
|
||||
df = df.rename(columns={"C": 0})
|
||||
|
||||
axes = _check_plot_works(df.plot.hist, column=column, by=by)
|
||||
result_titles = [ax.get_title() for ax in axes]
|
||||
result_legends = [
|
||||
[legend.get_text() for legend in ax.get_legend().texts] for ax in axes
|
||||
]
|
||||
|
||||
assert result_legends == legends
|
||||
assert result_titles == titles
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"by, column",
|
||||
[
|
||||
([], ["A"]),
|
||||
([], ["A", "B"]),
|
||||
((), None),
|
||||
((), ["A", "B"]),
|
||||
],
|
||||
)
|
||||
def test_hist_plot_empty_list_string_tuple_by(self, by, column):
|
||||
# GH 15079
|
||||
msg = "No group keys passed"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
_check_plot_works(self.hist_df.plot.hist, column=column, by=by)
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize(
|
||||
"by, column, layout, axes_num",
|
||||
[
|
||||
(["C"], "A", (2, 2), 3),
|
||||
("C", "A", (2, 2), 3),
|
||||
(["C"], ["A"], (1, 3), 3),
|
||||
("C", None, (3, 1), 3),
|
||||
("C", ["A", "B"], (3, 1), 3),
|
||||
(["C", "D"], "A", (9, 1), 9),
|
||||
(["C", "D"], "A", (3, 3), 9),
|
||||
(["C", "D"], ["A"], (5, 2), 9),
|
||||
(["C", "D"], ["A", "B"], (9, 1), 9),
|
||||
(["C", "D"], None, (9, 1), 9),
|
||||
(["C", "D"], ["A", "B"], (5, 2), 9),
|
||||
],
|
||||
)
|
||||
def test_hist_plot_layout_with_by(self, by, column, layout, axes_num):
|
||||
# GH 15079
|
||||
# _check_plot_works adds an ax so catch warning. see GH #13188
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(
|
||||
self.hist_df.plot.hist, column=column, by=by, layout=layout
|
||||
)
|
||||
self._check_axes_shape(axes, axes_num=axes_num, layout=layout)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"msg, by, layout",
|
||||
[
|
||||
("larger than required size", ["C", "D"], (1, 1)),
|
||||
(re.escape("Layout must be a tuple of (rows, columns)"), "C", (1,)),
|
||||
("At least one dimension of layout must be positive", "C", (-1, -1)),
|
||||
],
|
||||
)
|
||||
def test_hist_plot_invalid_layout_with_by_raises(self, msg, by, layout):
|
||||
# GH 15079, test if error is raised when invalid layout is given
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
self.hist_df.plot.hist(column=["A", "B"], by=by, layout=layout)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_axis_share_x_with_by(self):
|
||||
# GH 15079
|
||||
ax1, ax2, ax3 = self.hist_df.plot.hist(column="A", by="C", sharex=True)
|
||||
|
||||
# share x
|
||||
assert self.get_x_axis(ax1).joined(ax1, ax2)
|
||||
assert self.get_x_axis(ax2).joined(ax1, ax2)
|
||||
assert self.get_x_axis(ax3).joined(ax1, ax3)
|
||||
assert self.get_x_axis(ax3).joined(ax2, ax3)
|
||||
|
||||
# don't share y
|
||||
assert not self.get_y_axis(ax1).joined(ax1, ax2)
|
||||
assert not self.get_y_axis(ax2).joined(ax1, ax2)
|
||||
assert not self.get_y_axis(ax3).joined(ax1, ax3)
|
||||
assert not self.get_y_axis(ax3).joined(ax2, ax3)
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_axis_share_y_with_by(self):
|
||||
# GH 15079
|
||||
ax1, ax2, ax3 = self.hist_df.plot.hist(column="A", by="C", sharey=True)
|
||||
|
||||
# share y
|
||||
assert self.get_y_axis(ax1).joined(ax1, ax2)
|
||||
assert self.get_y_axis(ax2).joined(ax1, ax2)
|
||||
assert self.get_y_axis(ax3).joined(ax1, ax3)
|
||||
assert self.get_y_axis(ax3).joined(ax2, ax3)
|
||||
|
||||
# don't share x
|
||||
assert not self.get_x_axis(ax1).joined(ax1, ax2)
|
||||
assert not self.get_x_axis(ax2).joined(ax1, ax2)
|
||||
assert not self.get_x_axis(ax3).joined(ax1, ax3)
|
||||
assert not self.get_x_axis(ax3).joined(ax2, ax3)
|
||||
|
||||
@pytest.mark.parametrize("figsize", [(12, 8), (20, 10)])
|
||||
def test_figure_shape_hist_with_by(self, figsize):
|
||||
# GH 15079
|
||||
axes = self.hist_df.plot.hist(column="A", by="C", figsize=figsize)
|
||||
self._check_axes_shape(axes, axes_num=3, figsize=figsize)
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestBoxWithBy(TestPlotBase):
|
||||
def setup_method(self, method):
|
||||
TestPlotBase.setup_method(self, method)
|
||||
import matplotlib as mpl
|
||||
|
||||
mpl.rcdefaults()
|
||||
self.box_df = _create_hist_box_with_by_df()
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"by, column, titles, xticklabels",
|
||||
[
|
||||
("C", "A", ["A"], [["a", "b", "c"]]),
|
||||
(
|
||||
["C", "D"],
|
||||
"A",
|
||||
["A"],
|
||||
[
|
||||
[
|
||||
"(a, a)",
|
||||
"(a, b)",
|
||||
"(a, c)",
|
||||
"(b, a)",
|
||||
"(b, b)",
|
||||
"(b, c)",
|
||||
"(c, a)",
|
||||
"(c, b)",
|
||||
"(c, c)",
|
||||
]
|
||||
],
|
||||
),
|
||||
("C", ["A", "B"], ["A", "B"], [["a", "b", "c"]] * 2),
|
||||
(
|
||||
["C", "D"],
|
||||
["A", "B"],
|
||||
["A", "B"],
|
||||
[
|
||||
[
|
||||
"(a, a)",
|
||||
"(a, b)",
|
||||
"(a, c)",
|
||||
"(b, a)",
|
||||
"(b, b)",
|
||||
"(b, c)",
|
||||
"(c, a)",
|
||||
"(c, b)",
|
||||
"(c, c)",
|
||||
]
|
||||
]
|
||||
* 2,
|
||||
),
|
||||
(["C"], None, ["A", "B"], [["a", "b", "c"]] * 2),
|
||||
],
|
||||
)
|
||||
def test_box_plot_by_argument(self, by, column, titles, xticklabels):
|
||||
# GH 15079
|
||||
axes = _check_plot_works(self.box_df.plot.box, column=column, by=by)
|
||||
result_titles = [ax.get_title() for ax in axes]
|
||||
result_xticklabels = [
|
||||
[label.get_text() for label in ax.get_xticklabels()] for ax in axes
|
||||
]
|
||||
|
||||
assert result_xticklabels == xticklabels
|
||||
assert result_titles == titles
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"by, column, titles, xticklabels",
|
||||
[
|
||||
(0, "A", ["A"], [["a", "b", "c"]]),
|
||||
(
|
||||
[0, "D"],
|
||||
"A",
|
||||
["A"],
|
||||
[
|
||||
[
|
||||
"(a, a)",
|
||||
"(a, b)",
|
||||
"(a, c)",
|
||||
"(b, a)",
|
||||
"(b, b)",
|
||||
"(b, c)",
|
||||
"(c, a)",
|
||||
"(c, b)",
|
||||
"(c, c)",
|
||||
]
|
||||
],
|
||||
),
|
||||
(0, None, ["A", "B"], [["a", "b", "c"]] * 2),
|
||||
],
|
||||
)
|
||||
def test_box_plot_by_0(self, by, column, titles, xticklabels):
|
||||
# GH 15079
|
||||
df = self.box_df.copy()
|
||||
df = df.rename(columns={"C": 0})
|
||||
|
||||
axes = _check_plot_works(df.plot.box, column=column, by=by)
|
||||
result_titles = [ax.get_title() for ax in axes]
|
||||
result_xticklabels = [
|
||||
[label.get_text() for label in ax.get_xticklabels()] for ax in axes
|
||||
]
|
||||
|
||||
assert result_xticklabels == xticklabels
|
||||
assert result_titles == titles
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"by, column",
|
||||
[
|
||||
([], ["A"]),
|
||||
((), "A"),
|
||||
([], None),
|
||||
((), ["A", "B"]),
|
||||
],
|
||||
)
|
||||
def test_box_plot_with_none_empty_list_by(self, by, column):
|
||||
# GH 15079
|
||||
msg = "No group keys passed"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
_check_plot_works(self.box_df.plot.box, column=column, by=by)
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize(
|
||||
"by, column, layout, axes_num",
|
||||
[
|
||||
(["C"], "A", (1, 1), 1),
|
||||
("C", "A", (1, 1), 1),
|
||||
("C", None, (2, 1), 2),
|
||||
("C", ["A", "B"], (1, 2), 2),
|
||||
(["C", "D"], "A", (1, 1), 1),
|
||||
(["C", "D"], None, (1, 2), 2),
|
||||
],
|
||||
)
|
||||
def test_box_plot_layout_with_by(self, by, column, layout, axes_num):
|
||||
# GH 15079
|
||||
axes = _check_plot_works(
|
||||
self.box_df.plot.box, column=column, by=by, layout=layout
|
||||
)
|
||||
self._check_axes_shape(axes, axes_num=axes_num, layout=layout)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"msg, by, layout",
|
||||
[
|
||||
("larger than required size", ["C", "D"], (1, 1)),
|
||||
(re.escape("Layout must be a tuple of (rows, columns)"), "C", (1,)),
|
||||
("At least one dimension of layout must be positive", "C", (-1, -1)),
|
||||
],
|
||||
)
|
||||
def test_box_plot_invalid_layout_with_by_raises(self, msg, by, layout):
|
||||
# GH 15079, test if error is raised when invalid layout is given
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
self.box_df.plot.box(column=["A", "B"], by=by, layout=layout)
|
||||
|
||||
@pytest.mark.parametrize("figsize", [(12, 8), (20, 10)])
|
||||
def test_figure_shape_hist_with_by(self, figsize):
|
||||
# GH 15079
|
||||
axes = self.box_df.plot.box(column="A", by="C", figsize=figsize)
|
||||
self._check_axes_shape(axes, axes_num=1, figsize=figsize)
|
111
.venv/Lib/site-packages/pandas/tests/plotting/test_backend.py
Normal file
111
.venv/Lib/site-packages/pandas/tests/plotting/test_backend.py
Normal file
@ -0,0 +1,111 @@
|
||||
import sys
|
||||
import types
|
||||
|
||||
import pkg_resources
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
import pandas
|
||||
|
||||
dummy_backend = types.ModuleType("pandas_dummy_backend")
|
||||
setattr(dummy_backend, "plot", lambda *args, **kwargs: "used_dummy")
|
||||
|
||||
|
||||
pytestmark = pytest.mark.slow
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def restore_backend():
|
||||
"""Restore the plotting backend to matplotlib"""
|
||||
pandas.set_option("plotting.backend", "matplotlib")
|
||||
yield
|
||||
pandas.set_option("plotting.backend", "matplotlib")
|
||||
|
||||
|
||||
def test_backend_is_not_module():
|
||||
msg = "Could not find plotting backend 'not_an_existing_module'."
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
pandas.set_option("plotting.backend", "not_an_existing_module")
|
||||
|
||||
assert pandas.options.plotting.backend == "matplotlib"
|
||||
|
||||
|
||||
def test_backend_is_correct(monkeypatch, restore_backend):
|
||||
monkeypatch.setitem(sys.modules, "pandas_dummy_backend", dummy_backend)
|
||||
|
||||
pandas.set_option("plotting.backend", "pandas_dummy_backend")
|
||||
assert pandas.get_option("plotting.backend") == "pandas_dummy_backend"
|
||||
assert (
|
||||
pandas.plotting._core._get_plot_backend("pandas_dummy_backend") is dummy_backend
|
||||
)
|
||||
|
||||
|
||||
def test_backend_can_be_set_in_plot_call(monkeypatch, restore_backend):
|
||||
monkeypatch.setitem(sys.modules, "pandas_dummy_backend", dummy_backend)
|
||||
df = pandas.DataFrame([1, 2, 3])
|
||||
|
||||
assert pandas.get_option("plotting.backend") == "matplotlib"
|
||||
assert df.plot(backend="pandas_dummy_backend") == "used_dummy"
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
def test_register_entrypoint(restore_backend):
|
||||
|
||||
dist = pkg_resources.get_distribution("pandas")
|
||||
if dist.module_path not in pandas.__file__:
|
||||
# We are running from a non-installed pandas, and this test is invalid
|
||||
pytest.skip("Testing a non-installed pandas")
|
||||
|
||||
mod = types.ModuleType("my_backend")
|
||||
mod.plot = lambda *args, **kwargs: 1
|
||||
|
||||
backends = pkg_resources.get_entry_map("pandas")
|
||||
my_entrypoint = pkg_resources.EntryPoint(
|
||||
"pandas_plotting_backend", mod.__name__, dist=dist
|
||||
)
|
||||
backends["pandas_plotting_backends"]["my_backend"] = my_entrypoint
|
||||
# TODO: the docs recommend importlib.util.module_from_spec. But this works for now.
|
||||
sys.modules["my_backend"] = mod
|
||||
|
||||
result = pandas.plotting._core._get_plot_backend("my_backend")
|
||||
assert result is mod
|
||||
|
||||
# TODO(GH#27517): https://github.com/pandas-dev/pandas/issues/27517
|
||||
# Remove the td.skip_if_no_mpl
|
||||
with pandas.option_context("plotting.backend", "my_backend"):
|
||||
result = pandas.plotting._core._get_plot_backend()
|
||||
|
||||
assert result is mod
|
||||
|
||||
|
||||
def test_setting_backend_without_plot_raises():
|
||||
# GH-28163
|
||||
module = types.ModuleType("pandas_plot_backend")
|
||||
sys.modules["pandas_plot_backend"] = module
|
||||
|
||||
assert pandas.options.plotting.backend == "matplotlib"
|
||||
with pytest.raises(
|
||||
ValueError, match="Could not find plotting backend 'pandas_plot_backend'."
|
||||
):
|
||||
pandas.set_option("plotting.backend", "pandas_plot_backend")
|
||||
|
||||
assert pandas.options.plotting.backend == "matplotlib"
|
||||
|
||||
|
||||
@td.skip_if_mpl
|
||||
def test_no_matplotlib_ok():
|
||||
msg = (
|
||||
'matplotlib is required for plotting when the default backend "matplotlib" is '
|
||||
"selected."
|
||||
)
|
||||
with pytest.raises(ImportError, match=msg):
|
||||
pandas.plotting._core._get_plot_backend("matplotlib")
|
||||
|
||||
|
||||
def test_extra_kinds_ok(monkeypatch, restore_backend):
|
||||
# https://github.com/pandas-dev/pandas/pull/28647
|
||||
monkeypatch.setitem(sys.modules, "pandas_dummy_backend", dummy_backend)
|
||||
pandas.set_option("plotting.backend", "pandas_dummy_backend")
|
||||
df = pandas.DataFrame({"A": [1, 2, 3]})
|
||||
df.plot(kind="not a real kind")
|
@ -0,0 +1,568 @@
|
||||
""" Test cases for .boxplot method """
|
||||
|
||||
import itertools
|
||||
import string
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
MultiIndex,
|
||||
Series,
|
||||
date_range,
|
||||
timedelta_range,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.tests.plotting.common import (
|
||||
TestPlotBase,
|
||||
_check_plot_works,
|
||||
)
|
||||
|
||||
import pandas.plotting as plotting
|
||||
|
||||
pytestmark = pytest.mark.slow
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestDataFramePlots(TestPlotBase):
|
||||
def test_boxplot_legacy1(self):
|
||||
df = DataFrame(
|
||||
np.random.randn(6, 4),
|
||||
index=list(string.ascii_letters[:6]),
|
||||
columns=["one", "two", "three", "four"],
|
||||
)
|
||||
df["indic"] = ["foo", "bar"] * 3
|
||||
df["indic2"] = ["foo", "bar", "foo"] * 2
|
||||
|
||||
_check_plot_works(df.boxplot, return_type="dict")
|
||||
_check_plot_works(df.boxplot, column=["one", "two"], return_type="dict")
|
||||
# _check_plot_works adds an ax so catch warning. see GH #13188
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(df.boxplot, column=["one", "two"], by="indic")
|
||||
_check_plot_works(df.boxplot, column="one", by=["indic", "indic2"])
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(df.boxplot, by="indic")
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(df.boxplot, by=["indic", "indic2"])
|
||||
_check_plot_works(plotting._core.boxplot, data=df["one"], return_type="dict")
|
||||
_check_plot_works(df.boxplot, notch=1, return_type="dict")
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(df.boxplot, by="indic", notch=1)
|
||||
|
||||
def test_boxplot_legacy2(self):
|
||||
df = DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"])
|
||||
df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
|
||||
df["Y"] = Series(["A"] * 10)
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(df.boxplot, by="X")
|
||||
|
||||
# When ax is supplied and required number of axes is 1,
|
||||
# passed ax should be used:
|
||||
fig, ax = self.plt.subplots()
|
||||
axes = df.boxplot("Col1", by="X", ax=ax)
|
||||
ax_axes = ax.axes
|
||||
assert ax_axes is axes
|
||||
|
||||
fig, ax = self.plt.subplots()
|
||||
axes = df.groupby("Y").boxplot(ax=ax, return_type="axes")
|
||||
ax_axes = ax.axes
|
||||
assert ax_axes is axes["A"]
|
||||
|
||||
# Multiple columns with an ax argument should use same figure
|
||||
fig, ax = self.plt.subplots()
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = df.boxplot(
|
||||
column=["Col1", "Col2"], by="X", ax=ax, return_type="axes"
|
||||
)
|
||||
assert axes["Col1"].get_figure() is fig
|
||||
|
||||
# When by is None, check that all relevant lines are present in the
|
||||
# dict
|
||||
fig, ax = self.plt.subplots()
|
||||
d = df.boxplot(ax=ax, return_type="dict")
|
||||
lines = list(itertools.chain.from_iterable(d.values()))
|
||||
assert len(ax.get_lines()) == len(lines)
|
||||
|
||||
def test_boxplot_return_type_none(self):
|
||||
# GH 12216; return_type=None & by=None -> axes
|
||||
result = self.hist_df.boxplot()
|
||||
assert isinstance(result, self.plt.Axes)
|
||||
|
||||
def test_boxplot_return_type_legacy(self):
|
||||
# API change in https://github.com/pandas-dev/pandas/pull/7096
|
||||
|
||||
df = DataFrame(
|
||||
np.random.randn(6, 4),
|
||||
index=list(string.ascii_letters[:6]),
|
||||
columns=["one", "two", "three", "four"],
|
||||
)
|
||||
msg = "return_type must be {'axes', 'dict', 'both'}"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.boxplot(return_type="NOT_A_TYPE")
|
||||
|
||||
result = df.boxplot()
|
||||
self._check_box_return_type(result, "axes")
|
||||
|
||||
with tm.assert_produces_warning(False):
|
||||
result = df.boxplot(return_type="dict")
|
||||
self._check_box_return_type(result, "dict")
|
||||
|
||||
with tm.assert_produces_warning(False):
|
||||
result = df.boxplot(return_type="axes")
|
||||
self._check_box_return_type(result, "axes")
|
||||
|
||||
with tm.assert_produces_warning(False):
|
||||
result = df.boxplot(return_type="both")
|
||||
self._check_box_return_type(result, "both")
|
||||
|
||||
def test_boxplot_axis_limits(self):
|
||||
def _check_ax_limits(col, ax):
|
||||
y_min, y_max = ax.get_ylim()
|
||||
assert y_min <= col.min()
|
||||
assert y_max >= col.max()
|
||||
|
||||
df = self.hist_df.copy()
|
||||
df["age"] = np.random.randint(1, 20, df.shape[0])
|
||||
# One full row
|
||||
height_ax, weight_ax = df.boxplot(["height", "weight"], by="category")
|
||||
_check_ax_limits(df["height"], height_ax)
|
||||
_check_ax_limits(df["weight"], weight_ax)
|
||||
assert weight_ax._sharey == height_ax
|
||||
|
||||
# Two rows, one partial
|
||||
p = df.boxplot(["height", "weight", "age"], by="category")
|
||||
height_ax, weight_ax, age_ax = p[0, 0], p[0, 1], p[1, 0]
|
||||
dummy_ax = p[1, 1]
|
||||
|
||||
_check_ax_limits(df["height"], height_ax)
|
||||
_check_ax_limits(df["weight"], weight_ax)
|
||||
_check_ax_limits(df["age"], age_ax)
|
||||
assert weight_ax._sharey == height_ax
|
||||
assert age_ax._sharey == height_ax
|
||||
assert dummy_ax._sharey is None
|
||||
|
||||
def test_boxplot_empty_column(self):
|
||||
df = DataFrame(np.random.randn(20, 4))
|
||||
df.loc[:, 0] = np.nan
|
||||
_check_plot_works(df.boxplot, return_type="axes")
|
||||
|
||||
def test_figsize(self):
|
||||
df = DataFrame(np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"])
|
||||
result = df.boxplot(return_type="axes", figsize=(12, 8))
|
||||
assert result.figure.bbox_inches.width == 12
|
||||
assert result.figure.bbox_inches.height == 8
|
||||
|
||||
def test_fontsize(self):
|
||||
df = DataFrame({"a": [1, 2, 3, 4, 5, 6]})
|
||||
self._check_ticks_props(
|
||||
df.boxplot("a", fontsize=16), xlabelsize=16, ylabelsize=16
|
||||
)
|
||||
|
||||
def test_boxplot_numeric_data(self):
|
||||
# GH 22799
|
||||
df = DataFrame(
|
||||
{
|
||||
"a": date_range("2012-01-01", periods=100),
|
||||
"b": np.random.randn(100),
|
||||
"c": np.random.randn(100) + 2,
|
||||
"d": date_range("2012-01-01", periods=100).astype(str),
|
||||
"e": date_range("2012-01-01", periods=100, tz="UTC"),
|
||||
"f": timedelta_range("1 days", periods=100),
|
||||
}
|
||||
)
|
||||
ax = df.plot(kind="box")
|
||||
assert [x.get_text() for x in ax.get_xticklabels()] == ["b", "c"]
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"colors_kwd, expected",
|
||||
[
|
||||
(
|
||||
{"boxes": "r", "whiskers": "b", "medians": "g", "caps": "c"},
|
||||
{"boxes": "r", "whiskers": "b", "medians": "g", "caps": "c"},
|
||||
),
|
||||
({"boxes": "r"}, {"boxes": "r"}),
|
||||
("r", {"boxes": "r", "whiskers": "r", "medians": "r", "caps": "r"}),
|
||||
],
|
||||
)
|
||||
def test_color_kwd(self, colors_kwd, expected):
|
||||
# GH: 26214
|
||||
df = DataFrame(np.random.rand(10, 2))
|
||||
result = df.boxplot(color=colors_kwd, return_type="dict")
|
||||
for k, v in expected.items():
|
||||
assert result[k][0].get_color() == v
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"scheme,expected",
|
||||
[
|
||||
(
|
||||
"dark_background",
|
||||
{
|
||||
"boxes": "#8dd3c7",
|
||||
"whiskers": "#8dd3c7",
|
||||
"medians": "#bfbbd9",
|
||||
"caps": "#8dd3c7",
|
||||
},
|
||||
),
|
||||
(
|
||||
"default",
|
||||
{
|
||||
"boxes": "#1f77b4",
|
||||
"whiskers": "#1f77b4",
|
||||
"medians": "#2ca02c",
|
||||
"caps": "#1f77b4",
|
||||
},
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_colors_in_theme(self, scheme, expected):
|
||||
# GH: 40769
|
||||
df = DataFrame(np.random.rand(10, 2))
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
plt.style.use(scheme)
|
||||
result = df.plot.box(return_type="dict")
|
||||
for k, v in expected.items():
|
||||
assert result[k][0].get_color() == v
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dict_colors, msg",
|
||||
[({"boxes": "r", "invalid_key": "r"}, "invalid key 'invalid_key'")],
|
||||
)
|
||||
def test_color_kwd_errors(self, dict_colors, msg):
|
||||
# GH: 26214
|
||||
df = DataFrame(np.random.rand(10, 2))
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.boxplot(color=dict_colors, return_type="dict")
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"props, expected",
|
||||
[
|
||||
("boxprops", "boxes"),
|
||||
("whiskerprops", "whiskers"),
|
||||
("capprops", "caps"),
|
||||
("medianprops", "medians"),
|
||||
],
|
||||
)
|
||||
def test_specified_props_kwd(self, props, expected):
|
||||
# GH 30346
|
||||
df = DataFrame({k: np.random.random(100) for k in "ABC"})
|
||||
kwd = {props: {"color": "C1"}}
|
||||
result = df.boxplot(return_type="dict", **kwd)
|
||||
|
||||
assert result[expected][0].get_color() == "C1"
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestDataFrameGroupByPlots(TestPlotBase):
|
||||
def test_boxplot_legacy1(self):
|
||||
grouped = self.hist_df.groupby(by="gender")
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(grouped.boxplot, return_type="axes")
|
||||
self._check_axes_shape(list(axes.values), axes_num=2, layout=(1, 2))
|
||||
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
|
||||
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
|
||||
|
||||
def test_boxplot_legacy2(self):
|
||||
tuples = zip(string.ascii_letters[:10], range(10))
|
||||
df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples))
|
||||
grouped = df.groupby(level=1)
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(grouped.boxplot, return_type="axes")
|
||||
self._check_axes_shape(list(axes.values), axes_num=10, layout=(4, 3))
|
||||
|
||||
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
|
||||
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
|
||||
|
||||
def test_boxplot_legacy3(self):
|
||||
tuples = zip(string.ascii_letters[:10], range(10))
|
||||
df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples))
|
||||
grouped = df.unstack(level=1).groupby(level=0, axis=1)
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(grouped.boxplot, return_type="axes")
|
||||
self._check_axes_shape(list(axes.values), axes_num=3, layout=(2, 2))
|
||||
axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
|
||||
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
|
||||
|
||||
def test_grouped_plot_fignums(self):
|
||||
n = 10
|
||||
weight = Series(np.random.normal(166, 20, size=n))
|
||||
height = Series(np.random.normal(60, 10, size=n))
|
||||
with tm.RNGContext(42):
|
||||
gender = np.random.choice(["male", "female"], size=n)
|
||||
df = DataFrame({"height": height, "weight": weight, "gender": gender})
|
||||
gb = df.groupby("gender")
|
||||
|
||||
res = gb.plot()
|
||||
assert len(self.plt.get_fignums()) == 2
|
||||
assert len(res) == 2
|
||||
tm.close()
|
||||
|
||||
res = gb.boxplot(return_type="axes")
|
||||
assert len(self.plt.get_fignums()) == 1
|
||||
assert len(res) == 2
|
||||
tm.close()
|
||||
|
||||
# now works with GH 5610 as gender is excluded
|
||||
res = df.groupby("gender").hist()
|
||||
tm.close()
|
||||
|
||||
def test_grouped_box_return_type(self):
|
||||
df = self.hist_df
|
||||
|
||||
# old style: return_type=None
|
||||
result = df.boxplot(by="gender")
|
||||
assert isinstance(result, np.ndarray)
|
||||
self._check_box_return_type(
|
||||
result, None, expected_keys=["height", "weight", "category"]
|
||||
)
|
||||
|
||||
# now for groupby
|
||||
result = df.groupby("gender").boxplot(return_type="dict")
|
||||
self._check_box_return_type(result, "dict", expected_keys=["Male", "Female"])
|
||||
|
||||
columns2 = "X B C D A G Y N Q O".split()
|
||||
df2 = DataFrame(np.random.randn(50, 10), columns=columns2)
|
||||
categories2 = "A B C D E F G H I J".split()
|
||||
df2["category"] = categories2 * 5
|
||||
|
||||
for t in ["dict", "axes", "both"]:
|
||||
returned = df.groupby("classroom").boxplot(return_type=t)
|
||||
self._check_box_return_type(returned, t, expected_keys=["A", "B", "C"])
|
||||
|
||||
returned = df.boxplot(by="classroom", return_type=t)
|
||||
self._check_box_return_type(
|
||||
returned, t, expected_keys=["height", "weight", "category"]
|
||||
)
|
||||
|
||||
returned = df2.groupby("category").boxplot(return_type=t)
|
||||
self._check_box_return_type(returned, t, expected_keys=categories2)
|
||||
|
||||
returned = df2.boxplot(by="category", return_type=t)
|
||||
self._check_box_return_type(returned, t, expected_keys=columns2)
|
||||
|
||||
def test_grouped_box_layout(self):
|
||||
df = self.hist_df
|
||||
|
||||
msg = "Layout of 1x1 must be larger than required size 2"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.boxplot(column=["weight", "height"], by=df.gender, layout=(1, 1))
|
||||
|
||||
msg = "The 'layout' keyword is not supported when 'by' is None"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.boxplot(
|
||||
column=["height", "weight", "category"],
|
||||
layout=(2, 1),
|
||||
return_type="dict",
|
||||
)
|
||||
|
||||
msg = "At least one dimension of layout must be positive"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.boxplot(column=["weight", "height"], by=df.gender, layout=(-1, -1))
|
||||
|
||||
# _check_plot_works adds an ax so catch warning. see GH #13188
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
box = _check_plot_works(
|
||||
df.groupby("gender").boxplot, column="height", return_type="dict"
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=2, layout=(1, 2))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
box = _check_plot_works(
|
||||
df.groupby("category").boxplot, column="height", return_type="dict"
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(2, 2))
|
||||
|
||||
# GH 6769
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
box = _check_plot_works(
|
||||
df.groupby("classroom").boxplot, column="height", return_type="dict"
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
|
||||
|
||||
# GH 5897
|
||||
axes = df.boxplot(
|
||||
column=["height", "weight", "category"], by="gender", return_type="axes"
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
|
||||
for ax in [axes["height"]]:
|
||||
self._check_visible(ax.get_xticklabels(), visible=False)
|
||||
self._check_visible([ax.xaxis.get_label()], visible=False)
|
||||
for ax in [axes["weight"], axes["category"]]:
|
||||
self._check_visible(ax.get_xticklabels())
|
||||
self._check_visible([ax.xaxis.get_label()])
|
||||
|
||||
box = df.groupby("classroom").boxplot(
|
||||
column=["height", "weight", "category"], return_type="dict"
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
box = _check_plot_works(
|
||||
df.groupby("category").boxplot,
|
||||
column="height",
|
||||
layout=(3, 2),
|
||||
return_type="dict",
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
box = _check_plot_works(
|
||||
df.groupby("category").boxplot,
|
||||
column="height",
|
||||
layout=(3, -1),
|
||||
return_type="dict",
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))
|
||||
|
||||
box = df.boxplot(
|
||||
column=["height", "weight", "category"], by="gender", layout=(4, 1)
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(4, 1))
|
||||
|
||||
box = df.boxplot(
|
||||
column=["height", "weight", "category"], by="gender", layout=(-1, 1)
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(3, 1))
|
||||
|
||||
box = df.groupby("classroom").boxplot(
|
||||
column=["height", "weight", "category"], layout=(1, 4), return_type="dict"
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 4))
|
||||
|
||||
box = df.groupby("classroom").boxplot( # noqa
|
||||
column=["height", "weight", "category"], layout=(1, -1), return_type="dict"
|
||||
)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 3))
|
||||
|
||||
def test_grouped_box_multiple_axes(self):
|
||||
# GH 6970, GH 7069
|
||||
df = self.hist_df
|
||||
|
||||
# check warning to ignore sharex / sharey
|
||||
# this check should be done in the first function which
|
||||
# passes multiple axes to plot, hist or boxplot
|
||||
# location should be changed if other test is added
|
||||
# which has earlier alphabetical order
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
fig, axes = self.plt.subplots(2, 2)
|
||||
df.groupby("category").boxplot(column="height", return_type="axes", ax=axes)
|
||||
self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(2, 2))
|
||||
|
||||
fig, axes = self.plt.subplots(2, 3)
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
returned = df.boxplot(
|
||||
column=["height", "weight", "category"],
|
||||
by="gender",
|
||||
return_type="axes",
|
||||
ax=axes[0],
|
||||
)
|
||||
returned = np.array(list(returned.values))
|
||||
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
|
||||
tm.assert_numpy_array_equal(returned, axes[0])
|
||||
assert returned[0].figure is fig
|
||||
|
||||
# draw on second row
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
returned = df.groupby("classroom").boxplot(
|
||||
column=["height", "weight", "category"], return_type="axes", ax=axes[1]
|
||||
)
|
||||
returned = np.array(list(returned.values))
|
||||
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
|
||||
tm.assert_numpy_array_equal(returned, axes[1])
|
||||
assert returned[0].figure is fig
|
||||
|
||||
msg = "The number of passed axes must be 3, the same as the output plot"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
fig, axes = self.plt.subplots(2, 3)
|
||||
# pass different number of axes from required
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = df.groupby("classroom").boxplot(ax=axes)
|
||||
|
||||
def test_fontsize(self):
|
||||
df = DataFrame({"a": [1, 2, 3, 4, 5, 6], "b": [0, 0, 0, 1, 1, 1]})
|
||||
self._check_ticks_props(
|
||||
df.boxplot("a", by="b", fontsize=16), xlabelsize=16, ylabelsize=16
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"col, expected_xticklabel",
|
||||
[
|
||||
("v", ["(a, v)", "(b, v)", "(c, v)", "(d, v)", "(e, v)"]),
|
||||
(["v"], ["(a, v)", "(b, v)", "(c, v)", "(d, v)", "(e, v)"]),
|
||||
("v1", ["(a, v1)", "(b, v1)", "(c, v1)", "(d, v1)", "(e, v1)"]),
|
||||
(
|
||||
["v", "v1"],
|
||||
[
|
||||
"(a, v)",
|
||||
"(a, v1)",
|
||||
"(b, v)",
|
||||
"(b, v1)",
|
||||
"(c, v)",
|
||||
"(c, v1)",
|
||||
"(d, v)",
|
||||
"(d, v1)",
|
||||
"(e, v)",
|
||||
"(e, v1)",
|
||||
],
|
||||
),
|
||||
(
|
||||
None,
|
||||
[
|
||||
"(a, v)",
|
||||
"(a, v1)",
|
||||
"(b, v)",
|
||||
"(b, v1)",
|
||||
"(c, v)",
|
||||
"(c, v1)",
|
||||
"(d, v)",
|
||||
"(d, v1)",
|
||||
"(e, v)",
|
||||
"(e, v1)",
|
||||
],
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_groupby_boxplot_subplots_false(self, col, expected_xticklabel):
|
||||
# GH 16748
|
||||
df = DataFrame(
|
||||
{
|
||||
"cat": np.random.choice(list("abcde"), 100),
|
||||
"v": np.random.rand(100),
|
||||
"v1": np.random.rand(100),
|
||||
}
|
||||
)
|
||||
grouped = df.groupby("cat")
|
||||
|
||||
axes = _check_plot_works(
|
||||
grouped.boxplot, subplots=False, column=col, return_type="axes"
|
||||
)
|
||||
|
||||
result_xticklabel = [x.get_text() for x in axes.get_xticklabels()]
|
||||
assert expected_xticklabel == result_xticklabel
|
||||
|
||||
def test_groupby_boxplot_object(self):
|
||||
# GH 43480
|
||||
df = self.hist_df.astype("object")
|
||||
grouped = df.groupby("gender")
|
||||
msg = "boxplot method requires numerical columns, nothing to plot"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
_check_plot_works(grouped.boxplot, subplots=False)
|
||||
|
||||
def test_boxplot_multiindex_column(self):
|
||||
# GH 16748
|
||||
arrays = [
|
||||
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
|
||||
["one", "two", "one", "two", "one", "two", "one", "two"],
|
||||
]
|
||||
tuples = list(zip(*arrays))
|
||||
index = MultiIndex.from_tuples(tuples, names=["first", "second"])
|
||||
df = DataFrame(np.random.randn(3, 8), index=["A", "B", "C"], columns=index)
|
||||
|
||||
col = [("bar", "one"), ("bar", "two")]
|
||||
axes = _check_plot_works(df.boxplot, column=col, return_type="axes")
|
||||
|
||||
expected_xticklabel = ["(bar, one)", "(bar, two)"]
|
||||
result_xticklabel = [x.get_text() for x in axes.get_xticklabels()]
|
||||
assert expected_xticklabel == result_xticklabel
|
44
.venv/Lib/site-packages/pandas/tests/plotting/test_common.py
Normal file
44
.venv/Lib/site-packages/pandas/tests/plotting/test_common.py
Normal file
@ -0,0 +1,44 @@
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas import DataFrame
|
||||
from pandas.tests.plotting.common import (
|
||||
TestPlotBase,
|
||||
_check_plot_works,
|
||||
_gen_two_subplots,
|
||||
)
|
||||
|
||||
pytestmark = pytest.mark.slow
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestCommon(TestPlotBase):
|
||||
def test__check_ticks_props(self):
|
||||
# GH 34768
|
||||
df = DataFrame({"b": [0, 1, 0], "a": [1, 2, 3]})
|
||||
ax = _check_plot_works(df.plot, rot=30)
|
||||
ax.yaxis.set_tick_params(rotation=30)
|
||||
msg = "expected 0.00000 but got "
|
||||
with pytest.raises(AssertionError, match=msg):
|
||||
self._check_ticks_props(ax, xrot=0)
|
||||
with pytest.raises(AssertionError, match=msg):
|
||||
self._check_ticks_props(ax, xlabelsize=0)
|
||||
with pytest.raises(AssertionError, match=msg):
|
||||
self._check_ticks_props(ax, yrot=0)
|
||||
with pytest.raises(AssertionError, match=msg):
|
||||
self._check_ticks_props(ax, ylabelsize=0)
|
||||
|
||||
def test__gen_two_subplots_with_ax(self):
|
||||
fig = self.plt.gcf()
|
||||
gen = _gen_two_subplots(f=lambda **kwargs: None, fig=fig, ax="test")
|
||||
# On the first yield, no subplot should be added since ax was passed
|
||||
next(gen)
|
||||
assert fig.get_axes() == []
|
||||
# On the second, the one axis should match fig.subplot(2, 1, 2)
|
||||
next(gen)
|
||||
axes = fig.get_axes()
|
||||
assert len(axes) == 1
|
||||
subplot_geometry = list(axes[0].get_subplotspec().get_geometry()[:-1])
|
||||
subplot_geometry[-1] += 1
|
||||
assert subplot_geometry == [2, 1, 2]
|
384
.venv/Lib/site-packages/pandas/tests/plotting/test_converter.py
Normal file
384
.venv/Lib/site-packages/pandas/tests/plotting/test_converter.py
Normal file
@ -0,0 +1,384 @@
|
||||
from datetime import (
|
||||
date,
|
||||
datetime,
|
||||
)
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas._config.config as cf
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas import (
|
||||
Index,
|
||||
Period,
|
||||
Series,
|
||||
Timestamp,
|
||||
date_range,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
from pandas.plotting import (
|
||||
deregister_matplotlib_converters,
|
||||
register_matplotlib_converters,
|
||||
)
|
||||
from pandas.tseries.offsets import (
|
||||
Day,
|
||||
Micro,
|
||||
Milli,
|
||||
Second,
|
||||
)
|
||||
|
||||
try:
|
||||
from pandas.plotting._matplotlib import converter
|
||||
except ImportError:
|
||||
# try / except, rather than skip, to avoid internal refactoring
|
||||
# causing an improper skip
|
||||
pass
|
||||
|
||||
pytest.importorskip("matplotlib.pyplot")
|
||||
dates = pytest.importorskip("matplotlib.dates")
|
||||
|
||||
|
||||
pytestmark = pytest.mark.slow
|
||||
|
||||
|
||||
def test_registry_mpl_resets():
|
||||
# Check that Matplotlib converters are properly reset (see issue #27481)
|
||||
code = (
|
||||
"import matplotlib.units as units; "
|
||||
"import matplotlib.dates as mdates; "
|
||||
"n_conv = len(units.registry); "
|
||||
"import pandas as pd; "
|
||||
"pd.plotting.register_matplotlib_converters(); "
|
||||
"pd.plotting.deregister_matplotlib_converters(); "
|
||||
"assert len(units.registry) == n_conv"
|
||||
)
|
||||
call = [sys.executable, "-c", code]
|
||||
subprocess.check_output(call)
|
||||
|
||||
|
||||
def test_timtetonum_accepts_unicode():
|
||||
assert converter.time2num("00:01") == converter.time2num("00:01")
|
||||
|
||||
|
||||
class TestRegistration:
|
||||
def test_dont_register_by_default(self):
|
||||
# Run in subprocess to ensure a clean state
|
||||
code = (
|
||||
"import matplotlib.units; "
|
||||
"import pandas as pd; "
|
||||
"units = dict(matplotlib.units.registry); "
|
||||
"assert pd.Timestamp not in units"
|
||||
)
|
||||
call = [sys.executable, "-c", code]
|
||||
assert subprocess.check_call(call) == 0
|
||||
|
||||
@td.skip_if_no("matplotlib", min_version="3.1.3")
|
||||
def test_registering_no_warning(self):
|
||||
plt = pytest.importorskip("matplotlib.pyplot")
|
||||
s = Series(range(12), index=date_range("2017", periods=12))
|
||||
_, ax = plt.subplots()
|
||||
|
||||
# Set to the "warn" state, in case this isn't the first test run
|
||||
register_matplotlib_converters()
|
||||
ax.plot(s.index, s.values)
|
||||
plt.close()
|
||||
|
||||
def test_pandas_plots_register(self):
|
||||
plt = pytest.importorskip("matplotlib.pyplot")
|
||||
s = Series(range(12), index=date_range("2017", periods=12))
|
||||
# Set to the "warn" state, in case this isn't the first test run
|
||||
with tm.assert_produces_warning(None) as w:
|
||||
s.plot()
|
||||
|
||||
try:
|
||||
assert len(w) == 0
|
||||
finally:
|
||||
plt.close()
|
||||
|
||||
def test_matplotlib_formatters(self):
|
||||
units = pytest.importorskip("matplotlib.units")
|
||||
|
||||
# Can't make any assertion about the start state.
|
||||
# We we check that toggling converters off removes it, and toggling it
|
||||
# on restores it.
|
||||
|
||||
with cf.option_context("plotting.matplotlib.register_converters", True):
|
||||
with cf.option_context("plotting.matplotlib.register_converters", False):
|
||||
assert Timestamp not in units.registry
|
||||
assert Timestamp in units.registry
|
||||
|
||||
@td.skip_if_no("matplotlib", min_version="3.1.3")
|
||||
def test_option_no_warning(self):
|
||||
pytest.importorskip("matplotlib.pyplot")
|
||||
ctx = cf.option_context("plotting.matplotlib.register_converters", False)
|
||||
plt = pytest.importorskip("matplotlib.pyplot")
|
||||
s = Series(range(12), index=date_range("2017", periods=12))
|
||||
_, ax = plt.subplots()
|
||||
|
||||
# Test without registering first, no warning
|
||||
with ctx:
|
||||
ax.plot(s.index, s.values)
|
||||
|
||||
# Now test with registering
|
||||
register_matplotlib_converters()
|
||||
with ctx:
|
||||
ax.plot(s.index, s.values)
|
||||
plt.close()
|
||||
|
||||
def test_registry_resets(self):
|
||||
units = pytest.importorskip("matplotlib.units")
|
||||
dates = pytest.importorskip("matplotlib.dates")
|
||||
|
||||
# make a copy, to reset to
|
||||
original = dict(units.registry)
|
||||
|
||||
try:
|
||||
# get to a known state
|
||||
units.registry.clear()
|
||||
date_converter = dates.DateConverter()
|
||||
units.registry[datetime] = date_converter
|
||||
units.registry[date] = date_converter
|
||||
|
||||
register_matplotlib_converters()
|
||||
assert units.registry[date] is not date_converter
|
||||
deregister_matplotlib_converters()
|
||||
assert units.registry[date] is date_converter
|
||||
|
||||
finally:
|
||||
# restore original stater
|
||||
units.registry.clear()
|
||||
for k, v in original.items():
|
||||
units.registry[k] = v
|
||||
|
||||
|
||||
class TestDateTimeConverter:
|
||||
def setup_method(self, method):
|
||||
self.dtc = converter.DatetimeConverter()
|
||||
self.tc = converter.TimeFormatter(None)
|
||||
|
||||
def test_convert_accepts_unicode(self):
|
||||
r1 = self.dtc.convert("12:22", None, None)
|
||||
r2 = self.dtc.convert("12:22", None, None)
|
||||
assert r1 == r2, "DatetimeConverter.convert should accept unicode"
|
||||
|
||||
def test_conversion(self):
|
||||
rs = self.dtc.convert(["2012-1-1"], None, None)[0]
|
||||
xp = dates.date2num(datetime(2012, 1, 1))
|
||||
assert rs == xp
|
||||
|
||||
rs = self.dtc.convert("2012-1-1", None, None)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.dtc.convert(date(2012, 1, 1), None, None)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.dtc.convert("2012-1-1", None, None)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.dtc.convert(Timestamp("2012-1-1"), None, None)
|
||||
assert rs == xp
|
||||
|
||||
# also testing datetime64 dtype (GH8614)
|
||||
rs = self.dtc.convert("2012-01-01", None, None)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.dtc.convert("2012-01-01 00:00:00+0000", None, None)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.dtc.convert(
|
||||
np.array(["2012-01-01 00:00:00+0000", "2012-01-02 00:00:00+0000"]),
|
||||
None,
|
||||
None,
|
||||
)
|
||||
assert rs[0] == xp
|
||||
|
||||
# we have a tz-aware date (constructed to that when we turn to utc it
|
||||
# is the same as our sample)
|
||||
ts = Timestamp("2012-01-01").tz_localize("UTC").tz_convert("US/Eastern")
|
||||
rs = self.dtc.convert(ts, None, None)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.dtc.convert(ts.to_pydatetime(), None, None)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.dtc.convert(Index([ts - Day(1), ts]), None, None)
|
||||
assert rs[1] == xp
|
||||
|
||||
rs = self.dtc.convert(Index([ts - Day(1), ts]).to_pydatetime(), None, None)
|
||||
assert rs[1] == xp
|
||||
|
||||
def test_conversion_float(self):
|
||||
rtol = 0.5 * 10**-9
|
||||
|
||||
rs = self.dtc.convert(Timestamp("2012-1-1 01:02:03", tz="UTC"), None, None)
|
||||
xp = converter.dates.date2num(Timestamp("2012-1-1 01:02:03", tz="UTC"))
|
||||
tm.assert_almost_equal(rs, xp, rtol=rtol)
|
||||
|
||||
rs = self.dtc.convert(
|
||||
Timestamp("2012-1-1 09:02:03", tz="Asia/Hong_Kong"), None, None
|
||||
)
|
||||
tm.assert_almost_equal(rs, xp, rtol=rtol)
|
||||
|
||||
rs = self.dtc.convert(datetime(2012, 1, 1, 1, 2, 3), None, None)
|
||||
tm.assert_almost_equal(rs, xp, rtol=rtol)
|
||||
|
||||
def test_conversion_outofbounds_datetime(self):
|
||||
# 2579
|
||||
values = [date(1677, 1, 1), date(1677, 1, 2)]
|
||||
rs = self.dtc.convert(values, None, None)
|
||||
xp = converter.dates.date2num(values)
|
||||
tm.assert_numpy_array_equal(rs, xp)
|
||||
rs = self.dtc.convert(values[0], None, None)
|
||||
xp = converter.dates.date2num(values[0])
|
||||
assert rs == xp
|
||||
|
||||
values = [datetime(1677, 1, 1, 12), datetime(1677, 1, 2, 12)]
|
||||
rs = self.dtc.convert(values, None, None)
|
||||
xp = converter.dates.date2num(values)
|
||||
tm.assert_numpy_array_equal(rs, xp)
|
||||
rs = self.dtc.convert(values[0], None, None)
|
||||
xp = converter.dates.date2num(values[0])
|
||||
assert rs == xp
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"time,format_expected",
|
||||
[
|
||||
(0, "00:00"), # time2num(datetime.time.min)
|
||||
(86399.999999, "23:59:59.999999"), # time2num(datetime.time.max)
|
||||
(90000, "01:00"),
|
||||
(3723, "01:02:03"),
|
||||
(39723.2, "11:02:03.200"),
|
||||
],
|
||||
)
|
||||
def test_time_formatter(self, time, format_expected):
|
||||
# issue 18478
|
||||
result = self.tc(time)
|
||||
assert result == format_expected
|
||||
|
||||
def test_dateindex_conversion(self):
|
||||
rtol = 10**-9
|
||||
|
||||
for freq in ("B", "L", "S"):
|
||||
dateindex = tm.makeDateIndex(k=10, freq=freq)
|
||||
rs = self.dtc.convert(dateindex, None, None)
|
||||
xp = converter.dates.date2num(dateindex._mpl_repr())
|
||||
tm.assert_almost_equal(rs, xp, rtol=rtol)
|
||||
|
||||
def test_resolution(self):
|
||||
def _assert_less(ts1, ts2):
|
||||
val1 = self.dtc.convert(ts1, None, None)
|
||||
val2 = self.dtc.convert(ts2, None, None)
|
||||
if not val1 < val2:
|
||||
raise AssertionError(f"{val1} is not less than {val2}.")
|
||||
|
||||
# Matplotlib's time representation using floats cannot distinguish
|
||||
# intervals smaller than ~10 microsecond in the common range of years.
|
||||
ts = Timestamp("2012-1-1")
|
||||
_assert_less(ts, ts + Second())
|
||||
_assert_less(ts, ts + Milli())
|
||||
_assert_less(ts, ts + Micro(50))
|
||||
|
||||
def test_convert_nested(self):
|
||||
inner = [Timestamp("2017-01-01"), Timestamp("2017-01-02")]
|
||||
data = [inner, inner]
|
||||
result = self.dtc.convert(data, None, None)
|
||||
expected = [self.dtc.convert(x, None, None) for x in data]
|
||||
assert (np.array(result) == expected).all()
|
||||
|
||||
|
||||
class TestPeriodConverter:
|
||||
def setup_method(self, method):
|
||||
self.pc = converter.PeriodConverter()
|
||||
|
||||
class Axis:
|
||||
pass
|
||||
|
||||
self.axis = Axis()
|
||||
self.axis.freq = "D"
|
||||
|
||||
def test_convert_accepts_unicode(self):
|
||||
r1 = self.pc.convert("2012-1-1", None, self.axis)
|
||||
r2 = self.pc.convert("2012-1-1", None, self.axis)
|
||||
assert r1 == r2
|
||||
|
||||
def test_conversion(self):
|
||||
rs = self.pc.convert(["2012-1-1"], None, self.axis)[0]
|
||||
xp = Period("2012-1-1").ordinal
|
||||
assert rs == xp
|
||||
|
||||
rs = self.pc.convert("2012-1-1", None, self.axis)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.pc.convert([date(2012, 1, 1)], None, self.axis)[0]
|
||||
assert rs == xp
|
||||
|
||||
rs = self.pc.convert(date(2012, 1, 1), None, self.axis)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.pc.convert([Timestamp("2012-1-1")], None, self.axis)[0]
|
||||
assert rs == xp
|
||||
|
||||
rs = self.pc.convert(Timestamp("2012-1-1"), None, self.axis)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.pc.convert("2012-01-01", None, self.axis)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.pc.convert("2012-01-01 00:00:00+0000", None, self.axis)
|
||||
assert rs == xp
|
||||
|
||||
rs = self.pc.convert(
|
||||
np.array(
|
||||
["2012-01-01 00:00:00", "2012-01-02 00:00:00"],
|
||||
dtype="datetime64[ns]",
|
||||
),
|
||||
None,
|
||||
self.axis,
|
||||
)
|
||||
assert rs[0] == xp
|
||||
|
||||
def test_integer_passthrough(self):
|
||||
# GH9012
|
||||
rs = self.pc.convert([0, 1], None, self.axis)
|
||||
xp = [0, 1]
|
||||
assert rs == xp
|
||||
|
||||
def test_convert_nested(self):
|
||||
data = ["2012-1-1", "2012-1-2"]
|
||||
r1 = self.pc.convert([data, data], None, self.axis)
|
||||
r2 = [self.pc.convert(data, None, self.axis) for _ in range(2)]
|
||||
assert r1 == r2
|
||||
|
||||
|
||||
class TestTimeDeltaConverter:
|
||||
"""Test timedelta converter"""
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"x, decimal, format_expected",
|
||||
[
|
||||
(0.0, 0, "00:00:00"),
|
||||
(3972320000000, 1, "01:06:12.3"),
|
||||
(713233432000000, 2, "8 days 06:07:13.43"),
|
||||
(32423432000000, 4, "09:00:23.4320"),
|
||||
],
|
||||
)
|
||||
def test_format_timedelta_ticks(self, x, decimal, format_expected):
|
||||
tdc = converter.TimeSeries_TimedeltaFormatter
|
||||
result = tdc.format_timedelta_ticks(x, pos=None, n_decimals=decimal)
|
||||
assert result == format_expected
|
||||
|
||||
@pytest.mark.parametrize("view_interval", [(1, 2), (2, 1)])
|
||||
def test_call_w_different_view_intervals(self, view_interval, monkeypatch):
|
||||
# previously broke on reversed xlmits; see GH37454
|
||||
class mock_axis:
|
||||
def get_view_interval(self):
|
||||
return view_interval
|
||||
|
||||
tdc = converter.TimeSeries_TimedeltaFormatter()
|
||||
monkeypatch.setattr(tdc, "axis", mock_axis())
|
||||
tdc(0.0, 0)
|
1528
.venv/Lib/site-packages/pandas/tests/plotting/test_datetimelike.py
Normal file
1528
.venv/Lib/site-packages/pandas/tests/plotting/test_datetimelike.py
Normal file
File diff suppressed because it is too large
Load Diff
120
.venv/Lib/site-packages/pandas/tests/plotting/test_groupby.py
Normal file
120
.venv/Lib/site-packages/pandas/tests/plotting/test_groupby.py
Normal file
@ -0,0 +1,120 @@
|
||||
""" Test cases for GroupBy.plot """
|
||||
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Index,
|
||||
Series,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.tests.plotting.common import TestPlotBase
|
||||
|
||||
pytestmark = pytest.mark.slow
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestDataFrameGroupByPlots(TestPlotBase):
|
||||
def test_series_groupby_plotting_nominally_works(self):
|
||||
n = 10
|
||||
weight = Series(np.random.normal(166, 20, size=n))
|
||||
height = Series(np.random.normal(60, 10, size=n))
|
||||
with tm.RNGContext(42):
|
||||
gender = np.random.choice(["male", "female"], size=n)
|
||||
|
||||
weight.groupby(gender).plot()
|
||||
tm.close()
|
||||
height.groupby(gender).hist()
|
||||
tm.close()
|
||||
# Regression test for GH8733
|
||||
height.groupby(gender).plot(alpha=0.5)
|
||||
tm.close()
|
||||
|
||||
def test_plotting_with_float_index_works(self):
|
||||
# GH 7025
|
||||
df = DataFrame(
|
||||
{"def": [1, 1, 1, 2, 2, 2, 3, 3, 3], "val": np.random.randn(9)},
|
||||
index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0],
|
||||
)
|
||||
|
||||
df.groupby("def")["val"].plot()
|
||||
tm.close()
|
||||
df.groupby("def")["val"].apply(lambda x: x.plot())
|
||||
tm.close()
|
||||
|
||||
def test_hist_single_row(self):
|
||||
# GH10214
|
||||
bins = np.arange(80, 100 + 2, 1)
|
||||
df = DataFrame({"Name": ["AAA", "BBB"], "ByCol": [1, 2], "Mark": [85, 89]})
|
||||
df["Mark"].hist(by=df["ByCol"], bins=bins)
|
||||
df = DataFrame({"Name": ["AAA"], "ByCol": [1], "Mark": [85]})
|
||||
df["Mark"].hist(by=df["ByCol"], bins=bins)
|
||||
|
||||
def test_plot_submethod_works(self):
|
||||
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")})
|
||||
df.groupby("z").plot.scatter("x", "y")
|
||||
tm.close()
|
||||
df.groupby("z")["x"].plot.line()
|
||||
tm.close()
|
||||
|
||||
def test_plot_kwargs(self):
|
||||
|
||||
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")})
|
||||
|
||||
res = df.groupby("z").plot(kind="scatter", x="x", y="y")
|
||||
# check that a scatter plot is effectively plotted: the axes should
|
||||
# contain a PathCollection from the scatter plot (GH11805)
|
||||
assert len(res["a"].collections) == 1
|
||||
|
||||
res = df.groupby("z").plot.scatter(x="x", y="y")
|
||||
assert len(res["a"].collections) == 1
|
||||
|
||||
@pytest.mark.parametrize("column, expected_axes_num", [(None, 2), ("b", 1)])
|
||||
def test_groupby_hist_frame_with_legend(self, column, expected_axes_num):
|
||||
# GH 6279 - DataFrameGroupBy histogram can have a legend
|
||||
expected_layout = (1, expected_axes_num)
|
||||
expected_labels = column or [["a"], ["b"]]
|
||||
|
||||
index = Index(15 * ["1"] + 15 * ["2"], name="c")
|
||||
df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"])
|
||||
g = df.groupby("c")
|
||||
|
||||
for axes in g.hist(legend=True, column=column):
|
||||
self._check_axes_shape(
|
||||
axes, axes_num=expected_axes_num, layout=expected_layout
|
||||
)
|
||||
for ax, expected_label in zip(axes[0], expected_labels):
|
||||
self._check_legend_labels(ax, expected_label)
|
||||
|
||||
@pytest.mark.parametrize("column", [None, "b"])
|
||||
def test_groupby_hist_frame_with_legend_raises(self, column):
|
||||
# GH 6279 - DataFrameGroupBy histogram with legend and label raises
|
||||
index = Index(15 * ["1"] + 15 * ["2"], name="c")
|
||||
df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"])
|
||||
g = df.groupby("c")
|
||||
|
||||
with pytest.raises(ValueError, match="Cannot use both legend and label"):
|
||||
g.hist(legend=True, column=column, label="d")
|
||||
|
||||
def test_groupby_hist_series_with_legend(self):
|
||||
# GH 6279 - SeriesGroupBy histogram can have a legend
|
||||
index = Index(15 * ["1"] + 15 * ["2"], name="c")
|
||||
df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"])
|
||||
g = df.groupby("c")
|
||||
|
||||
for ax in g["a"].hist(legend=True):
|
||||
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
|
||||
self._check_legend_labels(ax, ["1", "2"])
|
||||
|
||||
def test_groupby_hist_series_with_legend_raises(self):
|
||||
# GH 6279 - SeriesGroupBy histogram with legend and label raises
|
||||
index = Index(15 * ["1"] + 15 * ["2"], name="c")
|
||||
df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"])
|
||||
g = df.groupby("c")
|
||||
|
||||
with pytest.raises(ValueError, match="Cannot use both legend and label"):
|
||||
g.hist(legend=True, label="d")
|
@ -0,0 +1,774 @@
|
||||
""" Test cases for .hist method """
|
||||
import re
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Index,
|
||||
Series,
|
||||
to_datetime,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.tests.plotting.common import (
|
||||
TestPlotBase,
|
||||
_check_plot_works,
|
||||
)
|
||||
|
||||
pytestmark = pytest.mark.slow
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestSeriesPlots(TestPlotBase):
|
||||
def setup_method(self, method):
|
||||
TestPlotBase.setup_method(self, method)
|
||||
import matplotlib as mpl
|
||||
|
||||
mpl.rcdefaults()
|
||||
|
||||
self.ts = tm.makeTimeSeries()
|
||||
self.ts.name = "ts"
|
||||
|
||||
def test_hist_legacy(self):
|
||||
_check_plot_works(self.ts.hist)
|
||||
_check_plot_works(self.ts.hist, grid=False)
|
||||
_check_plot_works(self.ts.hist, figsize=(8, 10))
|
||||
# _check_plot_works adds an ax so catch warning. see GH #13188
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(self.ts.hist, by=self.ts.index.month)
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(self.ts.hist, by=self.ts.index.month, bins=5)
|
||||
|
||||
fig, ax = self.plt.subplots(1, 1)
|
||||
_check_plot_works(self.ts.hist, ax=ax, default_axes=True)
|
||||
_check_plot_works(self.ts.hist, ax=ax, figure=fig, default_axes=True)
|
||||
_check_plot_works(self.ts.hist, figure=fig, default_axes=True)
|
||||
tm.close()
|
||||
|
||||
fig, (ax1, ax2) = self.plt.subplots(1, 2)
|
||||
_check_plot_works(self.ts.hist, figure=fig, ax=ax1, default_axes=True)
|
||||
_check_plot_works(self.ts.hist, figure=fig, ax=ax2, default_axes=True)
|
||||
|
||||
msg = (
|
||||
"Cannot pass 'figure' when using the 'by' argument, since a new 'Figure' "
|
||||
"instance will be created"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
self.ts.hist(by=self.ts.index, figure=fig)
|
||||
|
||||
def test_hist_bins_legacy(self):
|
||||
df = DataFrame(np.random.randn(10, 2))
|
||||
ax = df.hist(bins=2)[0][0]
|
||||
assert len(ax.patches) == 2
|
||||
|
||||
def test_hist_layout(self):
|
||||
df = self.hist_df
|
||||
msg = "The 'layout' keyword is not supported when 'by' is None"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.height.hist(layout=(1, 1))
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.height.hist(layout=[1, 1])
|
||||
|
||||
def test_hist_layout_with_by(self):
|
||||
df = self.hist_df
|
||||
|
||||
# _check_plot_works adds an `ax` kwarg to the method call
|
||||
# so we get a warning about an axis being cleared, even
|
||||
# though we don't explicing pass one, see GH #13188
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1))
|
||||
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.gender, layout=(3, -1))
|
||||
self._check_axes_shape(axes, axes_num=2, layout=(3, 1))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.category, layout=(4, 1))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.category, layout=(2, -1))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.category, layout=(3, -1))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(3, 2))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.category, layout=(-1, 4))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(1, 4))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.height.hist, by=df.classroom, layout=(2, 2))
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
|
||||
|
||||
axes = df.height.hist(by=df.category, layout=(4, 2), figsize=(12, 7))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 7))
|
||||
|
||||
def test_hist_no_overlap(self):
|
||||
from matplotlib.pyplot import (
|
||||
gcf,
|
||||
subplot,
|
||||
)
|
||||
|
||||
x = Series(np.random.randn(2))
|
||||
y = Series(np.random.randn(2))
|
||||
subplot(121)
|
||||
x.hist()
|
||||
subplot(122)
|
||||
y.hist()
|
||||
fig = gcf()
|
||||
axes = fig.axes
|
||||
assert len(axes) == 2
|
||||
|
||||
def test_hist_by_no_extra_plots(self):
|
||||
df = self.hist_df
|
||||
axes = df.height.hist(by=df.gender) # noqa
|
||||
assert len(self.plt.get_fignums()) == 1
|
||||
|
||||
def test_plot_fails_when_ax_differs_from_figure(self):
|
||||
from pylab import figure
|
||||
|
||||
fig1 = figure()
|
||||
fig2 = figure()
|
||||
ax1 = fig1.add_subplot(111)
|
||||
msg = "passed axis not bound to passed figure"
|
||||
with pytest.raises(AssertionError, match=msg):
|
||||
self.ts.hist(ax=ax1, figure=fig2)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"histtype, expected",
|
||||
[
|
||||
("bar", True),
|
||||
("barstacked", True),
|
||||
("step", False),
|
||||
("stepfilled", True),
|
||||
],
|
||||
)
|
||||
def test_histtype_argument(self, histtype, expected):
|
||||
# GH23992 Verify functioning of histtype argument
|
||||
ser = Series(np.random.randint(1, 10))
|
||||
ax = ser.hist(histtype=histtype)
|
||||
self._check_patches_all_filled(ax, filled=expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"by, expected_axes_num, expected_layout", [(None, 1, (1, 1)), ("b", 2, (1, 2))]
|
||||
)
|
||||
def test_hist_with_legend(self, by, expected_axes_num, expected_layout):
|
||||
# GH 6279 - Series histogram can have a legend
|
||||
index = 15 * ["1"] + 15 * ["2"]
|
||||
s = Series(np.random.randn(30), index=index, name="a")
|
||||
s.index.name = "b"
|
||||
|
||||
# Use default_axes=True when plotting method generate subplots itself
|
||||
axes = _check_plot_works(s.hist, default_axes=True, legend=True, by=by)
|
||||
self._check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout)
|
||||
self._check_legend_labels(axes, "a")
|
||||
|
||||
@pytest.mark.parametrize("by", [None, "b"])
|
||||
def test_hist_with_legend_raises(self, by):
|
||||
# GH 6279 - Series histogram with legend and label raises
|
||||
index = 15 * ["1"] + 15 * ["2"]
|
||||
s = Series(np.random.randn(30), index=index, name="a")
|
||||
s.index.name = "b"
|
||||
|
||||
with pytest.raises(ValueError, match="Cannot use both legend and label"):
|
||||
s.hist(legend=True, by=by, label="c")
|
||||
|
||||
def test_hist_kwargs(self):
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.hist(bins=5, ax=ax)
|
||||
assert len(ax.patches) == 5
|
||||
self._check_text_labels(ax.yaxis.get_label(), "Frequency")
|
||||
tm.close()
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.hist(orientation="horizontal", ax=ax)
|
||||
self._check_text_labels(ax.xaxis.get_label(), "Frequency")
|
||||
tm.close()
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.hist(align="left", stacked=True, ax=ax)
|
||||
tm.close()
|
||||
|
||||
@td.skip_if_no_scipy
|
||||
def test_hist_kde(self):
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.hist(logy=True, ax=ax)
|
||||
self._check_ax_scales(ax, yaxis="log")
|
||||
xlabels = ax.get_xticklabels()
|
||||
# ticks are values, thus ticklabels are blank
|
||||
self._check_text_labels(xlabels, [""] * len(xlabels))
|
||||
ylabels = ax.get_yticklabels()
|
||||
self._check_text_labels(ylabels, [""] * len(ylabels))
|
||||
|
||||
_check_plot_works(self.ts.plot.kde)
|
||||
_check_plot_works(self.ts.plot.density)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.kde(logy=True, ax=ax)
|
||||
self._check_ax_scales(ax, yaxis="log")
|
||||
xlabels = ax.get_xticklabels()
|
||||
self._check_text_labels(xlabels, [""] * len(xlabels))
|
||||
ylabels = ax.get_yticklabels()
|
||||
self._check_text_labels(ylabels, [""] * len(ylabels))
|
||||
|
||||
@td.skip_if_no_scipy
|
||||
def test_hist_kde_color(self):
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.hist(logy=True, bins=10, color="b", ax=ax)
|
||||
self._check_ax_scales(ax, yaxis="log")
|
||||
assert len(ax.patches) == 10
|
||||
self._check_colors(ax.patches, facecolors=["b"] * 10)
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.kde(logy=True, color="r", ax=ax)
|
||||
self._check_ax_scales(ax, yaxis="log")
|
||||
lines = ax.get_lines()
|
||||
assert len(lines) == 1
|
||||
self._check_colors(lines, ["r"])
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestDataFramePlots(TestPlotBase):
|
||||
def test_hist_df_legacy(self):
|
||||
from matplotlib.patches import Rectangle
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(self.hist_df.hist)
|
||||
|
||||
# make sure layout is handled
|
||||
df = DataFrame(np.random.randn(100, 2))
|
||||
df[2] = to_datetime(
|
||||
np.random.randint(
|
||||
self.start_date_to_int64,
|
||||
self.end_date_to_int64,
|
||||
size=100,
|
||||
dtype=np.int64,
|
||||
)
|
||||
)
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.hist, grid=False)
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
|
||||
assert not axes[1, 1].get_visible()
|
||||
|
||||
_check_plot_works(df[[2]].hist)
|
||||
df = DataFrame(np.random.randn(100, 1))
|
||||
_check_plot_works(df.hist)
|
||||
|
||||
# make sure layout is handled
|
||||
df = DataFrame(np.random.randn(100, 5))
|
||||
df[5] = to_datetime(
|
||||
np.random.randint(
|
||||
self.start_date_to_int64,
|
||||
self.end_date_to_int64,
|
||||
size=100,
|
||||
dtype=np.int64,
|
||||
)
|
||||
)
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.hist, layout=(4, 2))
|
||||
self._check_axes_shape(axes, axes_num=6, layout=(4, 2))
|
||||
|
||||
# make sure sharex, sharey is handled
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(df.hist, sharex=True, sharey=True)
|
||||
|
||||
# handle figsize arg
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(df.hist, figsize=(8, 10))
|
||||
|
||||
# check bins argument
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
_check_plot_works(df.hist, bins=5)
|
||||
|
||||
# make sure xlabelsize and xrot are handled
|
||||
ser = df[0]
|
||||
xf, yf = 20, 18
|
||||
xrot, yrot = 30, 40
|
||||
axes = ser.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot)
|
||||
self._check_ticks_props(
|
||||
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
|
||||
)
|
||||
|
||||
xf, yf = 20, 18
|
||||
xrot, yrot = 30, 40
|
||||
axes = df.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot)
|
||||
self._check_ticks_props(
|
||||
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
|
||||
)
|
||||
|
||||
tm.close()
|
||||
|
||||
ax = ser.hist(cumulative=True, bins=4, density=True)
|
||||
# height of last bin (index 5) must be 1.0
|
||||
rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
|
||||
tm.assert_almost_equal(rects[-1].get_height(), 1.0)
|
||||
|
||||
tm.close()
|
||||
ax = ser.hist(log=True)
|
||||
# scale of y must be 'log'
|
||||
self._check_ax_scales(ax, yaxis="log")
|
||||
|
||||
tm.close()
|
||||
|
||||
# propagate attr exception from matplotlib.Axes.hist
|
||||
with tm.external_error_raised(AttributeError):
|
||||
ser.hist(foo="bar")
|
||||
|
||||
def test_hist_non_numerical_or_datetime_raises(self):
|
||||
# gh-10444, GH32590
|
||||
df = DataFrame(
|
||||
{
|
||||
"a": np.random.rand(10),
|
||||
"b": np.random.randint(0, 10, 10),
|
||||
"c": to_datetime(
|
||||
np.random.randint(
|
||||
1582800000000000000, 1583500000000000000, 10, dtype=np.int64
|
||||
)
|
||||
),
|
||||
"d": to_datetime(
|
||||
np.random.randint(
|
||||
1582800000000000000, 1583500000000000000, 10, dtype=np.int64
|
||||
),
|
||||
utc=True,
|
||||
),
|
||||
}
|
||||
)
|
||||
df_o = df.astype(object)
|
||||
|
||||
msg = "hist method requires numerical or datetime columns, nothing to plot."
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df_o.hist()
|
||||
|
||||
def test_hist_layout(self):
|
||||
df = DataFrame(np.random.randn(100, 2))
|
||||
df[2] = to_datetime(
|
||||
np.random.randint(
|
||||
self.start_date_to_int64,
|
||||
self.end_date_to_int64,
|
||||
size=100,
|
||||
dtype=np.int64,
|
||||
)
|
||||
)
|
||||
|
||||
layout_to_expected_size = (
|
||||
{"layout": None, "expected_size": (2, 2)}, # default is 2x2
|
||||
{"layout": (2, 2), "expected_size": (2, 2)},
|
||||
{"layout": (4, 1), "expected_size": (4, 1)},
|
||||
{"layout": (1, 4), "expected_size": (1, 4)},
|
||||
{"layout": (3, 3), "expected_size": (3, 3)},
|
||||
{"layout": (-1, 4), "expected_size": (1, 4)},
|
||||
{"layout": (4, -1), "expected_size": (4, 1)},
|
||||
{"layout": (-1, 2), "expected_size": (2, 2)},
|
||||
{"layout": (2, -1), "expected_size": (2, 2)},
|
||||
)
|
||||
|
||||
for layout_test in layout_to_expected_size:
|
||||
axes = df.hist(layout=layout_test["layout"])
|
||||
expected = layout_test["expected_size"]
|
||||
self._check_axes_shape(axes, axes_num=3, layout=expected)
|
||||
|
||||
# layout too small for all 4 plots
|
||||
msg = "Layout of 1x1 must be larger than required size 3"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.hist(layout=(1, 1))
|
||||
|
||||
# invalid format for layout
|
||||
msg = re.escape("Layout must be a tuple of (rows, columns)")
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.hist(layout=(1,))
|
||||
msg = "At least one dimension of layout must be positive"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.hist(layout=(-1, -1))
|
||||
|
||||
# GH 9351
|
||||
def test_tight_layout(self):
|
||||
df = DataFrame(np.random.randn(100, 2))
|
||||
df[2] = to_datetime(
|
||||
np.random.randint(
|
||||
self.start_date_to_int64,
|
||||
self.end_date_to_int64,
|
||||
size=100,
|
||||
dtype=np.int64,
|
||||
)
|
||||
)
|
||||
# Use default_axes=True when plotting method generate subplots itself
|
||||
_check_plot_works(df.hist, default_axes=True)
|
||||
self.plt.tight_layout()
|
||||
|
||||
tm.close()
|
||||
|
||||
def test_hist_subplot_xrot(self):
|
||||
# GH 30288
|
||||
df = DataFrame(
|
||||
{
|
||||
"length": [1.5, 0.5, 1.2, 0.9, 3],
|
||||
"animal": ["pig", "rabbit", "pig", "pig", "rabbit"],
|
||||
}
|
||||
)
|
||||
# Use default_axes=True when plotting method generate subplots itself
|
||||
axes = _check_plot_works(
|
||||
df.hist,
|
||||
default_axes=True,
|
||||
filterwarnings="always",
|
||||
column="length",
|
||||
by="animal",
|
||||
bins=5,
|
||||
xrot=0,
|
||||
)
|
||||
self._check_ticks_props(axes, xrot=0)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"column, expected",
|
||||
[
|
||||
(None, ["width", "length", "height"]),
|
||||
(["length", "width", "height"], ["length", "width", "height"]),
|
||||
],
|
||||
)
|
||||
def test_hist_column_order_unchanged(self, column, expected):
|
||||
# GH29235
|
||||
|
||||
df = DataFrame(
|
||||
{
|
||||
"width": [0.7, 0.2, 0.15, 0.2, 1.1],
|
||||
"length": [1.5, 0.5, 1.2, 0.9, 3],
|
||||
"height": [3, 0.5, 3.4, 2, 1],
|
||||
},
|
||||
index=["pig", "rabbit", "duck", "chicken", "horse"],
|
||||
)
|
||||
|
||||
# Use default_axes=True when plotting method generate subplots itself
|
||||
axes = _check_plot_works(
|
||||
df.hist,
|
||||
default_axes=True,
|
||||
column=column,
|
||||
layout=(1, 3),
|
||||
)
|
||||
result = [axes[0, i].get_title() for i in range(3)]
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"histtype, expected",
|
||||
[
|
||||
("bar", True),
|
||||
("barstacked", True),
|
||||
("step", False),
|
||||
("stepfilled", True),
|
||||
],
|
||||
)
|
||||
def test_histtype_argument(self, histtype, expected):
|
||||
# GH23992 Verify functioning of histtype argument
|
||||
df = DataFrame(np.random.randint(1, 10, size=(100, 2)), columns=["a", "b"])
|
||||
ax = df.hist(histtype=histtype)
|
||||
self._check_patches_all_filled(ax, filled=expected)
|
||||
|
||||
@pytest.mark.parametrize("by", [None, "c"])
|
||||
@pytest.mark.parametrize("column", [None, "b"])
|
||||
def test_hist_with_legend(self, by, column):
|
||||
# GH 6279 - DataFrame histogram can have a legend
|
||||
expected_axes_num = 1 if by is None and column is not None else 2
|
||||
expected_layout = (1, expected_axes_num)
|
||||
expected_labels = column or ["a", "b"]
|
||||
if by is not None:
|
||||
expected_labels = [expected_labels] * 2
|
||||
|
||||
index = Index(15 * ["1"] + 15 * ["2"], name="c")
|
||||
df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"])
|
||||
|
||||
# Use default_axes=True when plotting method generate subplots itself
|
||||
axes = _check_plot_works(
|
||||
df.hist,
|
||||
default_axes=True,
|
||||
legend=True,
|
||||
by=by,
|
||||
column=column,
|
||||
)
|
||||
|
||||
self._check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout)
|
||||
if by is None and column is None:
|
||||
axes = axes[0]
|
||||
for expected_label, ax in zip(expected_labels, axes):
|
||||
self._check_legend_labels(ax, expected_label)
|
||||
|
||||
@pytest.mark.parametrize("by", [None, "c"])
|
||||
@pytest.mark.parametrize("column", [None, "b"])
|
||||
def test_hist_with_legend_raises(self, by, column):
|
||||
# GH 6279 - DataFrame histogram with legend and label raises
|
||||
index = Index(15 * ["1"] + 15 * ["2"], name="c")
|
||||
df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"])
|
||||
|
||||
with pytest.raises(ValueError, match="Cannot use both legend and label"):
|
||||
df.hist(legend=True, by=by, column=column, label="d")
|
||||
|
||||
def test_hist_df_kwargs(self):
|
||||
df = DataFrame(np.random.randn(10, 2))
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot.hist(bins=5, ax=ax)
|
||||
assert len(ax.patches) == 10
|
||||
|
||||
def test_hist_df_with_nonnumerics(self):
|
||||
# GH 9853
|
||||
with tm.RNGContext(1):
|
||||
df = DataFrame(np.random.randn(10, 4), columns=["A", "B", "C", "D"])
|
||||
df["E"] = ["x", "y"] * 5
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot.hist(bins=5, ax=ax)
|
||||
assert len(ax.patches) == 20
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot.hist(ax=ax) # bins=10
|
||||
assert len(ax.patches) == 40
|
||||
|
||||
def test_hist_secondary_legend(self):
|
||||
# GH 9610
|
||||
df = DataFrame(np.random.randn(30, 4), columns=list("abcd"))
|
||||
|
||||
# primary -> secondary
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df["a"].plot.hist(legend=True, ax=ax)
|
||||
df["b"].plot.hist(ax=ax, legend=True, secondary_y=True)
|
||||
# both legends are drawn on left ax
|
||||
# left and right axis must be visible
|
||||
self._check_legend_labels(ax, labels=["a", "b (right)"])
|
||||
assert ax.get_yaxis().get_visible()
|
||||
assert ax.right_ax.get_yaxis().get_visible()
|
||||
tm.close()
|
||||
|
||||
# secondary -> secondary
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df["a"].plot.hist(legend=True, secondary_y=True, ax=ax)
|
||||
df["b"].plot.hist(ax=ax, legend=True, secondary_y=True)
|
||||
# both legends are draw on left ax
|
||||
# left axis must be invisible, right axis must be visible
|
||||
self._check_legend_labels(ax.left_ax, labels=["a (right)", "b (right)"])
|
||||
assert not ax.left_ax.get_yaxis().get_visible()
|
||||
assert ax.get_yaxis().get_visible()
|
||||
tm.close()
|
||||
|
||||
# secondary -> primary
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df["a"].plot.hist(legend=True, secondary_y=True, ax=ax)
|
||||
# right axes is returned
|
||||
df["b"].plot.hist(ax=ax, legend=True)
|
||||
# both legends are draw on left ax
|
||||
# left and right axis must be visible
|
||||
self._check_legend_labels(ax.left_ax, labels=["a (right)", "b"])
|
||||
assert ax.left_ax.get_yaxis().get_visible()
|
||||
assert ax.get_yaxis().get_visible()
|
||||
tm.close()
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestDataFrameGroupByPlots(TestPlotBase):
|
||||
def test_grouped_hist_legacy(self):
|
||||
from matplotlib.patches import Rectangle
|
||||
|
||||
from pandas.plotting._matplotlib.hist import _grouped_hist
|
||||
|
||||
df = DataFrame(np.random.randn(500, 1), columns=["A"])
|
||||
df["B"] = to_datetime(
|
||||
np.random.randint(
|
||||
self.start_date_to_int64,
|
||||
self.end_date_to_int64,
|
||||
size=500,
|
||||
dtype=np.int64,
|
||||
)
|
||||
)
|
||||
df["C"] = np.random.randint(0, 4, 500)
|
||||
df["D"] = ["X"] * 500
|
||||
|
||||
axes = _grouped_hist(df.A, by=df.C)
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
|
||||
|
||||
tm.close()
|
||||
axes = df.hist(by=df.C)
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(2, 2))
|
||||
|
||||
tm.close()
|
||||
# group by a key with single value
|
||||
axes = df.hist(by="D", rot=30)
|
||||
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
|
||||
self._check_ticks_props(axes, xrot=30)
|
||||
|
||||
tm.close()
|
||||
# make sure kwargs to hist are handled
|
||||
xf, yf = 20, 18
|
||||
xrot, yrot = 30, 40
|
||||
|
||||
axes = _grouped_hist(
|
||||
df.A,
|
||||
by=df.C,
|
||||
cumulative=True,
|
||||
bins=4,
|
||||
xlabelsize=xf,
|
||||
xrot=xrot,
|
||||
ylabelsize=yf,
|
||||
yrot=yrot,
|
||||
density=True,
|
||||
)
|
||||
# height of last bin (index 5) must be 1.0
|
||||
for ax in axes.ravel():
|
||||
rects = [x for x in ax.get_children() if isinstance(x, Rectangle)]
|
||||
height = rects[-1].get_height()
|
||||
tm.assert_almost_equal(height, 1.0)
|
||||
self._check_ticks_props(
|
||||
axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot
|
||||
)
|
||||
|
||||
tm.close()
|
||||
axes = _grouped_hist(df.A, by=df.C, log=True)
|
||||
# scale of y must be 'log'
|
||||
self._check_ax_scales(axes, yaxis="log")
|
||||
|
||||
tm.close()
|
||||
# propagate attr exception from matplotlib.Axes.hist
|
||||
with tm.external_error_raised(AttributeError):
|
||||
_grouped_hist(df.A, by=df.C, foo="bar")
|
||||
|
||||
msg = "Specify figure size by tuple instead"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.hist(by="C", figsize="default")
|
||||
|
||||
def test_grouped_hist_legacy2(self):
|
||||
n = 10
|
||||
weight = Series(np.random.normal(166, 20, size=n))
|
||||
height = Series(np.random.normal(60, 10, size=n))
|
||||
with tm.RNGContext(42):
|
||||
gender_int = np.random.choice([0, 1], size=n)
|
||||
df_int = DataFrame({"height": height, "weight": weight, "gender": gender_int})
|
||||
gb = df_int.groupby("gender")
|
||||
axes = gb.hist()
|
||||
assert len(axes) == 2
|
||||
assert len(self.plt.get_fignums()) == 2
|
||||
tm.close()
|
||||
|
||||
def test_grouped_hist_layout(self):
|
||||
df = self.hist_df
|
||||
msg = "Layout of 1x1 must be larger than required size 2"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.hist(column="weight", by=df.gender, layout=(1, 1))
|
||||
|
||||
msg = "Layout of 1x3 must be larger than required size 4"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.hist(column="height", by=df.category, layout=(1, 3))
|
||||
|
||||
msg = "At least one dimension of layout must be positive"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.hist(column="height", by=df.category, layout=(-1, -1))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(
|
||||
df.hist, column="height", by=df.gender, layout=(2, 1)
|
||||
)
|
||||
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
|
||||
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(
|
||||
df.hist, column="height", by=df.gender, layout=(2, -1)
|
||||
)
|
||||
self._check_axes_shape(axes, axes_num=2, layout=(2, 1))
|
||||
|
||||
axes = df.hist(column="height", by=df.category, layout=(4, 1))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
|
||||
|
||||
axes = df.hist(column="height", by=df.category, layout=(-1, 1))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(4, 1))
|
||||
|
||||
axes = df.hist(column="height", by=df.category, layout=(4, 2), figsize=(12, 8))
|
||||
self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 8))
|
||||
tm.close()
|
||||
|
||||
# GH 6769
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(
|
||||
df.hist, column="height", by="classroom", layout=(2, 2)
|
||||
)
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
|
||||
|
||||
# without column
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(df.hist, by="classroom")
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
|
||||
|
||||
axes = df.hist(by="gender", layout=(3, 5))
|
||||
self._check_axes_shape(axes, axes_num=2, layout=(3, 5))
|
||||
|
||||
axes = df.hist(column=["height", "weight", "category"])
|
||||
self._check_axes_shape(axes, axes_num=3, layout=(2, 2))
|
||||
|
||||
def test_grouped_hist_multiple_axes(self):
|
||||
# GH 6970, GH 7069
|
||||
df = self.hist_df
|
||||
|
||||
fig, axes = self.plt.subplots(2, 3)
|
||||
returned = df.hist(column=["height", "weight", "category"], ax=axes[0])
|
||||
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
|
||||
tm.assert_numpy_array_equal(returned, axes[0])
|
||||
assert returned[0].figure is fig
|
||||
returned = df.hist(by="classroom", ax=axes[1])
|
||||
self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
|
||||
tm.assert_numpy_array_equal(returned, axes[1])
|
||||
assert returned[0].figure is fig
|
||||
|
||||
fig, axes = self.plt.subplots(2, 3)
|
||||
# pass different number of axes from required
|
||||
msg = "The number of passed axes must be 1, the same as the output plot"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
axes = df.hist(column="height", ax=axes)
|
||||
|
||||
def test_axis_share_x(self):
|
||||
df = self.hist_df
|
||||
# GH4089
|
||||
ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True)
|
||||
|
||||
# share x
|
||||
assert self.get_x_axis(ax1).joined(ax1, ax2)
|
||||
assert self.get_x_axis(ax2).joined(ax1, ax2)
|
||||
|
||||
# don't share y
|
||||
assert not self.get_y_axis(ax1).joined(ax1, ax2)
|
||||
assert not self.get_y_axis(ax2).joined(ax1, ax2)
|
||||
|
||||
def test_axis_share_y(self):
|
||||
df = self.hist_df
|
||||
ax1, ax2 = df.hist(column="height", by=df.gender, sharey=True)
|
||||
|
||||
# share y
|
||||
assert self.get_y_axis(ax1).joined(ax1, ax2)
|
||||
assert self.get_y_axis(ax2).joined(ax1, ax2)
|
||||
|
||||
# don't share x
|
||||
assert not self.get_x_axis(ax1).joined(ax1, ax2)
|
||||
assert not self.get_x_axis(ax2).joined(ax1, ax2)
|
||||
|
||||
def test_axis_share_xy(self):
|
||||
df = self.hist_df
|
||||
ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True, sharey=True)
|
||||
|
||||
# share both x and y
|
||||
assert self.get_x_axis(ax1).joined(ax1, ax2)
|
||||
assert self.get_x_axis(ax2).joined(ax1, ax2)
|
||||
|
||||
assert self.get_y_axis(ax1).joined(ax1, ax2)
|
||||
assert self.get_y_axis(ax2).joined(ax1, ax2)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"histtype, expected",
|
||||
[
|
||||
("bar", True),
|
||||
("barstacked", True),
|
||||
("step", False),
|
||||
("stepfilled", True),
|
||||
],
|
||||
)
|
||||
def test_histtype_argument(self, histtype, expected):
|
||||
# GH23992 Verify functioning of histtype argument
|
||||
df = DataFrame(np.random.randint(1, 10, size=(100, 2)), columns=["a", "b"])
|
||||
ax = df.hist(by="a", histtype=histtype)
|
||||
self._check_patches_all_filled(ax, filled=expected)
|
561
.venv/Lib/site-packages/pandas/tests/plotting/test_misc.py
Normal file
561
.venv/Lib/site-packages/pandas/tests/plotting/test_misc.py
Normal file
@ -0,0 +1,561 @@
|
||||
""" Test cases for misc plot functions """
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Series,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.tests.plotting.common import (
|
||||
TestPlotBase,
|
||||
_check_plot_works,
|
||||
)
|
||||
|
||||
import pandas.plotting as plotting
|
||||
|
||||
pytestmark = pytest.mark.slow
|
||||
|
||||
|
||||
@td.skip_if_mpl
|
||||
def test_import_error_message():
|
||||
# GH-19810
|
||||
df = DataFrame({"A": [1, 2]})
|
||||
|
||||
with pytest.raises(ImportError, match="matplotlib is required for plotting"):
|
||||
df.plot()
|
||||
|
||||
|
||||
def test_get_accessor_args():
|
||||
func = plotting._core.PlotAccessor._get_call_args
|
||||
|
||||
msg = "Called plot accessor for type list, expected Series or DataFrame"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
func(backend_name="", data=[], args=[], kwargs={})
|
||||
|
||||
msg = "should not be called with positional arguments"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
func(backend_name="", data=Series(dtype=object), args=["line", None], kwargs={})
|
||||
|
||||
x, y, kind, kwargs = func(
|
||||
backend_name="",
|
||||
data=DataFrame(),
|
||||
args=["x"],
|
||||
kwargs={"y": "y", "kind": "bar", "grid": False},
|
||||
)
|
||||
assert x == "x"
|
||||
assert y == "y"
|
||||
assert kind == "bar"
|
||||
assert kwargs == {"grid": False}
|
||||
|
||||
x, y, kind, kwargs = func(
|
||||
backend_name="pandas.plotting._matplotlib",
|
||||
data=Series(dtype=object),
|
||||
args=[],
|
||||
kwargs={},
|
||||
)
|
||||
assert x is None
|
||||
assert y is None
|
||||
assert kind == "line"
|
||||
assert len(kwargs) == 24
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestSeriesPlots(TestPlotBase):
|
||||
def setup_method(self, method):
|
||||
TestPlotBase.setup_method(self, method)
|
||||
import matplotlib as mpl
|
||||
|
||||
mpl.rcdefaults()
|
||||
|
||||
self.ts = tm.makeTimeSeries()
|
||||
self.ts.name = "ts"
|
||||
|
||||
def test_autocorrelation_plot(self):
|
||||
from pandas.plotting import autocorrelation_plot
|
||||
|
||||
# Ensure no UserWarning when making plot
|
||||
with tm.assert_produces_warning(None):
|
||||
_check_plot_works(autocorrelation_plot, series=self.ts)
|
||||
_check_plot_works(autocorrelation_plot, series=self.ts.values)
|
||||
|
||||
ax = autocorrelation_plot(self.ts, label="Test")
|
||||
self._check_legend_labels(ax, labels=["Test"])
|
||||
|
||||
def test_lag_plot(self):
|
||||
from pandas.plotting import lag_plot
|
||||
|
||||
_check_plot_works(lag_plot, series=self.ts)
|
||||
_check_plot_works(lag_plot, series=self.ts, lag=5)
|
||||
|
||||
def test_bootstrap_plot(self):
|
||||
from pandas.plotting import bootstrap_plot
|
||||
|
||||
_check_plot_works(bootstrap_plot, series=self.ts, size=10)
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestDataFramePlots(TestPlotBase):
|
||||
@td.skip_if_no_scipy
|
||||
@pytest.mark.parametrize("pass_axis", [False, True])
|
||||
def test_scatter_matrix_axis(self, pass_axis):
|
||||
from pandas.plotting._matplotlib.compat import mpl_ge_3_0_0
|
||||
|
||||
scatter_matrix = plotting.scatter_matrix
|
||||
|
||||
ax = None
|
||||
if pass_axis:
|
||||
_, ax = self.plt.subplots(3, 3)
|
||||
|
||||
with tm.RNGContext(42):
|
||||
df = DataFrame(np.random.randn(100, 3))
|
||||
|
||||
# we are plotting multiples on a sub-plot
|
||||
with tm.assert_produces_warning(
|
||||
UserWarning, raise_on_extra_warnings=mpl_ge_3_0_0()
|
||||
):
|
||||
axes = _check_plot_works(
|
||||
scatter_matrix,
|
||||
filterwarnings="always",
|
||||
frame=df,
|
||||
range_padding=0.1,
|
||||
ax=ax,
|
||||
)
|
||||
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
|
||||
|
||||
# GH 5662
|
||||
expected = ["-2", "0", "2"]
|
||||
self._check_text_labels(axes0_labels, expected)
|
||||
self._check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
|
||||
|
||||
df[0] = (df[0] - 2) / 3
|
||||
|
||||
# we are plotting multiples on a sub-plot
|
||||
with tm.assert_produces_warning(UserWarning):
|
||||
axes = _check_plot_works(
|
||||
scatter_matrix,
|
||||
filterwarnings="always",
|
||||
frame=df,
|
||||
range_padding=0.1,
|
||||
ax=ax,
|
||||
)
|
||||
axes0_labels = axes[0][0].yaxis.get_majorticklabels()
|
||||
expected = ["-1.0", "-0.5", "0.0"]
|
||||
self._check_text_labels(axes0_labels, expected)
|
||||
self._check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
|
||||
|
||||
def test_andrews_curves(self, iris):
|
||||
from matplotlib import cm
|
||||
|
||||
from pandas.plotting import andrews_curves
|
||||
|
||||
df = iris
|
||||
# Ensure no UserWarning when making plot
|
||||
with tm.assert_produces_warning(None):
|
||||
_check_plot_works(andrews_curves, frame=df, class_column="Name")
|
||||
|
||||
rgba = ("#556270", "#4ECDC4", "#C7F464")
|
||||
ax = _check_plot_works(
|
||||
andrews_curves, frame=df, class_column="Name", color=rgba
|
||||
)
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=rgba, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
cnames = ["dodgerblue", "aquamarine", "seagreen"]
|
||||
ax = _check_plot_works(
|
||||
andrews_curves, frame=df, class_column="Name", color=cnames
|
||||
)
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=cnames, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
ax = _check_plot_works(
|
||||
andrews_curves, frame=df, class_column="Name", colormap=cm.jet
|
||||
)
|
||||
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
length = 10
|
||||
df = DataFrame(
|
||||
{
|
||||
"A": np.random.rand(length),
|
||||
"B": np.random.rand(length),
|
||||
"C": np.random.rand(length),
|
||||
"Name": ["A"] * length,
|
||||
}
|
||||
)
|
||||
|
||||
_check_plot_works(andrews_curves, frame=df, class_column="Name")
|
||||
|
||||
rgba = ("#556270", "#4ECDC4", "#C7F464")
|
||||
ax = _check_plot_works(
|
||||
andrews_curves, frame=df, class_column="Name", color=rgba
|
||||
)
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=rgba, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
cnames = ["dodgerblue", "aquamarine", "seagreen"]
|
||||
ax = _check_plot_works(
|
||||
andrews_curves, frame=df, class_column="Name", color=cnames
|
||||
)
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=cnames, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
ax = _check_plot_works(
|
||||
andrews_curves, frame=df, class_column="Name", colormap=cm.jet
|
||||
)
|
||||
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
colors = ["b", "g", "r"]
|
||||
df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors})
|
||||
ax = andrews_curves(df, "Name", color=colors)
|
||||
handles, labels = ax.get_legend_handles_labels()
|
||||
self._check_colors(handles, linecolors=colors)
|
||||
|
||||
def test_parallel_coordinates(self, iris):
|
||||
from matplotlib import cm
|
||||
|
||||
from pandas.plotting import parallel_coordinates
|
||||
|
||||
df = iris
|
||||
|
||||
ax = _check_plot_works(parallel_coordinates, frame=df, class_column="Name")
|
||||
nlines = len(ax.get_lines())
|
||||
nxticks = len(ax.xaxis.get_ticklabels())
|
||||
|
||||
rgba = ("#556270", "#4ECDC4", "#C7F464")
|
||||
ax = _check_plot_works(
|
||||
parallel_coordinates, frame=df, class_column="Name", color=rgba
|
||||
)
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=rgba, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
cnames = ["dodgerblue", "aquamarine", "seagreen"]
|
||||
ax = _check_plot_works(
|
||||
parallel_coordinates, frame=df, class_column="Name", color=cnames
|
||||
)
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=cnames, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
ax = _check_plot_works(
|
||||
parallel_coordinates, frame=df, class_column="Name", colormap=cm.jet
|
||||
)
|
||||
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
|
||||
self._check_colors(
|
||||
ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10]
|
||||
)
|
||||
|
||||
ax = _check_plot_works(
|
||||
parallel_coordinates, frame=df, class_column="Name", axvlines=False
|
||||
)
|
||||
assert len(ax.get_lines()) == (nlines - nxticks)
|
||||
|
||||
colors = ["b", "g", "r"]
|
||||
df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors})
|
||||
ax = parallel_coordinates(df, "Name", color=colors)
|
||||
handles, labels = ax.get_legend_handles_labels()
|
||||
self._check_colors(handles, linecolors=colors)
|
||||
|
||||
# not sure if this is indicative of a problem
|
||||
@pytest.mark.filterwarnings("ignore:Attempting to set:UserWarning")
|
||||
def test_parallel_coordinates_with_sorted_labels(self):
|
||||
"""For #15908"""
|
||||
from pandas.plotting import parallel_coordinates
|
||||
|
||||
df = DataFrame(
|
||||
{
|
||||
"feat": list(range(30)),
|
||||
"class": [2 for _ in range(10)]
|
||||
+ [3 for _ in range(10)]
|
||||
+ [1 for _ in range(10)],
|
||||
}
|
||||
)
|
||||
ax = parallel_coordinates(df, "class", sort_labels=True)
|
||||
polylines, labels = ax.get_legend_handles_labels()
|
||||
color_label_tuples = zip(
|
||||
[polyline.get_color() for polyline in polylines], labels
|
||||
)
|
||||
ordered_color_label_tuples = sorted(color_label_tuples, key=lambda x: x[1])
|
||||
prev_next_tupels = zip(
|
||||
list(ordered_color_label_tuples[0:-1]), list(ordered_color_label_tuples[1:])
|
||||
)
|
||||
for prev, nxt in prev_next_tupels:
|
||||
# labels and colors are ordered strictly increasing
|
||||
assert prev[1] < nxt[1] and prev[0] < nxt[0]
|
||||
|
||||
def test_radviz(self, iris):
|
||||
from matplotlib import cm
|
||||
|
||||
from pandas.plotting import radviz
|
||||
|
||||
df = iris
|
||||
# Ensure no UserWarning when making plot
|
||||
with tm.assert_produces_warning(None):
|
||||
_check_plot_works(radviz, frame=df, class_column="Name")
|
||||
|
||||
rgba = ("#556270", "#4ECDC4", "#C7F464")
|
||||
ax = _check_plot_works(radviz, frame=df, class_column="Name", color=rgba)
|
||||
# skip Circle drawn as ticks
|
||||
patches = [p for p in ax.patches[:20] if p.get_label() != ""]
|
||||
self._check_colors(patches[:10], facecolors=rgba, mapping=df["Name"][:10])
|
||||
|
||||
cnames = ["dodgerblue", "aquamarine", "seagreen"]
|
||||
_check_plot_works(radviz, frame=df, class_column="Name", color=cnames)
|
||||
patches = [p for p in ax.patches[:20] if p.get_label() != ""]
|
||||
self._check_colors(patches, facecolors=cnames, mapping=df["Name"][:10])
|
||||
|
||||
_check_plot_works(radviz, frame=df, class_column="Name", colormap=cm.jet)
|
||||
cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())]
|
||||
patches = [p for p in ax.patches[:20] if p.get_label() != ""]
|
||||
self._check_colors(patches, facecolors=cmaps, mapping=df["Name"][:10])
|
||||
|
||||
colors = [[0.0, 0.0, 1.0, 1.0], [0.0, 0.5, 1.0, 1.0], [1.0, 0.0, 0.0, 1.0]]
|
||||
df = DataFrame(
|
||||
{"A": [1, 2, 3], "B": [2, 1, 3], "C": [3, 2, 1], "Name": ["b", "g", "r"]}
|
||||
)
|
||||
ax = radviz(df, "Name", color=colors)
|
||||
handles, labels = ax.get_legend_handles_labels()
|
||||
self._check_colors(handles, facecolors=colors)
|
||||
|
||||
def test_subplot_titles(self, iris):
|
||||
df = iris.drop("Name", axis=1).head()
|
||||
# Use the column names as the subplot titles
|
||||
title = list(df.columns)
|
||||
|
||||
# Case len(title) == len(df)
|
||||
plot = df.plot(subplots=True, title=title)
|
||||
assert [p.get_title() for p in plot] == title
|
||||
|
||||
# Case len(title) > len(df)
|
||||
msg = (
|
||||
"The length of `title` must equal the number of columns if "
|
||||
"using `title` of type `list` and `subplots=True`"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.plot(subplots=True, title=title + ["kittens > puppies"])
|
||||
|
||||
# Case len(title) < len(df)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.plot(subplots=True, title=title[:2])
|
||||
|
||||
# Case subplots=False and title is of type list
|
||||
msg = (
|
||||
"Using `title` of type `list` is not supported unless "
|
||||
"`subplots=True` is passed"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.plot(subplots=False, title=title)
|
||||
|
||||
# Case df with 3 numeric columns but layout of (2,2)
|
||||
plot = df.drop("SepalWidth", axis=1).plot(
|
||||
subplots=True, layout=(2, 2), title=title[:-1]
|
||||
)
|
||||
title_list = [ax.get_title() for sublist in plot for ax in sublist]
|
||||
assert title_list == title[:3] + [""]
|
||||
|
||||
def test_get_standard_colors_random_seed(self):
|
||||
# GH17525
|
||||
df = DataFrame(np.zeros((10, 10)))
|
||||
|
||||
# Make sure that the np.random.seed isn't reset by get_standard_colors
|
||||
plotting.parallel_coordinates(df, 0)
|
||||
rand1 = np.random.random()
|
||||
plotting.parallel_coordinates(df, 0)
|
||||
rand2 = np.random.random()
|
||||
assert rand1 != rand2
|
||||
|
||||
# Make sure it produces the same colors every time it's called
|
||||
from pandas.plotting._matplotlib.style import get_standard_colors
|
||||
|
||||
color1 = get_standard_colors(1, color_type="random")
|
||||
color2 = get_standard_colors(1, color_type="random")
|
||||
assert color1 == color2
|
||||
|
||||
def test_get_standard_colors_default_num_colors(self):
|
||||
from pandas.plotting._matplotlib.style import get_standard_colors
|
||||
|
||||
# Make sure the default color_types returns the specified amount
|
||||
color1 = get_standard_colors(1, color_type="default")
|
||||
color2 = get_standard_colors(9, color_type="default")
|
||||
color3 = get_standard_colors(20, color_type="default")
|
||||
assert len(color1) == 1
|
||||
assert len(color2) == 9
|
||||
assert len(color3) == 20
|
||||
|
||||
def test_plot_single_color(self):
|
||||
# Example from #20585. All 3 bars should have the same color
|
||||
df = DataFrame(
|
||||
{
|
||||
"account-start": ["2017-02-03", "2017-03-03", "2017-01-01"],
|
||||
"client": ["Alice Anders", "Bob Baker", "Charlie Chaplin"],
|
||||
"balance": [-1432.32, 10.43, 30000.00],
|
||||
"db-id": [1234, 2424, 251],
|
||||
"proxy-id": [525, 1525, 2542],
|
||||
"rank": [52, 525, 32],
|
||||
}
|
||||
)
|
||||
ax = df.client.value_counts().plot.bar()
|
||||
colors = [rect.get_facecolor() for rect in ax.get_children()[0:3]]
|
||||
assert all(color == colors[0] for color in colors)
|
||||
|
||||
def test_get_standard_colors_no_appending(self):
|
||||
# GH20726
|
||||
|
||||
# Make sure not to add more colors so that matplotlib can cycle
|
||||
# correctly.
|
||||
from matplotlib import cm
|
||||
|
||||
from pandas.plotting._matplotlib.style import get_standard_colors
|
||||
|
||||
color_before = cm.gnuplot(range(5))
|
||||
color_after = get_standard_colors(1, color=color_before)
|
||||
assert len(color_after) == len(color_before)
|
||||
|
||||
df = DataFrame(np.random.randn(48, 4), columns=list("ABCD"))
|
||||
|
||||
color_list = cm.gnuplot(np.linspace(0, 1, 16))
|
||||
p = df.A.plot.bar(figsize=(16, 7), color=color_list)
|
||||
assert p.patches[1].get_facecolor() == p.patches[17].get_facecolor()
|
||||
|
||||
def test_dictionary_color(self):
|
||||
# issue-8193
|
||||
# Test plot color dictionary format
|
||||
data_files = ["a", "b"]
|
||||
|
||||
expected = [(0.5, 0.24, 0.6), (0.3, 0.7, 0.7)]
|
||||
|
||||
df1 = DataFrame(np.random.rand(2, 2), columns=data_files)
|
||||
dic_color = {"b": (0.3, 0.7, 0.7), "a": (0.5, 0.24, 0.6)}
|
||||
|
||||
# Bar color test
|
||||
ax = df1.plot(kind="bar", color=dic_color)
|
||||
colors = [rect.get_facecolor()[0:-1] for rect in ax.get_children()[0:3:2]]
|
||||
assert all(color == expected[index] for index, color in enumerate(colors))
|
||||
|
||||
# Line color test
|
||||
ax = df1.plot(kind="line", color=dic_color)
|
||||
colors = [rect.get_color() for rect in ax.get_lines()[0:2]]
|
||||
assert all(color == expected[index] for index, color in enumerate(colors))
|
||||
|
||||
def test_has_externally_shared_axis_x_axis(self):
|
||||
# GH33819
|
||||
# Test _has_externally_shared_axis() works for x-axis
|
||||
func = plotting._matplotlib.tools._has_externally_shared_axis
|
||||
|
||||
fig = self.plt.figure()
|
||||
plots = fig.subplots(2, 4)
|
||||
|
||||
# Create *externally* shared axes for first and third columns
|
||||
plots[0][0] = fig.add_subplot(231, sharex=plots[1][0])
|
||||
plots[0][2] = fig.add_subplot(233, sharex=plots[1][2])
|
||||
|
||||
# Create *internally* shared axes for second and third columns
|
||||
plots[0][1].twinx()
|
||||
plots[0][2].twinx()
|
||||
|
||||
# First column is only externally shared
|
||||
# Second column is only internally shared
|
||||
# Third column is both
|
||||
# Fourth column is neither
|
||||
assert func(plots[0][0], "x")
|
||||
assert not func(plots[0][1], "x")
|
||||
assert func(plots[0][2], "x")
|
||||
assert not func(plots[0][3], "x")
|
||||
|
||||
def test_has_externally_shared_axis_y_axis(self):
|
||||
# GH33819
|
||||
# Test _has_externally_shared_axis() works for y-axis
|
||||
func = plotting._matplotlib.tools._has_externally_shared_axis
|
||||
|
||||
fig = self.plt.figure()
|
||||
plots = fig.subplots(4, 2)
|
||||
|
||||
# Create *externally* shared axes for first and third rows
|
||||
plots[0][0] = fig.add_subplot(321, sharey=plots[0][1])
|
||||
plots[2][0] = fig.add_subplot(325, sharey=plots[2][1])
|
||||
|
||||
# Create *internally* shared axes for second and third rows
|
||||
plots[1][0].twiny()
|
||||
plots[2][0].twiny()
|
||||
|
||||
# First row is only externally shared
|
||||
# Second row is only internally shared
|
||||
# Third row is both
|
||||
# Fourth row is neither
|
||||
assert func(plots[0][0], "y")
|
||||
assert not func(plots[1][0], "y")
|
||||
assert func(plots[2][0], "y")
|
||||
assert not func(plots[3][0], "y")
|
||||
|
||||
def test_has_externally_shared_axis_invalid_compare_axis(self):
|
||||
# GH33819
|
||||
# Test _has_externally_shared_axis() raises an exception when
|
||||
# passed an invalid value as compare_axis parameter
|
||||
func = plotting._matplotlib.tools._has_externally_shared_axis
|
||||
|
||||
fig = self.plt.figure()
|
||||
plots = fig.subplots(4, 2)
|
||||
|
||||
# Create arbitrary axes
|
||||
plots[0][0] = fig.add_subplot(321, sharey=plots[0][1])
|
||||
|
||||
# Check that an invalid compare_axis value triggers the expected exception
|
||||
msg = "needs 'x' or 'y' as a second parameter"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
func(plots[0][0], "z")
|
||||
|
||||
def test_externally_shared_axes(self):
|
||||
# Example from GH33819
|
||||
# Create data
|
||||
df = DataFrame({"a": np.random.randn(1000), "b": np.random.randn(1000)})
|
||||
|
||||
# Create figure
|
||||
fig = self.plt.figure()
|
||||
plots = fig.subplots(2, 3)
|
||||
|
||||
# Create *externally* shared axes
|
||||
plots[0][0] = fig.add_subplot(231, sharex=plots[1][0])
|
||||
# note: no plots[0][1] that's the twin only case
|
||||
plots[0][2] = fig.add_subplot(233, sharex=plots[1][2])
|
||||
|
||||
# Create *internally* shared axes
|
||||
# note: no plots[0][0] that's the external only case
|
||||
twin_ax1 = plots[0][1].twinx()
|
||||
twin_ax2 = plots[0][2].twinx()
|
||||
|
||||
# Plot data to primary axes
|
||||
df["a"].plot(ax=plots[0][0], title="External share only").set_xlabel(
|
||||
"this label should never be visible"
|
||||
)
|
||||
df["a"].plot(ax=plots[1][0])
|
||||
|
||||
df["a"].plot(ax=plots[0][1], title="Internal share (twin) only").set_xlabel(
|
||||
"this label should always be visible"
|
||||
)
|
||||
df["a"].plot(ax=plots[1][1])
|
||||
|
||||
df["a"].plot(ax=plots[0][2], title="Both").set_xlabel(
|
||||
"this label should never be visible"
|
||||
)
|
||||
df["a"].plot(ax=plots[1][2])
|
||||
|
||||
# Plot data to twinned axes
|
||||
df["b"].plot(ax=twin_ax1, color="green")
|
||||
df["b"].plot(ax=twin_ax2, color="yellow")
|
||||
|
||||
assert not plots[0][0].xaxis.get_label().get_visible()
|
||||
assert plots[0][1].xaxis.get_label().get_visible()
|
||||
assert not plots[0][2].xaxis.get_label().get_visible()
|
817
.venv/Lib/site-packages/pandas/tests/plotting/test_series.py
Normal file
817
.venv/Lib/site-packages/pandas/tests/plotting/test_series.py
Normal file
@ -0,0 +1,817 @@
|
||||
""" Test cases for Series.plot """
|
||||
|
||||
|
||||
from datetime import datetime
|
||||
from itertools import chain
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Series,
|
||||
date_range,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.tests.plotting.common import (
|
||||
TestPlotBase,
|
||||
_check_plot_works,
|
||||
)
|
||||
|
||||
import pandas.plotting as plotting
|
||||
|
||||
pytestmark = pytest.mark.slow
|
||||
|
||||
|
||||
@td.skip_if_no_mpl
|
||||
class TestSeriesPlots(TestPlotBase):
|
||||
def setup_method(self, method):
|
||||
TestPlotBase.setup_method(self, method)
|
||||
import matplotlib as mpl
|
||||
|
||||
mpl.rcdefaults()
|
||||
|
||||
self.ts = tm.makeTimeSeries()
|
||||
self.ts.name = "ts"
|
||||
|
||||
self.series = tm.makeStringSeries()
|
||||
self.series.name = "series"
|
||||
|
||||
self.iseries = tm.makePeriodSeries()
|
||||
self.iseries.name = "iseries"
|
||||
|
||||
def test_plot(self):
|
||||
_check_plot_works(self.ts.plot, label="foo")
|
||||
_check_plot_works(self.ts.plot, use_index=False)
|
||||
axes = _check_plot_works(self.ts.plot, rot=0)
|
||||
self._check_ticks_props(axes, xrot=0)
|
||||
|
||||
ax = _check_plot_works(self.ts.plot, style=".", logy=True)
|
||||
self._check_ax_scales(ax, yaxis="log")
|
||||
|
||||
ax = _check_plot_works(self.ts.plot, style=".", logx=True)
|
||||
self._check_ax_scales(ax, xaxis="log")
|
||||
|
||||
ax = _check_plot_works(self.ts.plot, style=".", loglog=True)
|
||||
self._check_ax_scales(ax, xaxis="log", yaxis="log")
|
||||
|
||||
_check_plot_works(self.ts[:10].plot.bar)
|
||||
_check_plot_works(self.ts.plot.area, stacked=False)
|
||||
_check_plot_works(self.iseries.plot)
|
||||
|
||||
for kind in ["line", "bar", "barh", "kde", "hist", "box"]:
|
||||
_check_plot_works(self.series[:5].plot, kind=kind)
|
||||
|
||||
_check_plot_works(self.series[:10].plot.barh)
|
||||
ax = _check_plot_works(Series(np.random.randn(10)).plot.bar, color="black")
|
||||
self._check_colors([ax.patches[0]], facecolors=["black"])
|
||||
|
||||
# GH 6951
|
||||
ax = _check_plot_works(self.ts.plot, subplots=True)
|
||||
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
|
||||
|
||||
ax = _check_plot_works(self.ts.plot, subplots=True, layout=(-1, 1))
|
||||
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
|
||||
ax = _check_plot_works(self.ts.plot, subplots=True, layout=(1, -1))
|
||||
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
|
||||
|
||||
def test_plot_figsize_and_title(self):
|
||||
# figsize and title
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.series.plot(title="Test", figsize=(16, 8), ax=ax)
|
||||
self._check_text_labels(ax.title, "Test")
|
||||
self._check_axes_shape(ax, axes_num=1, layout=(1, 1), figsize=(16, 8))
|
||||
|
||||
def test_dont_modify_rcParams(self):
|
||||
# GH 8242
|
||||
key = "axes.prop_cycle"
|
||||
colors = self.plt.rcParams[key]
|
||||
_, ax = self.plt.subplots()
|
||||
Series([1, 2, 3]).plot(ax=ax)
|
||||
assert colors == self.plt.rcParams[key]
|
||||
|
||||
def test_ts_line_lim(self):
|
||||
fig, ax = self.plt.subplots()
|
||||
ax = self.ts.plot(ax=ax)
|
||||
xmin, xmax = ax.get_xlim()
|
||||
lines = ax.get_lines()
|
||||
assert xmin <= lines[0].get_data(orig=False)[0][0]
|
||||
assert xmax >= lines[0].get_data(orig=False)[0][-1]
|
||||
tm.close()
|
||||
|
||||
ax = self.ts.plot(secondary_y=True, ax=ax)
|
||||
xmin, xmax = ax.get_xlim()
|
||||
lines = ax.get_lines()
|
||||
assert xmin <= lines[0].get_data(orig=False)[0][0]
|
||||
assert xmax >= lines[0].get_data(orig=False)[0][-1]
|
||||
|
||||
def test_ts_area_lim(self):
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.area(stacked=False, ax=ax)
|
||||
xmin, xmax = ax.get_xlim()
|
||||
line = ax.get_lines()[0].get_data(orig=False)[0]
|
||||
assert xmin <= line[0]
|
||||
assert xmax >= line[-1]
|
||||
self._check_ticks_props(ax, xrot=0)
|
||||
tm.close()
|
||||
|
||||
# GH 7471
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.area(stacked=False, x_compat=True, ax=ax)
|
||||
xmin, xmax = ax.get_xlim()
|
||||
line = ax.get_lines()[0].get_data(orig=False)[0]
|
||||
assert xmin <= line[0]
|
||||
assert xmax >= line[-1]
|
||||
self._check_ticks_props(ax, xrot=30)
|
||||
tm.close()
|
||||
|
||||
tz_ts = self.ts.copy()
|
||||
tz_ts.index = tz_ts.tz_localize("GMT").tz_convert("CET")
|
||||
_, ax = self.plt.subplots()
|
||||
ax = tz_ts.plot.area(stacked=False, x_compat=True, ax=ax)
|
||||
xmin, xmax = ax.get_xlim()
|
||||
line = ax.get_lines()[0].get_data(orig=False)[0]
|
||||
assert xmin <= line[0]
|
||||
assert xmax >= line[-1]
|
||||
self._check_ticks_props(ax, xrot=0)
|
||||
tm.close()
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = tz_ts.plot.area(stacked=False, secondary_y=True, ax=ax)
|
||||
xmin, xmax = ax.get_xlim()
|
||||
line = ax.get_lines()[0].get_data(orig=False)[0]
|
||||
assert xmin <= line[0]
|
||||
assert xmax >= line[-1]
|
||||
self._check_ticks_props(ax, xrot=0)
|
||||
|
||||
def test_area_sharey_dont_overwrite(self):
|
||||
# GH37942
|
||||
fig, (ax1, ax2) = self.plt.subplots(1, 2, sharey=True)
|
||||
|
||||
abs(self.ts).plot(ax=ax1, kind="area")
|
||||
abs(self.ts).plot(ax=ax2, kind="area")
|
||||
|
||||
assert self.get_y_axis(ax1).joined(ax1, ax2)
|
||||
assert self.get_y_axis(ax2).joined(ax1, ax2)
|
||||
|
||||
def test_label(self):
|
||||
s = Series([1, 2])
|
||||
_, ax = self.plt.subplots()
|
||||
ax = s.plot(label="LABEL", legend=True, ax=ax)
|
||||
self._check_legend_labels(ax, labels=["LABEL"])
|
||||
self.plt.close()
|
||||
_, ax = self.plt.subplots()
|
||||
ax = s.plot(legend=True, ax=ax)
|
||||
self._check_legend_labels(ax, labels=["None"])
|
||||
self.plt.close()
|
||||
# get name from index
|
||||
s.name = "NAME"
|
||||
_, ax = self.plt.subplots()
|
||||
ax = s.plot(legend=True, ax=ax)
|
||||
self._check_legend_labels(ax, labels=["NAME"])
|
||||
self.plt.close()
|
||||
# override the default
|
||||
_, ax = self.plt.subplots()
|
||||
ax = s.plot(legend=True, label="LABEL", ax=ax)
|
||||
self._check_legend_labels(ax, labels=["LABEL"])
|
||||
self.plt.close()
|
||||
# Add lebel info, but don't draw
|
||||
_, ax = self.plt.subplots()
|
||||
ax = s.plot(legend=False, label="LABEL", ax=ax)
|
||||
assert ax.get_legend() is None # Hasn't been drawn
|
||||
ax.legend() # draw it
|
||||
self._check_legend_labels(ax, labels=["LABEL"])
|
||||
|
||||
def test_boolean(self):
|
||||
# GH 23719
|
||||
s = Series([False, False, True])
|
||||
_check_plot_works(s.plot, include_bool=True)
|
||||
|
||||
msg = "no numeric data to plot"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
_check_plot_works(s.plot)
|
||||
|
||||
def test_line_area_nan_series(self):
|
||||
values = [1, 2, np.nan, 3]
|
||||
s = Series(values)
|
||||
ts = Series(values, index=tm.makeDateIndex(k=4))
|
||||
|
||||
for d in [s, ts]:
|
||||
ax = _check_plot_works(d.plot)
|
||||
masked = ax.lines[0].get_ydata()
|
||||
# remove nan for comparison purpose
|
||||
exp = np.array([1, 2, 3], dtype=np.float64)
|
||||
tm.assert_numpy_array_equal(np.delete(masked.data, 2), exp)
|
||||
tm.assert_numpy_array_equal(
|
||||
masked.mask, np.array([False, False, True, False])
|
||||
)
|
||||
|
||||
expected = np.array([1, 2, 0, 3], dtype=np.float64)
|
||||
ax = _check_plot_works(d.plot, stacked=True)
|
||||
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
|
||||
ax = _check_plot_works(d.plot.area)
|
||||
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
|
||||
ax = _check_plot_works(d.plot.area, stacked=False)
|
||||
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
|
||||
|
||||
def test_line_use_index_false(self):
|
||||
s = Series([1, 2, 3], index=["a", "b", "c"])
|
||||
s.index.name = "The Index"
|
||||
_, ax = self.plt.subplots()
|
||||
ax = s.plot(use_index=False, ax=ax)
|
||||
label = ax.get_xlabel()
|
||||
assert label == ""
|
||||
_, ax = self.plt.subplots()
|
||||
ax2 = s.plot.bar(use_index=False, ax=ax)
|
||||
label2 = ax2.get_xlabel()
|
||||
assert label2 == ""
|
||||
|
||||
def test_bar_log(self):
|
||||
expected = np.array([1e-1, 1e0, 1e1, 1e2, 1e3, 1e4])
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = Series([200, 500]).plot.bar(log=True, ax=ax)
|
||||
tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected)
|
||||
tm.close()
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = Series([200, 500]).plot.barh(log=True, ax=ax)
|
||||
tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), expected)
|
||||
tm.close()
|
||||
|
||||
# GH 9905
|
||||
expected = np.array([1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1])
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind="bar", ax=ax)
|
||||
ymin = 0.0007943282347242822
|
||||
ymax = 0.12589254117941673
|
||||
res = ax.get_ylim()
|
||||
tm.assert_almost_equal(res[0], ymin)
|
||||
tm.assert_almost_equal(res[1], ymax)
|
||||
tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected)
|
||||
tm.close()
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind="barh", ax=ax)
|
||||
res = ax.get_xlim()
|
||||
tm.assert_almost_equal(res[0], ymin)
|
||||
tm.assert_almost_equal(res[1], ymax)
|
||||
tm.assert_numpy_array_equal(ax.xaxis.get_ticklocs(), expected)
|
||||
|
||||
def test_bar_ignore_index(self):
|
||||
df = Series([1, 2, 3, 4], index=["a", "b", "c", "d"])
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot.bar(use_index=False, ax=ax)
|
||||
self._check_text_labels(ax.get_xticklabels(), ["0", "1", "2", "3"])
|
||||
|
||||
def test_bar_user_colors(self):
|
||||
s = Series([1, 2, 3, 4])
|
||||
ax = s.plot.bar(color=["red", "blue", "blue", "red"])
|
||||
result = [p.get_facecolor() for p in ax.patches]
|
||||
expected = [
|
||||
(1.0, 0.0, 0.0, 1.0),
|
||||
(0.0, 0.0, 1.0, 1.0),
|
||||
(0.0, 0.0, 1.0, 1.0),
|
||||
(1.0, 0.0, 0.0, 1.0),
|
||||
]
|
||||
assert result == expected
|
||||
|
||||
def test_rotation(self):
|
||||
df = DataFrame(np.random.randn(5, 5))
|
||||
# Default rot 0
|
||||
_, ax = self.plt.subplots()
|
||||
axes = df.plot(ax=ax)
|
||||
self._check_ticks_props(axes, xrot=0)
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
axes = df.plot(rot=30, ax=ax)
|
||||
self._check_ticks_props(axes, xrot=30)
|
||||
|
||||
def test_irregular_datetime(self):
|
||||
from pandas.plotting._matplotlib.converter import DatetimeConverter
|
||||
|
||||
rng = date_range("1/1/2000", "3/1/2000")
|
||||
rng = rng[[0, 1, 2, 3, 5, 9, 10, 11, 12]]
|
||||
ser = Series(np.random.randn(len(rng)), rng)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = ser.plot(ax=ax)
|
||||
xp = DatetimeConverter.convert(datetime(1999, 1, 1), "", ax)
|
||||
ax.set_xlim("1/1/1999", "1/1/2001")
|
||||
assert xp == ax.get_xlim()[0]
|
||||
self._check_ticks_props(ax, xrot=30)
|
||||
|
||||
def test_unsorted_index_xlim(self):
|
||||
ser = Series(
|
||||
[0.0, 1.0, np.nan, 3.0, 4.0, 5.0, 6.0],
|
||||
index=[1.0, 0.0, 3.0, 2.0, np.nan, 3.0, 2.0],
|
||||
)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = ser.plot(ax=ax)
|
||||
xmin, xmax = ax.get_xlim()
|
||||
lines = ax.get_lines()
|
||||
assert xmin <= np.nanmin(lines[0].get_data(orig=False)[0])
|
||||
assert xmax >= np.nanmax(lines[0].get_data(orig=False)[0])
|
||||
|
||||
def test_pie_series(self):
|
||||
# if sum of values is less than 1.0, pie handle them as rate and draw
|
||||
# semicircle.
|
||||
series = Series(
|
||||
np.random.randint(1, 5), index=["a", "b", "c", "d", "e"], name="YLABEL"
|
||||
)
|
||||
ax = _check_plot_works(series.plot.pie)
|
||||
self._check_text_labels(ax.texts, series.index)
|
||||
assert ax.get_ylabel() == "YLABEL"
|
||||
|
||||
# without wedge labels
|
||||
ax = _check_plot_works(series.plot.pie, labels=None)
|
||||
self._check_text_labels(ax.texts, [""] * 5)
|
||||
|
||||
# with less colors than elements
|
||||
color_args = ["r", "g", "b"]
|
||||
ax = _check_plot_works(series.plot.pie, colors=color_args)
|
||||
|
||||
color_expected = ["r", "g", "b", "r", "g"]
|
||||
self._check_colors(ax.patches, facecolors=color_expected)
|
||||
|
||||
# with labels and colors
|
||||
labels = ["A", "B", "C", "D", "E"]
|
||||
color_args = ["r", "g", "b", "c", "m"]
|
||||
ax = _check_plot_works(series.plot.pie, labels=labels, colors=color_args)
|
||||
self._check_text_labels(ax.texts, labels)
|
||||
self._check_colors(ax.patches, facecolors=color_args)
|
||||
|
||||
# with autopct and fontsize
|
||||
ax = _check_plot_works(
|
||||
series.plot.pie, colors=color_args, autopct="%.2f", fontsize=7
|
||||
)
|
||||
pcts = [f"{s*100:.2f}" for s in series.values / series.sum()]
|
||||
expected_texts = list(chain.from_iterable(zip(series.index, pcts)))
|
||||
self._check_text_labels(ax.texts, expected_texts)
|
||||
for t in ax.texts:
|
||||
assert t.get_fontsize() == 7
|
||||
|
||||
# includes negative value
|
||||
series = Series([1, 2, 0, 4, -1], index=["a", "b", "c", "d", "e"])
|
||||
with pytest.raises(ValueError, match="pie plot doesn't allow negative values"):
|
||||
series.plot.pie()
|
||||
|
||||
# includes nan
|
||||
series = Series([1, 2, np.nan, 4], index=["a", "b", "c", "d"], name="YLABEL")
|
||||
ax = _check_plot_works(series.plot.pie)
|
||||
self._check_text_labels(ax.texts, ["a", "b", "", "d"])
|
||||
|
||||
def test_pie_nan(self):
|
||||
s = Series([1, np.nan, 1, 1])
|
||||
_, ax = self.plt.subplots()
|
||||
ax = s.plot.pie(legend=True, ax=ax)
|
||||
expected = ["0", "", "2", "3"]
|
||||
result = [x.get_text() for x in ax.texts]
|
||||
assert result == expected
|
||||
|
||||
def test_df_series_secondary_legend(self):
|
||||
# GH 9779
|
||||
df = DataFrame(np.random.randn(30, 3), columns=list("abc"))
|
||||
s = Series(np.random.randn(30), name="x")
|
||||
|
||||
# primary -> secondary (without passing ax)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot(ax=ax)
|
||||
s.plot(legend=True, secondary_y=True, ax=ax)
|
||||
# both legends are drawn on left ax
|
||||
# left and right axis must be visible
|
||||
self._check_legend_labels(ax, labels=["a", "b", "c", "x (right)"])
|
||||
assert ax.get_yaxis().get_visible()
|
||||
assert ax.right_ax.get_yaxis().get_visible()
|
||||
tm.close()
|
||||
|
||||
# primary -> secondary (with passing ax)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot(ax=ax)
|
||||
s.plot(ax=ax, legend=True, secondary_y=True)
|
||||
# both legends are drawn on left ax
|
||||
# left and right axis must be visible
|
||||
self._check_legend_labels(ax, labels=["a", "b", "c", "x (right)"])
|
||||
assert ax.get_yaxis().get_visible()
|
||||
assert ax.right_ax.get_yaxis().get_visible()
|
||||
tm.close()
|
||||
|
||||
# secondary -> secondary (without passing ax)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot(secondary_y=True, ax=ax)
|
||||
s.plot(legend=True, secondary_y=True, ax=ax)
|
||||
# both legends are drawn on left ax
|
||||
# left axis must be invisible and right axis must be visible
|
||||
expected = ["a (right)", "b (right)", "c (right)", "x (right)"]
|
||||
self._check_legend_labels(ax.left_ax, labels=expected)
|
||||
assert not ax.left_ax.get_yaxis().get_visible()
|
||||
assert ax.get_yaxis().get_visible()
|
||||
tm.close()
|
||||
|
||||
# secondary -> secondary (with passing ax)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot(secondary_y=True, ax=ax)
|
||||
s.plot(ax=ax, legend=True, secondary_y=True)
|
||||
# both legends are drawn on left ax
|
||||
# left axis must be invisible and right axis must be visible
|
||||
expected = ["a (right)", "b (right)", "c (right)", "x (right)"]
|
||||
self._check_legend_labels(ax.left_ax, expected)
|
||||
assert not ax.left_ax.get_yaxis().get_visible()
|
||||
assert ax.get_yaxis().get_visible()
|
||||
tm.close()
|
||||
|
||||
# secondary -> secondary (with passing ax)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = df.plot(secondary_y=True, mark_right=False, ax=ax)
|
||||
s.plot(ax=ax, legend=True, secondary_y=True)
|
||||
# both legends are drawn on left ax
|
||||
# left axis must be invisible and right axis must be visible
|
||||
expected = ["a", "b", "c", "x (right)"]
|
||||
self._check_legend_labels(ax.left_ax, expected)
|
||||
assert not ax.left_ax.get_yaxis().get_visible()
|
||||
assert ax.get_yaxis().get_visible()
|
||||
tm.close()
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"input_logy, expected_scale", [(True, "log"), ("sym", "symlog")]
|
||||
)
|
||||
def test_secondary_logy(self, input_logy, expected_scale):
|
||||
# GH 25545
|
||||
s1 = Series(np.random.randn(30))
|
||||
s2 = Series(np.random.randn(30))
|
||||
|
||||
# GH 24980
|
||||
ax1 = s1.plot(logy=input_logy)
|
||||
ax2 = s2.plot(secondary_y=True, logy=input_logy)
|
||||
|
||||
assert ax1.get_yscale() == expected_scale
|
||||
assert ax2.get_yscale() == expected_scale
|
||||
|
||||
def test_plot_fails_with_dupe_color_and_style(self):
|
||||
x = Series(np.random.randn(2))
|
||||
_, ax = self.plt.subplots()
|
||||
msg = (
|
||||
"Cannot pass 'style' string with a color symbol and 'color' keyword "
|
||||
"argument. Please use one or the other or pass 'style' without a color "
|
||||
"symbol"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
x.plot(style="k--", color="k", ax=ax)
|
||||
|
||||
@td.skip_if_no_scipy
|
||||
def test_kde_kwargs(self):
|
||||
sample_points = np.linspace(-100, 100, 20)
|
||||
_check_plot_works(self.ts.plot.kde, bw_method="scott", ind=20)
|
||||
_check_plot_works(self.ts.plot.kde, bw_method=None, ind=20)
|
||||
_check_plot_works(self.ts.plot.kde, bw_method=None, ind=np.int_(20))
|
||||
_check_plot_works(self.ts.plot.kde, bw_method=0.5, ind=sample_points)
|
||||
_check_plot_works(self.ts.plot.density, bw_method=0.5, ind=sample_points)
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.kde(logy=True, bw_method=0.5, ind=sample_points, ax=ax)
|
||||
self._check_ax_scales(ax, yaxis="log")
|
||||
self._check_text_labels(ax.yaxis.get_label(), "Density")
|
||||
|
||||
@td.skip_if_no_scipy
|
||||
def test_kde_missing_vals(self):
|
||||
s = Series(np.random.uniform(size=50))
|
||||
s[0] = np.nan
|
||||
axes = _check_plot_works(s.plot.kde)
|
||||
|
||||
# gh-14821: check if the values have any missing values
|
||||
assert any(~np.isnan(axes.lines[0].get_xdata()))
|
||||
|
||||
def test_boxplot_series(self):
|
||||
_, ax = self.plt.subplots()
|
||||
ax = self.ts.plot.box(logy=True, ax=ax)
|
||||
self._check_ax_scales(ax, yaxis="log")
|
||||
xlabels = ax.get_xticklabels()
|
||||
self._check_text_labels(xlabels, [self.ts.name])
|
||||
ylabels = ax.get_yticklabels()
|
||||
self._check_text_labels(ylabels, [""] * len(ylabels))
|
||||
|
||||
def test_kind_both_ways(self):
|
||||
s = Series(range(3))
|
||||
kinds = (
|
||||
plotting.PlotAccessor._common_kinds + plotting.PlotAccessor._series_kinds
|
||||
)
|
||||
for kind in kinds:
|
||||
_, ax = self.plt.subplots()
|
||||
s.plot(kind=kind, ax=ax)
|
||||
self.plt.close()
|
||||
_, ax = self.plt.subplots()
|
||||
getattr(s.plot, kind)()
|
||||
self.plt.close()
|
||||
|
||||
def test_invalid_plot_data(self):
|
||||
s = Series(list("abcd"))
|
||||
_, ax = self.plt.subplots()
|
||||
for kind in plotting.PlotAccessor._common_kinds:
|
||||
|
||||
msg = "no numeric data to plot"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
s.plot(kind=kind, ax=ax)
|
||||
|
||||
def test_valid_object_plot(self):
|
||||
s = Series(range(10), dtype=object)
|
||||
for kind in plotting.PlotAccessor._common_kinds:
|
||||
_check_plot_works(s.plot, kind=kind)
|
||||
|
||||
def test_partially_invalid_plot_data(self):
|
||||
s = Series(["a", "b", 1.0, 2])
|
||||
_, ax = self.plt.subplots()
|
||||
for kind in plotting.PlotAccessor._common_kinds:
|
||||
|
||||
msg = "no numeric data to plot"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
s.plot(kind=kind, ax=ax)
|
||||
|
||||
def test_invalid_kind(self):
|
||||
s = Series([1, 2])
|
||||
with pytest.raises(ValueError, match="invalid_kind is not a valid plot kind"):
|
||||
s.plot(kind="invalid_kind")
|
||||
|
||||
def test_dup_datetime_index_plot(self):
|
||||
dr1 = date_range("1/1/2009", periods=4)
|
||||
dr2 = date_range("1/2/2009", periods=4)
|
||||
index = dr1.append(dr2)
|
||||
values = np.random.randn(index.size)
|
||||
s = Series(values, index=index)
|
||||
_check_plot_works(s.plot)
|
||||
|
||||
def test_errorbar_asymmetrical(self):
|
||||
# GH9536
|
||||
s = Series(np.arange(10), name="x")
|
||||
err = np.random.rand(2, 10)
|
||||
|
||||
ax = s.plot(yerr=err, xerr=err)
|
||||
|
||||
result = np.vstack([i.vertices[:, 1] for i in ax.collections[1].get_paths()])
|
||||
expected = (err.T * np.array([-1, 1])) + s.to_numpy().reshape(-1, 1)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
msg = (
|
||||
"Asymmetrical error bars should be provided "
|
||||
f"with the shape \\(2, {len(s)}\\)"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
s.plot(yerr=np.random.rand(2, 11))
|
||||
|
||||
tm.close()
|
||||
|
||||
def test_errorbar_plot(self):
|
||||
|
||||
s = Series(np.arange(10), name="x")
|
||||
s_err = np.random.randn(10)
|
||||
d_err = DataFrame(np.random.randn(10, 2), index=s.index, columns=["x", "y"])
|
||||
# test line and bar plots
|
||||
kinds = ["line", "bar"]
|
||||
for kind in kinds:
|
||||
ax = _check_plot_works(s.plot, yerr=Series(s_err), kind=kind)
|
||||
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||||
ax = _check_plot_works(s.plot, yerr=s_err, kind=kind)
|
||||
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||||
ax = _check_plot_works(s.plot, yerr=s_err.tolist(), kind=kind)
|
||||
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||||
ax = _check_plot_works(s.plot, yerr=d_err, kind=kind)
|
||||
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||||
ax = _check_plot_works(s.plot, xerr=0.2, yerr=0.2, kind=kind)
|
||||
self._check_has_errorbars(ax, xerr=1, yerr=1)
|
||||
|
||||
ax = _check_plot_works(s.plot, xerr=s_err)
|
||||
self._check_has_errorbars(ax, xerr=1, yerr=0)
|
||||
|
||||
# test time series plotting
|
||||
ix = date_range("1/1/2000", "1/1/2001", freq="M")
|
||||
ts = Series(np.arange(12), index=ix, name="x")
|
||||
ts_err = Series(np.random.randn(12), index=ix)
|
||||
td_err = DataFrame(np.random.randn(12, 2), index=ix, columns=["x", "y"])
|
||||
|
||||
ax = _check_plot_works(ts.plot, yerr=ts_err)
|
||||
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||||
ax = _check_plot_works(ts.plot, yerr=td_err)
|
||||
self._check_has_errorbars(ax, xerr=0, yerr=1)
|
||||
|
||||
# check incorrect lengths and types
|
||||
with tm.external_error_raised(ValueError):
|
||||
s.plot(yerr=np.arange(11))
|
||||
|
||||
s_err = ["zzz"] * 10
|
||||
with tm.external_error_raised(TypeError):
|
||||
s.plot(yerr=s_err)
|
||||
|
||||
def test_table(self):
|
||||
_check_plot_works(self.series.plot, table=True)
|
||||
_check_plot_works(self.series.plot, table=self.series)
|
||||
|
||||
def test_series_grid_settings(self):
|
||||
# Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792
|
||||
self._check_grid_settings(
|
||||
Series([1, 2, 3]),
|
||||
plotting.PlotAccessor._series_kinds + plotting.PlotAccessor._common_kinds,
|
||||
)
|
||||
|
||||
def test_standard_colors(self):
|
||||
from pandas.plotting._matplotlib.style import get_standard_colors
|
||||
|
||||
for c in ["r", "red", "green", "#FF0000"]:
|
||||
result = get_standard_colors(1, color=c)
|
||||
assert result == [c]
|
||||
|
||||
result = get_standard_colors(1, color=[c])
|
||||
assert result == [c]
|
||||
|
||||
result = get_standard_colors(3, color=c)
|
||||
assert result == [c] * 3
|
||||
|
||||
result = get_standard_colors(3, color=[c])
|
||||
assert result == [c] * 3
|
||||
|
||||
def test_standard_colors_all(self):
|
||||
import matplotlib.colors as colors
|
||||
|
||||
from pandas.plotting._matplotlib.style import get_standard_colors
|
||||
|
||||
# multiple colors like mediumaquamarine
|
||||
for c in colors.cnames:
|
||||
result = get_standard_colors(num_colors=1, color=c)
|
||||
assert result == [c]
|
||||
|
||||
result = get_standard_colors(num_colors=1, color=[c])
|
||||
assert result == [c]
|
||||
|
||||
result = get_standard_colors(num_colors=3, color=c)
|
||||
assert result == [c] * 3
|
||||
|
||||
result = get_standard_colors(num_colors=3, color=[c])
|
||||
assert result == [c] * 3
|
||||
|
||||
# single letter colors like k
|
||||
for c in colors.ColorConverter.colors:
|
||||
result = get_standard_colors(num_colors=1, color=c)
|
||||
assert result == [c]
|
||||
|
||||
result = get_standard_colors(num_colors=1, color=[c])
|
||||
assert result == [c]
|
||||
|
||||
result = get_standard_colors(num_colors=3, color=c)
|
||||
assert result == [c] * 3
|
||||
|
||||
result = get_standard_colors(num_colors=3, color=[c])
|
||||
assert result == [c] * 3
|
||||
|
||||
def test_series_plot_color_kwargs(self):
|
||||
# GH1890
|
||||
_, ax = self.plt.subplots()
|
||||
ax = Series(np.arange(12) + 1).plot(color="green", ax=ax)
|
||||
self._check_colors(ax.get_lines(), linecolors=["green"])
|
||||
|
||||
def test_time_series_plot_color_kwargs(self):
|
||||
# #1890
|
||||
_, ax = self.plt.subplots()
|
||||
ax = Series(np.arange(12) + 1, index=date_range("1/1/2000", periods=12)).plot(
|
||||
color="green", ax=ax
|
||||
)
|
||||
self._check_colors(ax.get_lines(), linecolors=["green"])
|
||||
|
||||
def test_time_series_plot_color_with_empty_kwargs(self):
|
||||
import matplotlib as mpl
|
||||
|
||||
def_colors = self._unpack_cycler(mpl.rcParams)
|
||||
index = date_range("1/1/2000", periods=12)
|
||||
s = Series(np.arange(1, 13), index=index)
|
||||
|
||||
ncolors = 3
|
||||
|
||||
_, ax = self.plt.subplots()
|
||||
for i in range(ncolors):
|
||||
ax = s.plot(ax=ax)
|
||||
self._check_colors(ax.get_lines(), linecolors=def_colors[:ncolors])
|
||||
|
||||
def test_xticklabels(self):
|
||||
# GH11529
|
||||
s = Series(np.arange(10), index=[f"P{i:02d}" for i in range(10)])
|
||||
_, ax = self.plt.subplots()
|
||||
ax = s.plot(xticks=[0, 3, 5, 9], ax=ax)
|
||||
exp = [f"P{i:02d}" for i in [0, 3, 5, 9]]
|
||||
self._check_text_labels(ax.get_xticklabels(), exp)
|
||||
|
||||
def test_xtick_barPlot(self):
|
||||
# GH28172
|
||||
s = Series(range(10), index=[f"P{i:02d}" for i in range(10)])
|
||||
ax = s.plot.bar(xticks=range(0, 11, 2))
|
||||
exp = np.array(list(range(0, 11, 2)))
|
||||
tm.assert_numpy_array_equal(exp, ax.get_xticks())
|
||||
|
||||
def test_custom_business_day_freq(self):
|
||||
# GH7222
|
||||
from pandas.tseries.offsets import CustomBusinessDay
|
||||
|
||||
s = Series(
|
||||
range(100, 121),
|
||||
index=pd.bdate_range(
|
||||
start="2014-05-01",
|
||||
end="2014-06-01",
|
||||
freq=CustomBusinessDay(holidays=["2014-05-26"]),
|
||||
),
|
||||
)
|
||||
|
||||
_check_plot_works(s.plot)
|
||||
|
||||
@pytest.mark.xfail(reason="GH#24426")
|
||||
def test_plot_accessor_updates_on_inplace(self):
|
||||
ser = Series([1, 2, 3, 4])
|
||||
_, ax = self.plt.subplots()
|
||||
ax = ser.plot(ax=ax)
|
||||
before = ax.xaxis.get_ticklocs()
|
||||
|
||||
ser.drop([0, 1], inplace=True)
|
||||
_, ax = self.plt.subplots()
|
||||
after = ax.xaxis.get_ticklocs()
|
||||
tm.assert_numpy_array_equal(before, after)
|
||||
|
||||
@pytest.mark.parametrize("kind", ["line", "area"])
|
||||
def test_plot_xlim_for_series(self, kind):
|
||||
# test if xlim is also correctly plotted in Series for line and area
|
||||
# GH 27686
|
||||
s = Series([2, 3])
|
||||
_, ax = self.plt.subplots()
|
||||
s.plot(kind=kind, ax=ax)
|
||||
xlims = ax.get_xlim()
|
||||
|
||||
assert xlims[0] < 0
|
||||
assert xlims[1] > 1
|
||||
|
||||
def test_plot_no_rows(self):
|
||||
# GH 27758
|
||||
df = Series(dtype=int)
|
||||
assert df.empty
|
||||
ax = df.plot()
|
||||
assert len(ax.get_lines()) == 1
|
||||
line = ax.get_lines()[0]
|
||||
assert len(line.get_xdata()) == 0
|
||||
assert len(line.get_ydata()) == 0
|
||||
|
||||
def test_plot_no_numeric_data(self):
|
||||
df = Series(["a", "b", "c"])
|
||||
with pytest.raises(TypeError, match="no numeric data to plot"):
|
||||
df.plot()
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"data, index",
|
||||
[
|
||||
([1, 2, 3, 4], [3, 2, 1, 0]),
|
||||
([10, 50, 20, 30], [1910, 1920, 1980, 1950]),
|
||||
],
|
||||
)
|
||||
def test_plot_order(self, data, index):
|
||||
# GH38865 Verify plot order of a Series
|
||||
ser = Series(data=data, index=index)
|
||||
ax = ser.plot(kind="bar")
|
||||
|
||||
expected = ser.tolist()
|
||||
result = [
|
||||
patch.get_bbox().ymax
|
||||
for patch in sorted(ax.patches, key=lambda patch: patch.get_bbox().xmax)
|
||||
]
|
||||
assert expected == result
|
||||
|
||||
def test_style_single_ok(self):
|
||||
s = Series([1, 2])
|
||||
ax = s.plot(style="s", color="C3")
|
||||
assert ax.lines[0].get_color() == "C3"
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"index_name, old_label, new_label",
|
||||
[(None, "", "new"), ("old", "old", "new"), (None, "", "")],
|
||||
)
|
||||
@pytest.mark.parametrize("kind", ["line", "area", "bar"])
|
||||
def test_xlabel_ylabel_series(self, kind, index_name, old_label, new_label):
|
||||
# GH 9093
|
||||
ser = Series([1, 2, 3, 4])
|
||||
ser.index.name = index_name
|
||||
|
||||
# default is the ylabel is not shown and xlabel is index name
|
||||
ax = ser.plot(kind=kind)
|
||||
assert ax.get_ylabel() == ""
|
||||
assert ax.get_xlabel() == old_label
|
||||
|
||||
# old xlabel will be overridden and assigned ylabel will be used as ylabel
|
||||
ax = ser.plot(kind=kind, ylabel=new_label, xlabel=new_label)
|
||||
assert ax.get_ylabel() == new_label
|
||||
assert ax.get_xlabel() == new_label
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"index",
|
||||
[
|
||||
pd.timedelta_range(start=0, periods=2, freq="D"),
|
||||
[pd.Timedelta(days=1), pd.Timedelta(days=2)],
|
||||
],
|
||||
)
|
||||
def test_timedelta_index(self, index):
|
||||
# GH37454
|
||||
xlims = (3, 1)
|
||||
ax = Series([1, 2], index=index).plot(xlim=(xlims))
|
||||
assert ax.get_xlim() == (3, 1)
|
159
.venv/Lib/site-packages/pandas/tests/plotting/test_style.py
Normal file
159
.venv/Lib/site-packages/pandas/tests/plotting/test_style.py
Normal file
@ -0,0 +1,159 @@
|
||||
import pytest
|
||||
|
||||
from pandas import Series
|
||||
|
||||
pytest.importorskip("matplotlib")
|
||||
from pandas.plotting._matplotlib.style import get_standard_colors
|
||||
|
||||
pytestmark = pytest.mark.slow
|
||||
|
||||
|
||||
class TestGetStandardColors:
|
||||
@pytest.mark.parametrize(
|
||||
"num_colors, expected",
|
||||
[
|
||||
(3, ["red", "green", "blue"]),
|
||||
(5, ["red", "green", "blue", "red", "green"]),
|
||||
(7, ["red", "green", "blue", "red", "green", "blue", "red"]),
|
||||
(2, ["red", "green"]),
|
||||
(1, ["red"]),
|
||||
],
|
||||
)
|
||||
def test_default_colors_named_from_prop_cycle(self, num_colors, expected):
|
||||
import matplotlib as mpl
|
||||
from matplotlib.pyplot import cycler
|
||||
|
||||
mpl_params = {
|
||||
"axes.prop_cycle": cycler(color=["red", "green", "blue"]),
|
||||
}
|
||||
with mpl.rc_context(rc=mpl_params):
|
||||
result = get_standard_colors(num_colors=num_colors)
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"num_colors, expected",
|
||||
[
|
||||
(1, ["b"]),
|
||||
(3, ["b", "g", "r"]),
|
||||
(4, ["b", "g", "r", "y"]),
|
||||
(5, ["b", "g", "r", "y", "b"]),
|
||||
(7, ["b", "g", "r", "y", "b", "g", "r"]),
|
||||
],
|
||||
)
|
||||
def test_default_colors_named_from_prop_cycle_string(self, num_colors, expected):
|
||||
import matplotlib as mpl
|
||||
from matplotlib.pyplot import cycler
|
||||
|
||||
mpl_params = {
|
||||
"axes.prop_cycle": cycler(color="bgry"),
|
||||
}
|
||||
with mpl.rc_context(rc=mpl_params):
|
||||
result = get_standard_colors(num_colors=num_colors)
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"num_colors, expected_name",
|
||||
[
|
||||
(1, ["C0"]),
|
||||
(3, ["C0", "C1", "C2"]),
|
||||
(
|
||||
12,
|
||||
[
|
||||
"C0",
|
||||
"C1",
|
||||
"C2",
|
||||
"C3",
|
||||
"C4",
|
||||
"C5",
|
||||
"C6",
|
||||
"C7",
|
||||
"C8",
|
||||
"C9",
|
||||
"C0",
|
||||
"C1",
|
||||
],
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_default_colors_named_undefined_prop_cycle(self, num_colors, expected_name):
|
||||
import matplotlib as mpl
|
||||
import matplotlib.colors as mcolors
|
||||
|
||||
with mpl.rc_context(rc={}):
|
||||
expected = [mcolors.to_hex(x) for x in expected_name]
|
||||
result = get_standard_colors(num_colors=num_colors)
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"num_colors, expected",
|
||||
[
|
||||
(1, ["red", "green", (0.1, 0.2, 0.3)]),
|
||||
(2, ["red", "green", (0.1, 0.2, 0.3)]),
|
||||
(3, ["red", "green", (0.1, 0.2, 0.3)]),
|
||||
(4, ["red", "green", (0.1, 0.2, 0.3), "red"]),
|
||||
],
|
||||
)
|
||||
def test_user_input_color_sequence(self, num_colors, expected):
|
||||
color = ["red", "green", (0.1, 0.2, 0.3)]
|
||||
result = get_standard_colors(color=color, num_colors=num_colors)
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"num_colors, expected",
|
||||
[
|
||||
(1, ["r", "g", "b", "k"]),
|
||||
(2, ["r", "g", "b", "k"]),
|
||||
(3, ["r", "g", "b", "k"]),
|
||||
(4, ["r", "g", "b", "k"]),
|
||||
(5, ["r", "g", "b", "k", "r"]),
|
||||
(6, ["r", "g", "b", "k", "r", "g"]),
|
||||
],
|
||||
)
|
||||
def test_user_input_color_string(self, num_colors, expected):
|
||||
color = "rgbk"
|
||||
result = get_standard_colors(color=color, num_colors=num_colors)
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"num_colors, expected",
|
||||
[
|
||||
(1, [(0.1, 0.2, 0.3)]),
|
||||
(2, [(0.1, 0.2, 0.3), (0.1, 0.2, 0.3)]),
|
||||
(3, [(0.1, 0.2, 0.3), (0.1, 0.2, 0.3), (0.1, 0.2, 0.3)]),
|
||||
],
|
||||
)
|
||||
def test_user_input_color_floats(self, num_colors, expected):
|
||||
color = (0.1, 0.2, 0.3)
|
||||
result = get_standard_colors(color=color, num_colors=num_colors)
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"color, num_colors, expected",
|
||||
[
|
||||
("Crimson", 1, ["Crimson"]),
|
||||
("DodgerBlue", 2, ["DodgerBlue", "DodgerBlue"]),
|
||||
("firebrick", 3, ["firebrick", "firebrick", "firebrick"]),
|
||||
],
|
||||
)
|
||||
def test_user_input_named_color_string(self, color, num_colors, expected):
|
||||
result = get_standard_colors(color=color, num_colors=num_colors)
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.parametrize("color", ["", [], (), Series([], dtype="object")])
|
||||
def test_empty_color_raises(self, color):
|
||||
with pytest.raises(ValueError, match="Invalid color argument"):
|
||||
get_standard_colors(color=color, num_colors=1)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"color",
|
||||
[
|
||||
"bad_color",
|
||||
("red", "green", "bad_color"),
|
||||
(0.1,),
|
||||
(0.1, 0.2),
|
||||
(0.1, 0.2, 0.3, 0.4, 0.5), # must be either 3 or 4 floats
|
||||
],
|
||||
)
|
||||
def test_bad_color_raises(self, color):
|
||||
with pytest.raises(ValueError, match="Invalid color"):
|
||||
get_standard_colors(color=color, num_colors=5)
|
Reference in New Issue
Block a user