first commit

This commit is contained in:
Ayxan
2022-05-23 00:16:32 +04:00
commit d660f2a4ca
24786 changed files with 4428337 additions and 0 deletions

View File

@@ -0,0 +1,48 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// NOTE: API is EXPERIMENTAL and will change without going through a
// deprecation cycle
#pragma once
/// \defgroup compute-concrete-options Concrete option classes for compute functions
/// @{
/// @}
#include "arrow/compute/api_aggregate.h" // IWYU pragma: export
#include "arrow/compute/api_scalar.h" // IWYU pragma: export
#include "arrow/compute/api_vector.h" // IWYU pragma: export
#include "arrow/compute/cast.h" // IWYU pragma: export
#include "arrow/compute/exec.h" // IWYU pragma: export
#include "arrow/compute/function.h" // IWYU pragma: export
#include "arrow/compute/kernel.h" // IWYU pragma: export
#include "arrow/compute/registry.h" // IWYU pragma: export
#include "arrow/datum.h" // IWYU pragma: export
/// \defgroup execnode-expressions Utilities for creating expressions to
/// use in execution plans
/// @{
/// @}
#include "arrow/compute/exec/expression.h" // IWYU pragma: export
/// \defgroup execnode-options Concrete option classes for ExecNode options
/// @{
/// @}
#include "arrow/compute/exec/options.h" // IWYU pragma: export

View File

@@ -0,0 +1,494 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// Eager evaluation convenience APIs for invoking common functions, including
// necessary memory allocations
#pragma once
#include "arrow/compute/function.h"
#include "arrow/datum.h"
#include "arrow/result.h"
#include "arrow/util/macros.h"
#include "arrow/util/visibility.h"
namespace arrow {
class Array;
namespace compute {
class ExecContext;
// ----------------------------------------------------------------------
// Aggregate functions
/// \addtogroup compute-concrete-options
/// @{
/// \brief Control general scalar aggregate kernel behavior
///
/// By default, null values are ignored (skip_nulls = true).
class ARROW_EXPORT ScalarAggregateOptions : public FunctionOptions {
public:
explicit ScalarAggregateOptions(bool skip_nulls = true, uint32_t min_count = 1);
static constexpr char const kTypeName[] = "ScalarAggregateOptions";
static ScalarAggregateOptions Defaults() { return ScalarAggregateOptions{}; }
/// If true (the default), null values are ignored. Otherwise, if any value is null,
/// emit null.
bool skip_nulls;
/// If less than this many non-null values are observed, emit null.
uint32_t min_count;
};
/// \brief Control count aggregate kernel behavior.
///
/// By default, only non-null values are counted.
class ARROW_EXPORT CountOptions : public FunctionOptions {
public:
enum CountMode {
/// Count only non-null values.
ONLY_VALID = 0,
/// Count only null values.
ONLY_NULL,
/// Count both non-null and null values.
ALL,
};
explicit CountOptions(CountMode mode = CountMode::ONLY_VALID);
static constexpr char const kTypeName[] = "CountOptions";
static CountOptions Defaults() { return CountOptions{}; }
CountMode mode;
};
/// \brief Control Mode kernel behavior
///
/// Returns top-n common values and counts.
/// By default, returns the most common value and count.
class ARROW_EXPORT ModeOptions : public FunctionOptions {
public:
explicit ModeOptions(int64_t n = 1, bool skip_nulls = true, uint32_t min_count = 0);
static constexpr char const kTypeName[] = "ModeOptions";
static ModeOptions Defaults() { return ModeOptions{}; }
int64_t n = 1;
/// If true (the default), null values are ignored. Otherwise, if any value is null,
/// emit null.
bool skip_nulls;
/// If less than this many non-null values are observed, emit null.
uint32_t min_count;
};
/// \brief Control Delta Degrees of Freedom (ddof) of Variance and Stddev kernel
///
/// The divisor used in calculations is N - ddof, where N is the number of elements.
/// By default, ddof is zero, and population variance or stddev is returned.
class ARROW_EXPORT VarianceOptions : public FunctionOptions {
public:
explicit VarianceOptions(int ddof = 0, bool skip_nulls = true, uint32_t min_count = 0);
static constexpr char const kTypeName[] = "VarianceOptions";
static VarianceOptions Defaults() { return VarianceOptions{}; }
int ddof = 0;
/// If true (the default), null values are ignored. Otherwise, if any value is null,
/// emit null.
bool skip_nulls;
/// If less than this many non-null values are observed, emit null.
uint32_t min_count;
};
/// \brief Control Quantile kernel behavior
///
/// By default, returns the median value.
class ARROW_EXPORT QuantileOptions : public FunctionOptions {
public:
/// Interpolation method to use when quantile lies between two data points
enum Interpolation {
LINEAR = 0,
LOWER,
HIGHER,
NEAREST,
MIDPOINT,
};
explicit QuantileOptions(double q = 0.5, enum Interpolation interpolation = LINEAR,
bool skip_nulls = true, uint32_t min_count = 0);
explicit QuantileOptions(std::vector<double> q,
enum Interpolation interpolation = LINEAR,
bool skip_nulls = true, uint32_t min_count = 0);
static constexpr char const kTypeName[] = "QuantileOptions";
static QuantileOptions Defaults() { return QuantileOptions{}; }
/// quantile must be between 0 and 1 inclusive
std::vector<double> q;
enum Interpolation interpolation;
/// If true (the default), null values are ignored. Otherwise, if any value is null,
/// emit null.
bool skip_nulls;
/// If less than this many non-null values are observed, emit null.
uint32_t min_count;
};
/// \brief Control TDigest approximate quantile kernel behavior
///
/// By default, returns the median value.
class ARROW_EXPORT TDigestOptions : public FunctionOptions {
public:
explicit TDigestOptions(double q = 0.5, uint32_t delta = 100,
uint32_t buffer_size = 500, bool skip_nulls = true,
uint32_t min_count = 0);
explicit TDigestOptions(std::vector<double> q, uint32_t delta = 100,
uint32_t buffer_size = 500, bool skip_nulls = true,
uint32_t min_count = 0);
static constexpr char const kTypeName[] = "TDigestOptions";
static TDigestOptions Defaults() { return TDigestOptions{}; }
/// quantile must be between 0 and 1 inclusive
std::vector<double> q;
/// compression parameter, default 100
uint32_t delta;
/// input buffer size, default 500
uint32_t buffer_size;
/// If true (the default), null values are ignored. Otherwise, if any value is null,
/// emit null.
bool skip_nulls;
/// If less than this many non-null values are observed, emit null.
uint32_t min_count;
};
/// \brief Control Index kernel behavior
class ARROW_EXPORT IndexOptions : public FunctionOptions {
public:
explicit IndexOptions(std::shared_ptr<Scalar> value);
// Default constructor for serialization
IndexOptions();
static constexpr char const kTypeName[] = "IndexOptions";
std::shared_ptr<Scalar> value;
};
/// @}
/// \brief Count values in an array.
///
/// \param[in] options counting options, see CountOptions for more information
/// \param[in] datum to count
/// \param[in] ctx the function execution context, optional
/// \return out resulting datum
///
/// \since 1.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<Datum> Count(const Datum& datum,
const CountOptions& options = CountOptions::Defaults(),
ExecContext* ctx = NULLPTR);
/// \brief Compute the mean of a numeric array.
///
/// \param[in] value datum to compute the mean, expecting Array
/// \param[in] options see ScalarAggregateOptions for more information
/// \param[in] ctx the function execution context, optional
/// \return datum of the computed mean as a DoubleScalar
///
/// \since 1.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<Datum> Mean(
const Datum& value,
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
ExecContext* ctx = NULLPTR);
/// \brief Compute the product of values of a numeric array.
///
/// \param[in] value datum to compute product of, expecting Array or ChunkedArray
/// \param[in] options see ScalarAggregateOptions for more information
/// \param[in] ctx the function execution context, optional
/// \return datum of the computed sum as a Scalar
///
/// \since 6.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<Datum> Product(
const Datum& value,
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
ExecContext* ctx = NULLPTR);
/// \brief Sum values of a numeric array.
///
/// \param[in] value datum to sum, expecting Array or ChunkedArray
/// \param[in] options see ScalarAggregateOptions for more information
/// \param[in] ctx the function execution context, optional
/// \return datum of the computed sum as a Scalar
///
/// \since 1.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<Datum> Sum(
const Datum& value,
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
ExecContext* ctx = NULLPTR);
/// \brief Calculate the min / max of a numeric array
///
/// This function returns both the min and max as a struct scalar, with type
/// struct<min: T, max: T>, where T is the input type
///
/// \param[in] value input datum, expecting Array or ChunkedArray
/// \param[in] options see ScalarAggregateOptions for more information
/// \param[in] ctx the function execution context, optional
/// \return resulting datum as a struct<min: T, max: T> scalar
///
/// \since 1.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<Datum> MinMax(
const Datum& value,
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
ExecContext* ctx = NULLPTR);
/// \brief Test whether any element in a boolean array evaluates to true.
///
/// This function returns true if any of the elements in the array evaluates
/// to true and false otherwise. Null values are ignored by default.
/// If null values are taken into account by setting ScalarAggregateOptions
/// parameter skip_nulls = false then Kleene logic is used.
/// See KleeneOr for more details on Kleene logic.
///
/// \param[in] value input datum, expecting a boolean array
/// \param[in] options see ScalarAggregateOptions for more information
/// \param[in] ctx the function execution context, optional
/// \return resulting datum as a BooleanScalar
///
/// \since 3.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<Datum> Any(
const Datum& value,
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
ExecContext* ctx = NULLPTR);
/// \brief Test whether all elements in a boolean array evaluate to true.
///
/// This function returns true if all of the elements in the array evaluate
/// to true and false otherwise. Null values are ignored by default.
/// If null values are taken into account by setting ScalarAggregateOptions
/// parameter skip_nulls = false then Kleene logic is used.
/// See KleeneAnd for more details on Kleene logic.
///
/// \param[in] value input datum, expecting a boolean array
/// \param[in] options see ScalarAggregateOptions for more information
/// \param[in] ctx the function execution context, optional
/// \return resulting datum as a BooleanScalar
/// \since 3.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<Datum> All(
const Datum& value,
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
ExecContext* ctx = NULLPTR);
/// \brief Calculate the modal (most common) value of a numeric array
///
/// This function returns top-n most common values and number of times they occur as
/// an array of `struct<mode: T, count: int64>`, where T is the input type.
/// Values with larger counts are returned before smaller ones.
/// If there are more than one values with same count, smaller value is returned first.
///
/// \param[in] value input datum, expecting Array or ChunkedArray
/// \param[in] options see ModeOptions for more information
/// \param[in] ctx the function execution context, optional
/// \return resulting datum as an array of struct<mode: T, count: int64>
///
/// \since 2.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<Datum> Mode(const Datum& value,
const ModeOptions& options = ModeOptions::Defaults(),
ExecContext* ctx = NULLPTR);
/// \brief Calculate the standard deviation of a numeric array
///
/// \param[in] value input datum, expecting Array or ChunkedArray
/// \param[in] options see VarianceOptions for more information
/// \param[in] ctx the function execution context, optional
/// \return datum of the computed standard deviation as a DoubleScalar
///
/// \since 2.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<Datum> Stddev(const Datum& value,
const VarianceOptions& options = VarianceOptions::Defaults(),
ExecContext* ctx = NULLPTR);
/// \brief Calculate the variance of a numeric array
///
/// \param[in] value input datum, expecting Array or ChunkedArray
/// \param[in] options see VarianceOptions for more information
/// \param[in] ctx the function execution context, optional
/// \return datum of the computed variance as a DoubleScalar
///
/// \since 2.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<Datum> Variance(const Datum& value,
const VarianceOptions& options = VarianceOptions::Defaults(),
ExecContext* ctx = NULLPTR);
/// \brief Calculate the quantiles of a numeric array
///
/// \param[in] value input datum, expecting Array or ChunkedArray
/// \param[in] options see QuantileOptions for more information
/// \param[in] ctx the function execution context, optional
/// \return resulting datum as an array
///
/// \since 4.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<Datum> Quantile(const Datum& value,
const QuantileOptions& options = QuantileOptions::Defaults(),
ExecContext* ctx = NULLPTR);
/// \brief Calculate the approximate quantiles of a numeric array with T-Digest algorithm
///
/// \param[in] value input datum, expecting Array or ChunkedArray
/// \param[in] options see TDigestOptions for more information
/// \param[in] ctx the function execution context, optional
/// \return resulting datum as an array
///
/// \since 4.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<Datum> TDigest(const Datum& value,
const TDigestOptions& options = TDigestOptions::Defaults(),
ExecContext* ctx = NULLPTR);
/// \brief Find the first index of a value in an array.
///
/// \param[in] value The array to search.
/// \param[in] options The array to search for. See IndexOoptions.
/// \param[in] ctx the function execution context, optional
/// \return out a Scalar containing the index (or -1 if not found).
///
/// \since 5.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<Datum> Index(const Datum& value, const IndexOptions& options,
ExecContext* ctx = NULLPTR);
namespace internal {
/// Internal use only: streaming group identifier.
/// Consumes batches of keys and yields batches of the group ids.
class ARROW_EXPORT Grouper {
public:
virtual ~Grouper() = default;
/// Construct a Grouper which receives the specified key types
static Result<std::unique_ptr<Grouper>> Make(const std::vector<ValueDescr>& descrs,
ExecContext* ctx = default_exec_context());
/// Consume a batch of keys, producing the corresponding group ids as an integer array.
/// Currently only uint32 indices will be produced, eventually the bit width will only
/// be as wide as necessary.
virtual Result<Datum> Consume(const ExecBatch& batch) = 0;
/// Get current unique keys. May be called multiple times.
virtual Result<ExecBatch> GetUniques() = 0;
/// Get the current number of groups.
virtual uint32_t num_groups() const = 0;
/// \brief Assemble lists of indices of identical elements.
///
/// \param[in] ids An unsigned, all-valid integral array which will be
/// used as grouping criteria.
/// \param[in] num_groups An upper bound for the elements of ids
/// \return A num_groups-long ListArray where the slot at i contains a
/// list of indices where i appears in ids.
///
/// MakeGroupings([
/// 2,
/// 2,
/// 5,
/// 5,
/// 2,
/// 3
/// ], 8) == [
/// [],
/// [],
/// [0, 1, 4],
/// [5],
/// [],
/// [2, 3],
/// [],
/// []
/// ]
static Result<std::shared_ptr<ListArray>> MakeGroupings(
const UInt32Array& ids, uint32_t num_groups,
ExecContext* ctx = default_exec_context());
/// \brief Produce a ListArray whose slots are selections of `array` which correspond to
/// the provided groupings.
///
/// For example,
/// ApplyGroupings([
/// [],
/// [],
/// [0, 1, 4],
/// [5],
/// [],
/// [2, 3],
/// [],
/// []
/// ], [2, 2, 5, 5, 2, 3]) == [
/// [],
/// [],
/// [2, 2, 2],
/// [3],
/// [],
/// [5, 5],
/// [],
/// []
/// ]
static Result<std::shared_ptr<ListArray>> ApplyGroupings(
const ListArray& groupings, const Array& array,
ExecContext* ctx = default_exec_context());
};
/// \brief Configure a grouped aggregation
struct ARROW_EXPORT Aggregate {
/// the name of the aggregation function
std::string function;
/// options for the aggregation function
const FunctionOptions* options;
};
/// Internal use only: helper function for testing HashAggregateKernels.
/// This will be replaced by streaming execution operators.
ARROW_EXPORT
Result<Datum> GroupBy(const std::vector<Datum>& arguments, const std::vector<Datum>& keys,
const std::vector<Aggregate>& aggregates, bool use_threads = false,
ExecContext* ctx = default_exec_context());
} // namespace internal
} // namespace compute
} // namespace arrow

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,534 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <memory>
#include <utility>
#include "arrow/compute/function.h"
#include "arrow/datum.h"
#include "arrow/result.h"
#include "arrow/type_fwd.h"
namespace arrow {
namespace compute {
class ExecContext;
/// \addtogroup compute-concrete-options
/// @{
class ARROW_EXPORT FilterOptions : public FunctionOptions {
public:
/// Configure the action taken when a slot of the selection mask is null
enum NullSelectionBehavior {
/// The corresponding filtered value will be removed in the output.
DROP,
/// The corresponding filtered value will be null in the output.
EMIT_NULL,
};
explicit FilterOptions(NullSelectionBehavior null_selection = DROP);
static constexpr char const kTypeName[] = "FilterOptions";
static FilterOptions Defaults() { return FilterOptions(); }
NullSelectionBehavior null_selection_behavior = DROP;
};
class ARROW_EXPORT TakeOptions : public FunctionOptions {
public:
explicit TakeOptions(bool boundscheck = true);
static constexpr char const kTypeName[] = "TakeOptions";
static TakeOptions BoundsCheck() { return TakeOptions(true); }
static TakeOptions NoBoundsCheck() { return TakeOptions(false); }
static TakeOptions Defaults() { return BoundsCheck(); }
bool boundscheck = true;
};
/// \brief Options for the dictionary encode function
class ARROW_EXPORT DictionaryEncodeOptions : public FunctionOptions {
public:
/// Configure how null values will be encoded
enum NullEncodingBehavior {
/// The null value will be added to the dictionary with a proper index.
ENCODE,
/// The null value will be masked in the indices array.
MASK
};
explicit DictionaryEncodeOptions(NullEncodingBehavior null_encoding = MASK);
static constexpr char const kTypeName[] = "DictionaryEncodeOptions";
static DictionaryEncodeOptions Defaults() { return DictionaryEncodeOptions(); }
NullEncodingBehavior null_encoding_behavior = MASK;
};
enum class SortOrder {
/// Arrange values in increasing order
Ascending,
/// Arrange values in decreasing order
Descending,
};
enum class NullPlacement {
/// Place nulls and NaNs before any non-null values.
/// NaNs will come after nulls.
AtStart,
/// Place nulls and NaNs after any non-null values.
/// NaNs will come before nulls.
AtEnd,
};
/// \brief One sort key for PartitionNthIndices (TODO) and SortIndices
class ARROW_EXPORT SortKey : public util::EqualityComparable<SortKey> {
public:
explicit SortKey(FieldRef target, SortOrder order = SortOrder::Ascending)
: target(std::move(target)), order(order) {}
using util::EqualityComparable<SortKey>::Equals;
using util::EqualityComparable<SortKey>::operator==;
using util::EqualityComparable<SortKey>::operator!=;
bool Equals(const SortKey& other) const;
std::string ToString() const;
/// A FieldRef targetting the sort column.
FieldRef target;
/// How to order by this sort key.
SortOrder order;
};
class ARROW_EXPORT ArraySortOptions : public FunctionOptions {
public:
explicit ArraySortOptions(SortOrder order = SortOrder::Ascending,
NullPlacement null_placement = NullPlacement::AtEnd);
static constexpr char const kTypeName[] = "ArraySortOptions";
static ArraySortOptions Defaults() { return ArraySortOptions(); }
/// Sorting order
SortOrder order;
/// Whether nulls and NaNs are placed at the start or at the end
NullPlacement null_placement;
};
class ARROW_EXPORT SortOptions : public FunctionOptions {
public:
explicit SortOptions(std::vector<SortKey> sort_keys = {},
NullPlacement null_placement = NullPlacement::AtEnd);
static constexpr char const kTypeName[] = "SortOptions";
static SortOptions Defaults() { return SortOptions(); }
/// Column key(s) to order by and how to order by these sort keys.
std::vector<SortKey> sort_keys;
/// Whether nulls and NaNs are placed at the start or at the end
NullPlacement null_placement;
};
/// \brief SelectK options
class ARROW_EXPORT SelectKOptions : public FunctionOptions {
public:
explicit SelectKOptions(int64_t k = -1, std::vector<SortKey> sort_keys = {});
static constexpr char const kTypeName[] = "SelectKOptions";
static SelectKOptions Defaults() { return SelectKOptions(); }
static SelectKOptions TopKDefault(int64_t k, std::vector<std::string> key_names = {}) {
std::vector<SortKey> keys;
for (const auto& name : key_names) {
keys.emplace_back(SortKey(name, SortOrder::Descending));
}
if (key_names.empty()) {
keys.emplace_back(SortKey("not-used", SortOrder::Descending));
}
return SelectKOptions{k, keys};
}
static SelectKOptions BottomKDefault(int64_t k,
std::vector<std::string> key_names = {}) {
std::vector<SortKey> keys;
for (const auto& name : key_names) {
keys.emplace_back(SortKey(name, SortOrder::Ascending));
}
if (key_names.empty()) {
keys.emplace_back(SortKey("not-used", SortOrder::Ascending));
}
return SelectKOptions{k, keys};
}
/// The number of `k` elements to keep.
int64_t k;
/// Column key(s) to order by and how to order by these sort keys.
std::vector<SortKey> sort_keys;
};
/// \brief Partitioning options for NthToIndices
class ARROW_EXPORT PartitionNthOptions : public FunctionOptions {
public:
explicit PartitionNthOptions(int64_t pivot,
NullPlacement null_placement = NullPlacement::AtEnd);
PartitionNthOptions() : PartitionNthOptions(0) {}
static constexpr char const kTypeName[] = "PartitionNthOptions";
/// The index into the equivalent sorted array of the partition pivot element.
int64_t pivot;
/// Whether nulls and NaNs are partitioned at the start or at the end
NullPlacement null_placement;
};
/// @}
/// \brief Filter with a boolean selection filter
///
/// The output will be populated with values from the input at positions
/// where the selection filter is not 0. Nulls in the filter will be handled
/// based on options.null_selection_behavior.
///
/// For example given values = ["a", "b", "c", null, "e", "f"] and
/// filter = [0, 1, 1, 0, null, 1], the output will be
/// (null_selection_behavior == DROP) = ["b", "c", "f"]
/// (null_selection_behavior == EMIT_NULL) = ["b", "c", null, "f"]
///
/// \param[in] values array to filter
/// \param[in] filter indicates which values should be filtered out
/// \param[in] options configures null_selection_behavior
/// \param[in] ctx the function execution context, optional
/// \return the resulting datum
ARROW_EXPORT
Result<Datum> Filter(const Datum& values, const Datum& filter,
const FilterOptions& options = FilterOptions::Defaults(),
ExecContext* ctx = NULLPTR);
namespace internal {
// These internal functions are implemented in kernels/vector_selection.cc
/// \brief Return the number of selected indices in the boolean filter
ARROW_EXPORT
int64_t GetFilterOutputSize(const ArrayData& filter,
FilterOptions::NullSelectionBehavior null_selection);
/// \brief Compute uint64 selection indices for use with Take given a boolean
/// filter
ARROW_EXPORT
Result<std::shared_ptr<ArrayData>> GetTakeIndices(
const ArrayData& filter, FilterOptions::NullSelectionBehavior null_selection,
MemoryPool* memory_pool = default_memory_pool());
} // namespace internal
/// \brief ReplaceWithMask replaces each value in the array corresponding
/// to a true value in the mask with the next element from `replacements`.
///
/// \param[in] values Array input to replace
/// \param[in] mask Array or Scalar of Boolean mask values
/// \param[in] replacements The replacement values to draw from. There must
/// be as many replacement values as true values in the mask.
/// \param[in] ctx the function execution context, optional
///
/// \return the resulting datum
///
/// \since 5.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<Datum> ReplaceWithMask(const Datum& values, const Datum& mask,
const Datum& replacements, ExecContext* ctx = NULLPTR);
/// \brief FillNullForward fill null values in forward direction
///
/// The output array will be of the same type as the input values
/// array, with replaced null values in forward direction.
///
/// For example given values = ["a", "b", "c", null, null, "f"],
/// the output will be = ["a", "b", "c", "c", "c", "f"]
///
/// \param[in] values datum from which to take
/// \param[in] ctx the function execution context, optional
/// \return the resulting datum
ARROW_EXPORT
Result<Datum> FillNullForward(const Datum& values, ExecContext* ctx = NULLPTR);
/// \brief FillNullBackward fill null values in backward direction
///
/// The output array will be of the same type as the input values
/// array, with replaced null values in backward direction.
///
/// For example given values = ["a", "b", "c", null, null, "f"],
/// the output will be = ["a", "b", "c", "f", "f", "f"]
///
/// \param[in] values datum from which to take
/// \param[in] ctx the function execution context, optional
/// \return the resulting datum
ARROW_EXPORT
Result<Datum> FillNullBackward(const Datum& values, ExecContext* ctx = NULLPTR);
/// \brief Take from an array of values at indices in another array
///
/// The output array will be of the same type as the input values
/// array, with elements taken from the values array at the given
/// indices. If an index is null then the taken element will be null.
///
/// For example given values = ["a", "b", "c", null, "e", "f"] and
/// indices = [2, 1, null, 3], the output will be
/// = [values[2], values[1], null, values[3]]
/// = ["c", "b", null, null]
///
/// \param[in] values datum from which to take
/// \param[in] indices which values to take
/// \param[in] options options
/// \param[in] ctx the function execution context, optional
/// \return the resulting datum
ARROW_EXPORT
Result<Datum> Take(const Datum& values, const Datum& indices,
const TakeOptions& options = TakeOptions::Defaults(),
ExecContext* ctx = NULLPTR);
/// \brief Take with Array inputs and output
ARROW_EXPORT
Result<std::shared_ptr<Array>> Take(const Array& values, const Array& indices,
const TakeOptions& options = TakeOptions::Defaults(),
ExecContext* ctx = NULLPTR);
/// \brief Drop Null from an array of values
///
/// The output array will be of the same type as the input values
/// array, with elements taken from the values array without nulls.
///
/// For example given values = ["a", "b", "c", null, "e", "f"],
/// the output will be = ["a", "b", "c", "e", "f"]
///
/// \param[in] values datum from which to take
/// \param[in] ctx the function execution context, optional
/// \return the resulting datum
ARROW_EXPORT
Result<Datum> DropNull(const Datum& values, ExecContext* ctx = NULLPTR);
/// \brief DropNull with Array inputs and output
ARROW_EXPORT
Result<std::shared_ptr<Array>> DropNull(const Array& values, ExecContext* ctx = NULLPTR);
/// \brief Return indices that partition an array around n-th sorted element.
///
/// Find index of n-th(0 based) smallest value and perform indirect
/// partition of an array around that element. Output indices[0 ~ n-1]
/// holds values no greater than n-th element, and indices[n+1 ~ end]
/// holds values no less than n-th element. Elements in each partition
/// is not sorted. Nulls will be partitioned to the end of the output.
/// Output is not guaranteed to be stable.
///
/// \param[in] values array to be partitioned
/// \param[in] n pivot array around sorted n-th element
/// \param[in] ctx the function execution context, optional
/// \return offsets indices that would partition an array
ARROW_EXPORT
Result<std::shared_ptr<Array>> NthToIndices(const Array& values, int64_t n,
ExecContext* ctx = NULLPTR);
/// \brief Return indices that partition an array around n-th sorted element.
///
/// This overload takes a PartitionNthOptions specifiying the pivot index
/// and the null handling.
///
/// \param[in] values array to be partitioned
/// \param[in] options options including pivot index and null handling
/// \param[in] ctx the function execution context, optional
/// \return offsets indices that would partition an array
ARROW_EXPORT
Result<std::shared_ptr<Array>> NthToIndices(const Array& values,
const PartitionNthOptions& options,
ExecContext* ctx = NULLPTR);
/// \brief Return indices that would select the first `k` elements.
///
/// Perform an indirect sort of the datum, keeping only the first `k` elements. The output
/// array will contain indices such that the item indicated by the k-th index will be in
/// the position it would be if the datum were sorted by `options.sort_keys`. However,
/// indices of null values will not be part of the output. The sort is not guaranteed to
/// be stable.
///
/// \param[in] datum datum to be partitioned
/// \param[in] options options
/// \param[in] ctx the function execution context, optional
/// \return a datum with the same schema as the input
ARROW_EXPORT
Result<std::shared_ptr<Array>> SelectKUnstable(const Datum& datum,
const SelectKOptions& options,
ExecContext* ctx = NULLPTR);
/// \brief Return the indices that would sort an array.
///
/// Perform an indirect sort of array. The output array will contain
/// indices that would sort an array, which would be the same length
/// as input. Nulls will be stably partitioned to the end of the output
/// regardless of order.
///
/// For example given array = [null, 1, 3.3, null, 2, 5.3] and order
/// = SortOrder::DESCENDING, the output will be [5, 2, 4, 1, 0,
/// 3].
///
/// \param[in] array array to sort
/// \param[in] order ascending or descending
/// \param[in] ctx the function execution context, optional
/// \return offsets indices that would sort an array
ARROW_EXPORT
Result<std::shared_ptr<Array>> SortIndices(const Array& array,
SortOrder order = SortOrder::Ascending,
ExecContext* ctx = NULLPTR);
/// \brief Return the indices that would sort an array.
///
/// This overload takes a ArraySortOptions specifiying the sort order
/// and the null handling.
///
/// \param[in] array array to sort
/// \param[in] options options including sort order and null handling
/// \param[in] ctx the function execution context, optional
/// \return offsets indices that would sort an array
ARROW_EXPORT
Result<std::shared_ptr<Array>> SortIndices(const Array& array,
const ArraySortOptions& options,
ExecContext* ctx = NULLPTR);
/// \brief Return the indices that would sort a chunked array.
///
/// Perform an indirect sort of chunked array. The output array will
/// contain indices that would sort a chunked array, which would be
/// the same length as input. Nulls will be stably partitioned to the
/// end of the output regardless of order.
///
/// For example given chunked_array = [[null, 1], [3.3], [null, 2,
/// 5.3]] and order = SortOrder::DESCENDING, the output will be [5, 2,
/// 4, 1, 0, 3].
///
/// \param[in] chunked_array chunked array to sort
/// \param[in] order ascending or descending
/// \param[in] ctx the function execution context, optional
/// \return offsets indices that would sort an array
ARROW_EXPORT
Result<std::shared_ptr<Array>> SortIndices(const ChunkedArray& chunked_array,
SortOrder order = SortOrder::Ascending,
ExecContext* ctx = NULLPTR);
/// \brief Return the indices that would sort a chunked array.
///
/// This overload takes a ArraySortOptions specifiying the sort order
/// and the null handling.
///
/// \param[in] chunked_array chunked array to sort
/// \param[in] options options including sort order and null handling
/// \param[in] ctx the function execution context, optional
/// \return offsets indices that would sort an array
ARROW_EXPORT
Result<std::shared_ptr<Array>> SortIndices(const ChunkedArray& chunked_array,
const ArraySortOptions& options,
ExecContext* ctx = NULLPTR);
/// \brief Return the indices that would sort an input in the
/// specified order. Input is one of array, chunked array record batch
/// or table.
///
/// Perform an indirect sort of input. The output array will contain
/// indices that would sort an input, which would be the same length
/// as input. Nulls will be stably partitioned to the start or to the end
/// of the output depending on SortOrder::null_placement.
///
/// For example given input (table) = {
/// "column1": [[null, 1], [ 3, null, 2, 1]],
/// "column2": [[ 5], [3, null, null, 5, 5]],
/// } and options = {
/// {"column1", SortOrder::Ascending},
/// {"column2", SortOrder::Descending},
/// }, the output will be [5, 1, 4, 2, 0, 3].
///
/// \param[in] datum array, chunked array, record batch or table to sort
/// \param[in] options options
/// \param[in] ctx the function execution context, optional
/// \return offsets indices that would sort a table
ARROW_EXPORT
Result<std::shared_ptr<Array>> SortIndices(const Datum& datum, const SortOptions& options,
ExecContext* ctx = NULLPTR);
/// \brief Compute unique elements from an array-like object
///
/// Note if a null occurs in the input it will NOT be included in the output.
///
/// \param[in] datum array-like input
/// \param[in] ctx the function execution context, optional
/// \return result as Array
///
/// \since 1.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<std::shared_ptr<Array>> Unique(const Datum& datum, ExecContext* ctx = NULLPTR);
// Constants for accessing the output of ValueCounts
ARROW_EXPORT extern const char kValuesFieldName[];
ARROW_EXPORT extern const char kCountsFieldName[];
ARROW_EXPORT extern const int32_t kValuesFieldIndex;
ARROW_EXPORT extern const int32_t kCountsFieldIndex;
/// \brief Return counts of unique elements from an array-like object.
///
/// Note that the counts do not include counts for nulls in the array. These can be
/// obtained separately from metadata.
///
/// For floating point arrays there is no attempt to normalize -0.0, 0.0 and NaN values
/// which can lead to unexpected results if the input Array has these values.
///
/// \param[in] value array-like input
/// \param[in] ctx the function execution context, optional
/// \return counts An array of <input type "Values", int64_t "Counts"> structs.
///
/// \since 1.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<std::shared_ptr<StructArray>> ValueCounts(const Datum& value,
ExecContext* ctx = NULLPTR);
/// \brief Dictionary-encode values in an array-like object
///
/// Any nulls encountered in the dictionary will be handled according to the
/// specified null encoding behavior.
///
/// For example, given values ["a", "b", null, "a", null] the output will be
/// (null_encoding == ENCODE) Indices: [0, 1, 2, 0, 2] / Dict: ["a", "b", null]
/// (null_encoding == MASK) Indices: [0, 1, null, 0, null] / Dict: ["a", "b"]
///
/// If the input is already dictionary encoded this function is a no-op unless
/// it needs to modify the null_encoding (TODO)
///
/// \param[in] data array-like input
/// \param[in] ctx the function execution context, optional
/// \param[in] options configures null encoding behavior
/// \return result with same shape and type as input
///
/// \since 1.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<Datum> DictionaryEncode(
const Datum& data,
const DictionaryEncodeOptions& options = DictionaryEncodeOptions::Defaults(),
ExecContext* ctx = NULLPTR);
// ----------------------------------------------------------------------
// Deprecated functions
ARROW_DEPRECATED("Deprecated in 3.0.0. Use SortIndices()")
ARROW_EXPORT
Result<std::shared_ptr<Array>> SortToIndices(const Array& values,
ExecContext* ctx = NULLPTR);
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,167 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <memory>
#include <string>
#include <vector>
#include "arrow/compute/function.h"
#include "arrow/compute/kernel.h"
#include "arrow/datum.h"
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/type.h"
#include "arrow/util/macros.h"
#include "arrow/util/visibility.h"
namespace arrow {
class Array;
namespace compute {
class ExecContext;
/// \addtogroup compute-concrete-options
/// @{
class ARROW_EXPORT CastOptions : public FunctionOptions {
public:
explicit CastOptions(bool safe = true);
static constexpr char const kTypeName[] = "CastOptions";
static CastOptions Safe(std::shared_ptr<DataType> to_type = NULLPTR) {
CastOptions safe(true);
safe.to_type = std::move(to_type);
return safe;
}
static CastOptions Unsafe(std::shared_ptr<DataType> to_type = NULLPTR) {
CastOptions unsafe(false);
unsafe.to_type = std::move(to_type);
return unsafe;
}
// Type being casted to. May be passed separate to eager function
// compute::Cast
std::shared_ptr<DataType> to_type;
bool allow_int_overflow;
bool allow_time_truncate;
bool allow_time_overflow;
bool allow_decimal_truncate;
bool allow_float_truncate;
// Indicate if conversions from Binary/FixedSizeBinary to string must
// validate the utf8 payload.
bool allow_invalid_utf8;
};
/// @}
// Cast functions are _not_ registered in the FunctionRegistry, though they use
// the same execution machinery
class CastFunction : public ScalarFunction {
public:
CastFunction(std::string name, Type::type out_type_id);
Type::type out_type_id() const { return out_type_id_; }
const std::vector<Type::type>& in_type_ids() const { return in_type_ids_; }
Status AddKernel(Type::type in_type_id, std::vector<InputType> in_types,
OutputType out_type, ArrayKernelExec exec,
NullHandling::type = NullHandling::INTERSECTION,
MemAllocation::type = MemAllocation::PREALLOCATE);
// Note, this function toggles off memory allocation and sets the init
// function to CastInit
Status AddKernel(Type::type in_type_id, ScalarKernel kernel);
Result<const Kernel*> DispatchExact(
const std::vector<ValueDescr>& values) const override;
private:
std::vector<Type::type> in_type_ids_;
const Type::type out_type_id_;
};
ARROW_EXPORT
Result<std::shared_ptr<CastFunction>> GetCastFunction(
const std::shared_ptr<DataType>& to_type);
/// \brief Return true if a cast function is defined
ARROW_EXPORT
bool CanCast(const DataType& from_type, const DataType& to_type);
// ----------------------------------------------------------------------
// Convenience invocation APIs for a number of kernels
/// \brief Cast from one array type to another
/// \param[in] value array to cast
/// \param[in] to_type type to cast to
/// \param[in] options casting options
/// \param[in] ctx the function execution context, optional
/// \return the resulting array
///
/// \since 1.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<std::shared_ptr<Array>> Cast(const Array& value, std::shared_ptr<DataType> to_type,
const CastOptions& options = CastOptions::Safe(),
ExecContext* ctx = NULLPTR);
/// \brief Cast from one array type to another
/// \param[in] value array to cast
/// \param[in] options casting options. The "to_type" field must be populated
/// \param[in] ctx the function execution context, optional
/// \return the resulting array
///
/// \since 1.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<Datum> Cast(const Datum& value, const CastOptions& options,
ExecContext* ctx = NULLPTR);
/// \brief Cast from one value to another
/// \param[in] value datum to cast
/// \param[in] to_type type to cast to
/// \param[in] options casting options
/// \param[in] ctx the function execution context, optional
/// \return the resulting datum
///
/// \since 1.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<Datum> Cast(const Datum& value, std::shared_ptr<DataType> to_type,
const CastOptions& options = CastOptions::Safe(),
ExecContext* ctx = NULLPTR);
/// \brief Cast several values simultaneously. Safe cast options are used.
/// \param[in] values datums to cast
/// \param[in] descrs ValueDescrs to cast to
/// \param[in] ctx the function execution context, optional
/// \return the resulting datums
///
/// \since 4.0.0
/// \note API not yet finalized
ARROW_EXPORT
Result<std::vector<Datum>> Cast(std::vector<Datum> values, std::vector<ValueDescr> descrs,
ExecContext* ctx = NULLPTR);
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,277 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// NOTE: API is EXPERIMENTAL and will change without going through a
// deprecation cycle
#pragma once
#include <cstdint>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "arrow/array/data.h"
#include "arrow/compute/exec/expression.h"
#include "arrow/datum.h"
#include "arrow/memory_pool.h"
#include "arrow/result.h"
#include "arrow/type_fwd.h"
#include "arrow/util/macros.h"
#include "arrow/util/type_fwd.h"
#include "arrow/util/visibility.h"
namespace arrow {
namespace internal {
class CpuInfo;
} // namespace internal
namespace compute {
class FunctionOptions;
class FunctionRegistry;
// It seems like 64K might be a good default chunksize to use for execution
// based on the experience of other query processing systems. The current
// default is not to chunk contiguous arrays, though, but this may change in
// the future once parallel execution is implemented
static constexpr int64_t kDefaultExecChunksize = UINT16_MAX;
/// \brief Context for expression-global variables and options used by
/// function evaluation
class ARROW_EXPORT ExecContext {
public:
// If no function registry passed, the default is used.
explicit ExecContext(MemoryPool* pool = default_memory_pool(),
::arrow::internal::Executor* executor = NULLPTR,
FunctionRegistry* func_registry = NULLPTR);
/// \brief The MemoryPool used for allocations, default is
/// default_memory_pool().
MemoryPool* memory_pool() const { return pool_; }
::arrow::internal::CpuInfo* cpu_info() const;
/// \brief An Executor which may be used to parallelize execution.
::arrow::internal::Executor* executor() const { return executor_; }
/// \brief The FunctionRegistry for looking up functions by name and
/// selecting kernels for execution. Defaults to the library-global function
/// registry provided by GetFunctionRegistry.
FunctionRegistry* func_registry() const { return func_registry_; }
// \brief Set maximum length unit of work for kernel execution. Larger
// contiguous array inputs will be split into smaller chunks, and, if
// possible and enabled, processed in parallel. The default chunksize is
// INT64_MAX, so contiguous arrays are not split.
void set_exec_chunksize(int64_t chunksize) { exec_chunksize_ = chunksize; }
// \brief Maximum length for ExecBatch data chunks processed by
// kernels. Contiguous array inputs with longer length will be split into
// smaller chunks.
int64_t exec_chunksize() const { return exec_chunksize_; }
/// \brief Set whether to use multiple threads for function execution. This
/// is not yet used.
void set_use_threads(bool use_threads = true) { use_threads_ = use_threads; }
/// \brief If true, then utilize multiple threads where relevant for function
/// execution. This is not yet used.
bool use_threads() const { return use_threads_; }
// Set the preallocation strategy for kernel execution as it relates to
// chunked execution. For chunked execution, whether via ChunkedArray inputs
// or splitting larger Array arguments into smaller pieces, contiguous
// allocation (if permitted by the kernel) will allocate one large array to
// write output into yielding it to the caller at the end. If this option is
// set to off, then preallocations will be performed independently for each
// chunk of execution
//
// TODO: At some point we might want the limit the size of contiguous
// preallocations. For example, even if the exec_chunksize is 64K or less, we
// might limit contiguous allocations to 1M records, say.
void set_preallocate_contiguous(bool preallocate) {
preallocate_contiguous_ = preallocate;
}
/// \brief If contiguous preallocations should be used when doing chunked
/// execution as specified by exec_chunksize(). See
/// set_preallocate_contiguous() for more information.
bool preallocate_contiguous() const { return preallocate_contiguous_; }
private:
MemoryPool* pool_;
::arrow::internal::Executor* executor_;
FunctionRegistry* func_registry_;
int64_t exec_chunksize_ = std::numeric_limits<int64_t>::max();
bool preallocate_contiguous_ = true;
bool use_threads_ = true;
};
ARROW_EXPORT ExecContext* default_exec_context();
// TODO: Consider standardizing on uint16 selection vectors and only use them
// when we can ensure that each value is 64K length or smaller
/// \brief Container for an array of value selection indices that were
/// materialized from a filter.
///
/// Columnar query engines (see e.g. [1]) have found that rather than
/// materializing filtered data, the filter can instead be converted to an
/// array of the "on" indices and then "fusing" these indices in operator
/// implementations. This is especially relevant for aggregations but also
/// applies to scalar operations.
///
/// We are not yet using this so this is mostly a placeholder for now.
///
/// [1]: http://cidrdb.org/cidr2005/papers/P19.pdf
class ARROW_EXPORT SelectionVector {
public:
explicit SelectionVector(std::shared_ptr<ArrayData> data);
explicit SelectionVector(const Array& arr);
/// \brief Create SelectionVector from boolean mask
static Result<std::shared_ptr<SelectionVector>> FromMask(const BooleanArray& arr);
const int32_t* indices() const { return indices_; }
int32_t length() const;
private:
std::shared_ptr<ArrayData> data_;
const int32_t* indices_;
};
/// \brief A unit of work for kernel execution. It contains a collection of
/// Array and Scalar values and an optional SelectionVector indicating that
/// there is an unmaterialized filter that either must be materialized, or (if
/// the kernel supports it) pushed down into the kernel implementation.
///
/// ExecBatch is semantically similar to RecordBatch in that in a SQL context
/// it represents a collection of records, but constant "columns" are
/// represented by Scalar values rather than having to be converted into arrays
/// with repeated values.
///
/// TODO: Datum uses arrow/util/variant.h which may be a bit heavier-weight
/// than is desirable for this class. Microbenchmarks would help determine for
/// sure. See ARROW-8928.
struct ARROW_EXPORT ExecBatch {
ExecBatch() = default;
ExecBatch(std::vector<Datum> values, int64_t length)
: values(std::move(values)), length(length) {}
explicit ExecBatch(const RecordBatch& batch);
static Result<ExecBatch> Make(std::vector<Datum> values);
Result<std::shared_ptr<RecordBatch>> ToRecordBatch(
std::shared_ptr<Schema> schema, MemoryPool* pool = default_memory_pool()) const;
/// The values representing positional arguments to be passed to a kernel's
/// exec function for processing.
std::vector<Datum> values;
/// A deferred filter represented as an array of indices into the values.
///
/// For example, the filter [true, true, false, true] would be represented as
/// the selection vector [0, 1, 3]. When the selection vector is set,
/// ExecBatch::length is equal to the length of this array.
std::shared_ptr<SelectionVector> selection_vector;
/// A predicate Expression guaranteed to evaluate to true for all rows in this batch.
Expression guarantee = literal(true);
/// The semantic length of the ExecBatch. When the values are all scalars,
/// the length should be set to 1 for non-aggregate kernels, otherwise the
/// length is taken from the array values, except when there is a selection
/// vector. When there is a selection vector set, the length of the batch is
/// the length of the selection. Aggregate kernels can have an ExecBatch
/// formed by projecting just the partition columns from a batch in which
/// case, it would have scalar rows with length greater than 1.
///
/// If the array values are of length 0 then the length is 0 regardless of
/// whether any values are Scalar. In general ExecBatch objects are produced
/// by ExecBatchIterator which by design does not yield length-0 batches.
int64_t length;
/// \brief The sum of bytes in each buffer referenced by the batch
///
/// Note: Scalars are not counted
/// Note: Some values may referenced only part of a buffer, for
/// example, an array with an offset. The actual data
/// visible to this batch will be smaller than the total
/// buffer size in this case.
int64_t TotalBufferSize() const;
/// \brief Return the value at the i-th index
template <typename index_type>
inline const Datum& operator[](index_type i) const {
return values[i];
}
bool Equals(const ExecBatch& other) const;
/// \brief A convenience for the number of values / arguments.
int num_values() const { return static_cast<int>(values.size()); }
ExecBatch Slice(int64_t offset, int64_t length) const;
/// \brief A convenience for returning the ValueDescr objects (types and
/// shapes) from the batch.
std::vector<ValueDescr> GetDescriptors() const {
std::vector<ValueDescr> result;
for (const auto& value : this->values) {
result.emplace_back(value.descr());
}
return result;
}
std::string ToString() const;
ARROW_EXPORT friend void PrintTo(const ExecBatch&, std::ostream*);
};
inline bool operator==(const ExecBatch& l, const ExecBatch& r) { return l.Equals(r); }
inline bool operator!=(const ExecBatch& l, const ExecBatch& r) { return !l.Equals(r); }
/// \defgroup compute-call-function One-shot calls to compute functions
///
/// @{
/// \brief One-shot invoker for all types of functions.
///
/// Does kernel dispatch, argument checking, iteration of ChunkedArray inputs,
/// and wrapping of outputs.
ARROW_EXPORT
Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args,
const FunctionOptions* options, ExecContext* ctx = NULLPTR);
/// \brief Variant of CallFunction which uses a function's default options.
///
/// NB: Some functions require FunctionOptions be provided.
ARROW_EXPORT
Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args,
ExecContext* ctx = NULLPTR);
/// @}
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,322 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#if defined(ARROW_HAVE_AVX2)
#include <immintrin.h>
#endif
#include <atomic>
#include <cstdint>
#include <memory>
#include "arrow/compute/exec/partition_util.h"
#include "arrow/compute/exec/util.h"
#include "arrow/memory_pool.h"
#include "arrow/result.h"
#include "arrow/status.h"
namespace arrow {
namespace compute {
// A set of pre-generated bit masks from a 64-bit word.
//
// It is used to map selected bits of hash to a bit mask that will be used in
// a Bloom filter.
//
// These bit masks need to look random and need to have a similar fractions of
// bits set in order for a Bloom filter to have a low false positives rate.
//
struct ARROW_EXPORT BloomFilterMasks {
// Generate all masks as a single bit vector. Each bit offset in this bit
// vector corresponds to a single mask.
// In each consecutive kBitsPerMask bits, there must be between
// kMinBitsSet and kMaxBitsSet bits set.
//
BloomFilterMasks();
inline uint64_t mask(int bit_offset) {
#if ARROW_LITTLE_ENDIAN
return (util::SafeLoadAs<uint64_t>(masks_ + bit_offset / 8) >> (bit_offset % 8)) &
kFullMask;
#else
return (BYTESWAP(util::SafeLoadAs<uint64_t>(masks_ + bit_offset / 8)) >>
(bit_offset % 8)) &
kFullMask;
#endif
}
// Masks are 57 bits long because then they can be accessed at an
// arbitrary bit offset using a single unaligned 64-bit load instruction.
//
static constexpr int kBitsPerMask = 57;
static constexpr uint64_t kFullMask = (1ULL << kBitsPerMask) - 1;
// Minimum and maximum number of bits set in each mask.
// This constraint is enforced when generating the bit masks.
// Values should be close to each other and chosen as to minimize a Bloom
// filter false positives rate.
//
static constexpr int kMinBitsSet = 4;
static constexpr int kMaxBitsSet = 5;
// Number of generated masks.
// Having more masks to choose will improve false positives rate of Bloom
// filter but will also use more memory, which may lead to more CPU cache
// misses.
// The chosen value results in using only a few cache-lines for mask lookups,
// while providing a good variety of available bit masks.
//
static constexpr int kLogNumMasks = 10;
static constexpr int kNumMasks = 1 << kLogNumMasks;
// Data of masks. Masks are stored in a single bit vector. Nth mask is
// kBitsPerMask bits starting at bit offset N.
//
static constexpr int kTotalBytes = (kNumMasks + 64) / 8;
uint8_t masks_[kTotalBytes];
};
// A variant of a blocked Bloom filter implementation.
// A Bloom filter is a data structure that provides approximate membership test
// functionality based only on the hash of the key. Membership test may return
// false positives but not false negatives. Approximation of the result allows
// in general case (for arbitrary data types of keys) to save on both memory and
// lookup cost compared to the accurate membership test.
// The accurate test may sometimes still be cheaper for a specific data types
// and inputs, e.g. integers from a small range.
//
// This blocked Bloom filter is optimized for use in hash joins, to achieve a
// good balance between the size of the filter, the cost of its building and
// querying and the rate of false positives.
//
class ARROW_EXPORT BlockedBloomFilter {
friend class BloomFilterBuilder_SingleThreaded;
friend class BloomFilterBuilder_Parallel;
public:
BlockedBloomFilter() : log_num_blocks_(0), num_blocks_(0), blocks_(NULLPTR) {}
inline bool Find(uint64_t hash) const {
uint64_t m = mask(hash);
uint64_t b = blocks_[block_id(hash)];
return (b & m) == m;
}
// Uses SIMD if available for smaller Bloom filters.
// Uses memory prefetching for larger Bloom filters.
//
void Find(int64_t hardware_flags, int64_t num_rows, const uint32_t* hashes,
uint8_t* result_bit_vector, bool enable_prefetch = true) const;
void Find(int64_t hardware_flags, int64_t num_rows, const uint64_t* hashes,
uint8_t* result_bit_vector, bool enable_prefetch = true) const;
int log_num_blocks() const { return log_num_blocks_; }
int NumHashBitsUsed() const;
bool IsSameAs(const BlockedBloomFilter* other) const;
int64_t NumBitsSet() const;
// Folding of a block Bloom filter after the initial version
// has been built.
//
// One of the parameters for creation of Bloom filter is the number
// of bits allocated for it. The more bits allocated, the lower the
// probability of false positives. A good heuristic is to aim for
// half of the bits set in the constructed Bloom filter. This should
// result in a good trade off between size (and following cost of
// memory accesses) and false positives rate.
//
// There might have been many duplicate keys in the input provided
// to Bloom filter builder. In that case the resulting bit vector
// would be more sparse then originally intended. It is possible to
// easily correct that and cut in half the size of Bloom filter
// after it has already been constructed. The process to do that is
// approximately equal to OR-ing bits from upper and lower half (the
// way we address these bits when inserting or querying a hash makes
// such folding in half possible).
//
// We will keep folding as long as the fraction of bits set is less
// than 1/4. The resulting bit vector density should be in the [1/4,
// 1/2) range.
//
void Fold();
private:
Status CreateEmpty(int64_t num_rows_to_insert, MemoryPool* pool);
inline void Insert(uint64_t hash) {
uint64_t m = mask(hash);
uint64_t& b = blocks_[block_id(hash)];
b |= m;
}
void Insert(int64_t hardware_flags, int64_t num_rows, const uint32_t* hashes);
void Insert(int64_t hardware_flags, int64_t num_rows, const uint64_t* hashes);
inline uint64_t mask(uint64_t hash) const {
// The lowest bits of hash are used to pick mask index.
//
int mask_id = static_cast<int>(hash & (BloomFilterMasks::kNumMasks - 1));
uint64_t result = masks_.mask(mask_id);
// The next set of hash bits is used to pick the amount of bit
// rotation of the mask.
//
int rotation = (hash >> BloomFilterMasks::kLogNumMasks) & 63;
result = ROTL64(result, rotation);
return result;
}
inline int64_t block_id(uint64_t hash) const {
// The next set of hash bits following the bits used to select a
// mask is used to pick block id (index of 64-bit word in a bit
// vector).
//
return (hash >> (BloomFilterMasks::kLogNumMasks + 6)) & (num_blocks_ - 1);
}
template <typename T>
inline void InsertImp(int64_t num_rows, const T* hashes);
template <typename T>
inline void FindImp(int64_t num_rows, const T* hashes, uint8_t* result_bit_vector,
bool enable_prefetch) const;
void SingleFold(int num_folds);
#if defined(ARROW_HAVE_AVX2)
inline __m256i mask_avx2(__m256i hash) const;
inline __m256i block_id_avx2(__m256i hash) const;
int64_t Insert_avx2(int64_t num_rows, const uint32_t* hashes);
int64_t Insert_avx2(int64_t num_rows, const uint64_t* hashes);
template <typename T>
int64_t InsertImp_avx2(int64_t num_rows, const T* hashes);
int64_t Find_avx2(int64_t num_rows, const uint32_t* hashes,
uint8_t* result_bit_vector) const;
int64_t Find_avx2(int64_t num_rows, const uint64_t* hashes,
uint8_t* result_bit_vector) const;
template <typename T>
int64_t FindImp_avx2(int64_t num_rows, const T* hashes,
uint8_t* result_bit_vector) const;
#endif
bool UsePrefetch() const {
return num_blocks_ * sizeof(uint64_t) > kPrefetchLimitBytes;
}
static constexpr int64_t kPrefetchLimitBytes = 256 * 1024;
static BloomFilterMasks masks_;
// Total number of bits used by block Bloom filter must be a power
// of 2.
//
int log_num_blocks_;
int64_t num_blocks_;
// Buffer allocated to store an array of power of 2 64-bit blocks.
//
std::shared_ptr<Buffer> buf_;
// Pointer to mutable data owned by Buffer
//
uint64_t* blocks_;
};
// We have two separate implementations of building a Bloom filter, multi-threaded and
// single-threaded.
//
// Single threaded version is useful in two ways:
// a) It allows to verify parallel implementation in tests (the single threaded one is
// simpler and can be used as the source of truth).
// b) It is preferred for small and medium size Bloom filters, because it skips extra
// synchronization related steps from parallel variant (partitioning and taking locks).
//
enum class ARROW_EXPORT BloomFilterBuildStrategy {
SINGLE_THREADED = 0,
PARALLEL = 1,
};
class ARROW_EXPORT BloomFilterBuilder {
public:
virtual ~BloomFilterBuilder() = default;
virtual Status Begin(size_t num_threads, int64_t hardware_flags, MemoryPool* pool,
int64_t num_rows, int64_t num_batches,
BlockedBloomFilter* build_target) = 0;
virtual int64_t num_tasks() const { return 0; }
virtual Status PushNextBatch(size_t thread_index, int num_rows,
const uint32_t* hashes) = 0;
virtual Status PushNextBatch(size_t thread_index, int num_rows,
const uint64_t* hashes) = 0;
virtual void CleanUp() {}
static std::unique_ptr<BloomFilterBuilder> Make(BloomFilterBuildStrategy strategy);
};
class BloomFilterBuilder_SingleThreaded : public BloomFilterBuilder {
public:
Status Begin(size_t num_threads, int64_t hardware_flags, MemoryPool* pool,
int64_t num_rows, int64_t num_batches,
BlockedBloomFilter* build_target) override;
Status PushNextBatch(size_t /*thread_index*/, int num_rows,
const uint32_t* hashes) override;
Status PushNextBatch(size_t /*thread_index*/, int num_rows,
const uint64_t* hashes) override;
private:
template <typename T>
void PushNextBatchImp(int num_rows, const T* hashes);
int64_t hardware_flags_;
BlockedBloomFilter* build_target_;
};
class BloomFilterBuilder_Parallel : public BloomFilterBuilder {
public:
Status Begin(size_t num_threads, int64_t hardware_flags, MemoryPool* pool,
int64_t num_rows, int64_t num_batches,
BlockedBloomFilter* build_target) override;
Status PushNextBatch(size_t thread_id, int num_rows, const uint32_t* hashes) override;
Status PushNextBatch(size_t thread_id, int num_rows, const uint64_t* hashes) override;
void CleanUp() override;
private:
template <typename T>
void PushNextBatchImp(size_t thread_id, int num_rows, const T* hashes);
int64_t hardware_flags_;
BlockedBloomFilter* build_target_;
int log_num_prtns_;
struct ThreadLocalState {
std::vector<uint32_t> partitioned_hashes_32;
std::vector<uint64_t> partitioned_hashes_64;
std::vector<uint16_t> partition_ranges;
std::vector<int> unprocessed_partition_ids;
};
std::vector<ThreadLocalState> thread_local_states_;
PartitionLocks prtn_locks_;
};
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,460 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <functional>
#include <memory>
#include <string>
#include <vector>
#include "arrow/compute/exec.h"
#include "arrow/compute/exec/util.h"
#include "arrow/compute/type_fwd.h"
#include "arrow/type_fwd.h"
#include "arrow/util/async_util.h"
#include "arrow/util/cancel.h"
#include "arrow/util/key_value_metadata.h"
#include "arrow/util/macros.h"
#include "arrow/util/optional.h"
#include "arrow/util/tracing.h"
#include "arrow/util/visibility.h"
namespace arrow {
namespace compute {
class ARROW_EXPORT ExecPlan : public std::enable_shared_from_this<ExecPlan> {
public:
using NodeVector = std::vector<ExecNode*>;
virtual ~ExecPlan() = default;
ExecContext* exec_context() const { return exec_context_; }
/// Make an empty exec plan
static Result<std::shared_ptr<ExecPlan>> Make(
ExecContext* = default_exec_context(),
std::shared_ptr<const KeyValueMetadata> metadata = NULLPTR);
ExecNode* AddNode(std::unique_ptr<ExecNode> node);
template <typename Node, typename... Args>
Node* EmplaceNode(Args&&... args) {
std::unique_ptr<Node> node{new Node{std::forward<Args>(args)...}};
auto out = node.get();
AddNode(std::move(node));
return out;
}
/// The initial inputs
const NodeVector& sources() const;
/// The final outputs
const NodeVector& sinks() const;
Status Validate();
/// \brief Start producing on all nodes
///
/// Nodes are started in reverse topological order, such that any node
/// is started before all of its inputs.
Status StartProducing();
/// \brief Stop producing on all nodes
///
/// Nodes are stopped in topological order, such that any node
/// is stopped before all of its outputs.
void StopProducing();
/// \brief A future which will be marked finished when all nodes have stopped producing.
Future<> finished();
/// \brief Return whether the plan has non-empty metadata
bool HasMetadata() const;
/// \brief Return the plan's attached metadata
std::shared_ptr<const KeyValueMetadata> metadata() const;
std::string ToString() const;
protected:
ExecContext* exec_context_;
explicit ExecPlan(ExecContext* exec_context) : exec_context_(exec_context) {}
};
class ARROW_EXPORT ExecNode {
public:
using NodeVector = std::vector<ExecNode*>;
virtual ~ExecNode() = default;
virtual const char* kind_name() const = 0;
// The number of inputs/outputs expected by this node
int num_inputs() const { return static_cast<int>(inputs_.size()); }
int num_outputs() const { return num_outputs_; }
/// This node's predecessors in the exec plan
const NodeVector& inputs() const { return inputs_; }
/// \brief Labels identifying the function of each input.
const std::vector<std::string>& input_labels() const { return input_labels_; }
/// This node's successors in the exec plan
const NodeVector& outputs() const { return outputs_; }
/// The datatypes for batches produced by this node
const std::shared_ptr<Schema>& output_schema() const { return output_schema_; }
/// This node's exec plan
ExecPlan* plan() { return plan_; }
/// \brief An optional label, for display and debugging
///
/// There is no guarantee that this value is non-empty or unique.
const std::string& label() const { return label_; }
void SetLabel(std::string label) { label_ = std::move(label); }
Status Validate() const;
/// Upstream API:
/// These functions are called by input nodes that want to inform this node
/// about an updated condition (a new input batch, an error, an impeding
/// end of stream).
///
/// Implementation rules:
/// - these may be called anytime after StartProducing() has succeeded
/// (and even during or after StopProducing())
/// - these may be called concurrently
/// - these are allowed to call back into PauseProducing(), ResumeProducing()
/// and StopProducing()
/// Transfer input batch to ExecNode
virtual void InputReceived(ExecNode* input, ExecBatch batch) = 0;
/// Signal error to ExecNode
virtual void ErrorReceived(ExecNode* input, Status error) = 0;
/// Mark the inputs finished after the given number of batches.
///
/// This may be called before all inputs are received. This simply fixes
/// the total number of incoming batches for an input, so that the ExecNode
/// knows when it has received all input, regardless of order.
virtual void InputFinished(ExecNode* input, int total_batches) = 0;
/// Lifecycle API:
/// - start / stop to initiate and terminate production
/// - pause / resume to apply backpressure
///
/// Implementation rules:
/// - StartProducing() should not recurse into the inputs, as it is
/// handled by ExecPlan::StartProducing()
/// - PauseProducing(), ResumeProducing(), StopProducing() may be called
/// concurrently (but only after StartProducing() has returned successfully)
/// - PauseProducing(), ResumeProducing(), StopProducing() may be called
/// by the downstream nodes' InputReceived(), ErrorReceived(), InputFinished()
/// methods
/// - StopProducing() should recurse into the inputs
/// - StopProducing() must be idempotent
// XXX What happens if StartProducing() calls an output's InputReceived()
// synchronously, and InputReceived() decides to call back into StopProducing()
// (or PauseProducing()) because it received enough data?
//
// Right now, since synchronous calls happen in both directions (input to
// output and then output to input), a node must be careful to be reentrant
// against synchronous calls from its output, *and* also concurrent calls from
// other threads. The most reliable solution is to update the internal state
// first, and notify outputs only at the end.
//
// Alternate rules:
// - StartProducing(), ResumeProducing() can call synchronously into
// its ouputs' consuming methods (InputReceived() etc.)
// - InputReceived(), ErrorReceived(), InputFinished() can call asynchronously
// into its inputs' PauseProducing(), StopProducing()
//
// Alternate API:
// - InputReceived(), ErrorReceived(), InputFinished() return a ProductionHint
// enum: either None (default), PauseProducing, ResumeProducing, StopProducing
// - A method allows passing a ProductionHint asynchronously from an output node
// (replacing PauseProducing(), ResumeProducing(), StopProducing())
// Concurrent calls to PauseProducing and ResumeProducing can be hard to sequence
// as they may travel at different speeds through the plan.
//
// For example, consider a resume that comes quickly after a pause. If the source
// receives the resume before the pause the source may think the destination is full
// and halt production which would lead to deadlock.
//
// To resolve this a counter is sent for all calls to pause/resume. Only the call with
// the highest counter value is valid. So if a call to PauseProducing(5) comes after
// a call to ResumeProducing(6) then the source should continue producing.
//
// If a node has multiple outputs it should emit a new counter value to its inputs
// whenever any of its outputs changes which means the counters sent to inputs may be
// larger than the counters received on its outputs.
//
// A node with multiple outputs will also need to ensure it is applying backpressure if
// any of its outputs is asking to pause
/// \brief Start producing
///
/// This must only be called once. If this fails, then other lifecycle
/// methods must not be called.
///
/// This is typically called automatically by ExecPlan::StartProducing().
virtual Status StartProducing() = 0;
/// \brief Pause producing temporarily
///
/// \param output Pointer to the output that is full
/// \param counter Counter used to sequence calls to pause/resume
///
/// This call is a hint that an output node is currently not willing
/// to receive data.
///
/// This may be called any number of times after StartProducing() succeeds.
/// However, the node is still free to produce data (which may be difficult
/// to prevent anyway if data is produced using multiple threads).
virtual void PauseProducing(ExecNode* output, int32_t counter) = 0;
/// \brief Resume producing after a temporary pause
///
/// \param output Pointer to the output that is now free
/// \param counter Counter used to sequence calls to pause/resume
///
/// This call is a hint that an output node is willing to receive data again.
///
/// This may be called any number of times after StartProducing() succeeds.
virtual void ResumeProducing(ExecNode* output, int32_t counter) = 0;
/// \brief Stop producing definitively to a single output
///
/// This call is a hint that an output node has completed and is not willing
/// to receive any further data.
virtual void StopProducing(ExecNode* output) = 0;
/// \brief Stop producing definitively to all outputs
virtual void StopProducing() = 0;
/// \brief A future which will be marked finished when this node has stopped producing.
virtual Future<> finished() = 0;
std::string ToString(int indent = 0) const;
protected:
ExecNode(ExecPlan* plan, NodeVector inputs, std::vector<std::string> input_labels,
std::shared_ptr<Schema> output_schema, int num_outputs);
// A helper method to send an error status to all outputs.
// Returns true if the status was an error.
bool ErrorIfNotOk(Status status);
/// Provide extra info to include in the string representation.
virtual std::string ToStringExtra(int indent) const;
ExecPlan* plan_;
std::string label_;
NodeVector inputs_;
std::vector<std::string> input_labels_;
std::shared_ptr<Schema> output_schema_;
int num_outputs_;
NodeVector outputs_;
// Future to sync finished
Future<> finished_ = Future<>::MakeFinished();
util::tracing::Span span_;
};
/// \brief MapNode is an ExecNode type class which process a task like filter/project
/// (See SubmitTask method) to each given ExecBatch object, which have one input, one
/// output, and are pure functions on the input
///
/// A simple parallel runner is created with a "map_fn" which is just a function that
/// takes a batch in and returns a batch. This simple parallel runner also needs an
/// executor (use simple synchronous runner if there is no executor)
class MapNode : public ExecNode {
public:
MapNode(ExecPlan* plan, std::vector<ExecNode*> inputs,
std::shared_ptr<Schema> output_schema, bool async_mode);
void ErrorReceived(ExecNode* input, Status error) override;
void InputFinished(ExecNode* input, int total_batches) override;
Status StartProducing() override;
void PauseProducing(ExecNode* output, int32_t counter) override;
void ResumeProducing(ExecNode* output, int32_t counter) override;
void StopProducing(ExecNode* output) override;
void StopProducing() override;
Future<> finished() override;
protected:
void SubmitTask(std::function<Result<ExecBatch>(ExecBatch)> map_fn, ExecBatch batch);
void Finish(Status finish_st = Status::OK());
protected:
// Counter for the number of batches received
AtomicCounter input_counter_;
::arrow::internal::Executor* executor_;
// Variable used to cancel remaining tasks in the executor
StopSource stop_source_;
};
/// \brief An extensible registry for factories of ExecNodes
class ARROW_EXPORT ExecFactoryRegistry {
public:
using Factory = std::function<Result<ExecNode*>(ExecPlan*, std::vector<ExecNode*>,
const ExecNodeOptions&)>;
virtual ~ExecFactoryRegistry() = default;
/// \brief Get the named factory from this registry
///
/// will raise if factory_name is not found
virtual Result<Factory> GetFactory(const std::string& factory_name) = 0;
/// \brief Add a factory to this registry with the provided name
///
/// will raise if factory_name is already in the registry
virtual Status AddFactory(std::string factory_name, Factory factory) = 0;
};
/// The default registry, which includes built-in factories.
ARROW_EXPORT
ExecFactoryRegistry* default_exec_factory_registry();
/// \brief Construct an ExecNode using the named factory
inline Result<ExecNode*> MakeExecNode(
const std::string& factory_name, ExecPlan* plan, std::vector<ExecNode*> inputs,
const ExecNodeOptions& options,
ExecFactoryRegistry* registry = default_exec_factory_registry()) {
ARROW_ASSIGN_OR_RAISE(auto factory, registry->GetFactory(factory_name));
return factory(plan, std::move(inputs), options);
}
/// \brief Helper class for declaring sets of ExecNodes efficiently
///
/// A Declaration represents an unconstructed ExecNode (and potentially more since its
/// inputs may also be Declarations). The node can be constructed and added to a plan
/// with Declaration::AddToPlan, which will recursively construct any inputs as necessary.
struct ARROW_EXPORT Declaration {
using Input = util::Variant<ExecNode*, Declaration>;
Declaration(std::string factory_name, std::vector<Input> inputs,
std::shared_ptr<ExecNodeOptions> options, std::string label)
: factory_name{std::move(factory_name)},
inputs{std::move(inputs)},
options{std::move(options)},
label{std::move(label)} {}
template <typename Options>
Declaration(std::string factory_name, std::vector<Input> inputs, Options options,
std::string label)
: Declaration{std::move(factory_name), std::move(inputs),
std::shared_ptr<ExecNodeOptions>(
std::make_shared<Options>(std::move(options))),
std::move(label)} {}
template <typename Options>
Declaration(std::string factory_name, std::vector<Input> inputs, Options options)
: Declaration{std::move(factory_name), std::move(inputs), std::move(options),
/*label=*/""} {}
template <typename Options>
Declaration(std::string factory_name, Options options)
: Declaration{std::move(factory_name), {}, std::move(options), /*label=*/""} {}
template <typename Options>
Declaration(std::string factory_name, Options options, std::string label)
: Declaration{std::move(factory_name), {}, std::move(options), std::move(label)} {}
/// \brief Convenience factory for the common case of a simple sequence of nodes.
///
/// Each of decls will be appended to the inputs of the subsequent declaration,
/// and the final modified declaration will be returned.
///
/// Without this convenience factory, constructing a sequence would require explicit,
/// difficult-to-read nesting:
///
/// Declaration{"n3",
/// {
/// Declaration{"n2",
/// {
/// Declaration{"n1",
/// {
/// Declaration{"n0", N0Opts{}},
/// },
/// N1Opts{}},
/// },
/// N2Opts{}},
/// },
/// N3Opts{}};
///
/// An equivalent Declaration can be constructed more tersely using Sequence:
///
/// Declaration::Sequence({
/// {"n0", N0Opts{}},
/// {"n1", N1Opts{}},
/// {"n2", N2Opts{}},
/// {"n3", N3Opts{}},
/// });
static Declaration Sequence(std::vector<Declaration> decls);
Result<ExecNode*> AddToPlan(ExecPlan* plan, ExecFactoryRegistry* registry =
default_exec_factory_registry()) const;
std::string factory_name;
std::vector<Input> inputs;
std::shared_ptr<ExecNodeOptions> options;
std::string label;
};
/// \brief Wrap an ExecBatch generator in a RecordBatchReader.
///
/// The RecordBatchReader does not impose any ordering on emitted batches.
ARROW_EXPORT
std::shared_ptr<RecordBatchReader> MakeGeneratorReader(
std::shared_ptr<Schema>, std::function<Future<util::optional<ExecBatch>>()>,
MemoryPool*);
constexpr int kDefaultBackgroundMaxQ = 32;
constexpr int kDefaultBackgroundQRestart = 16;
/// \brief Make a generator of RecordBatchReaders
///
/// Useful as a source node for an Exec plan
ARROW_EXPORT
Result<std::function<Future<util::optional<ExecBatch>>()>> MakeReaderGenerator(
std::shared_ptr<RecordBatchReader> reader, arrow::internal::Executor* io_executor,
int max_q = kDefaultBackgroundMaxQ, int q_restart = kDefaultBackgroundQRestart);
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,283 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// This API is EXPERIMENTAL.
#pragma once
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "arrow/compute/type_fwd.h"
#include "arrow/datum.h"
#include "arrow/type_fwd.h"
#include "arrow/util/small_vector.h"
#include "arrow/util/variant.h"
namespace arrow {
namespace compute {
/// \defgroup expression-core Expressions to describe transformations in execution plans
///
/// @{
/// An unbound expression which maps a single Datum to another Datum.
/// An expression is one of
/// - A literal Datum.
/// - A reference to a single (potentially nested) field of the input Datum.
/// - A call to a compute function, with arguments specified by other Expressions.
class ARROW_EXPORT Expression {
public:
struct Call {
std::string function_name;
std::vector<Expression> arguments;
std::shared_ptr<FunctionOptions> options;
// Cached hash value
size_t hash;
// post-Bind properties:
std::shared_ptr<Function> function;
const Kernel* kernel = NULLPTR;
std::shared_ptr<KernelState> kernel_state;
ValueDescr descr;
void ComputeHash();
};
std::string ToString() const;
bool Equals(const Expression& other) const;
size_t hash() const;
struct Hash {
size_t operator()(const Expression& expr) const { return expr.hash(); }
};
/// Bind this expression to the given input type, looking up Kernels and field types.
/// Some expression simplification may be performed and implicit casts will be inserted.
/// Any state necessary for execution will be initialized and returned.
Result<Expression> Bind(const ValueDescr& in, ExecContext* = NULLPTR) const;
Result<Expression> Bind(const Schema& in_schema, ExecContext* = NULLPTR) const;
// XXX someday
// Clone all KernelState in this bound expression. If any function referenced by this
// expression has mutable KernelState, it is not safe to execute or apply simplification
// passes to it (or copies of it!) from multiple threads. Cloning state produces new
// KernelStates where necessary to ensure that Expressions may be manipulated safely
// on multiple threads.
// Result<ExpressionState> CloneState() const;
// Status SetState(ExpressionState);
/// Return true if all an expression's field references have explicit ValueDescr and all
/// of its functions' kernels are looked up.
bool IsBound() const;
/// Return true if this expression is composed only of Scalar literals, field
/// references, and calls to ScalarFunctions.
bool IsScalarExpression() const;
/// Return true if this expression is literal and entirely null.
bool IsNullLiteral() const;
/// Return true if this expression could evaluate to true. Will return true for any
/// unbound, non-boolean, or unsimplified Expressions
bool IsSatisfiable() const;
// XXX someday
// Result<PipelineGraph> GetPipelines();
/// Access a Call or return nullptr if this expression is not a call
const Call* call() const;
/// Access a Datum or return nullptr if this expression is not a literal
const Datum* literal() const;
/// Access a FieldRef or return nullptr if this expression is not a field_ref
const FieldRef* field_ref() const;
/// The type and shape to which this expression will evaluate
ValueDescr descr() const;
const std::shared_ptr<DataType>& type() const;
// XXX someday
// NullGeneralization::type nullable() const;
struct Parameter {
FieldRef ref;
// post-bind properties
ValueDescr descr;
::arrow::internal::SmallVector<int, 2> indices;
};
const Parameter* parameter() const;
Expression() = default;
explicit Expression(Call call);
explicit Expression(Datum literal);
explicit Expression(Parameter parameter);
private:
using Impl = util::Variant<Datum, Parameter, Call>;
std::shared_ptr<Impl> impl_;
ARROW_EXPORT friend bool Identical(const Expression& l, const Expression& r);
ARROW_EXPORT friend void PrintTo(const Expression&, std::ostream*);
};
inline bool operator==(const Expression& l, const Expression& r) { return l.Equals(r); }
inline bool operator!=(const Expression& l, const Expression& r) { return !l.Equals(r); }
// Factories
ARROW_EXPORT
Expression literal(Datum lit);
template <typename Arg>
Expression literal(Arg&& arg) {
return literal(Datum(std::forward<Arg>(arg)));
}
ARROW_EXPORT
Expression field_ref(FieldRef ref);
ARROW_EXPORT
Expression call(std::string function, std::vector<Expression> arguments,
std::shared_ptr<FunctionOptions> options = NULLPTR);
template <typename Options, typename = typename std::enable_if<
std::is_base_of<FunctionOptions, Options>::value>::type>
Expression call(std::string function, std::vector<Expression> arguments,
Options options) {
return call(std::move(function), std::move(arguments),
std::make_shared<Options>(std::move(options)));
}
/// Assemble a list of all fields referenced by an Expression at any depth.
ARROW_EXPORT
std::vector<FieldRef> FieldsInExpression(const Expression&);
/// Check if the expression references any fields.
ARROW_EXPORT
bool ExpressionHasFieldRefs(const Expression&);
struct ARROW_EXPORT KnownFieldValues;
/// Assemble a mapping from field references to known values. This derives known values
/// from "equal" and "is_null" Expressions referencing a field and a literal.
ARROW_EXPORT
Result<KnownFieldValues> ExtractKnownFieldValues(
const Expression& guaranteed_true_predicate);
/// @}
/// \defgroup expression-passes Functions for modification of Expressions
///
/// @{
///
/// These transform bound expressions. Some transforms utilize a guarantee, which is
/// provided as an Expression which is guaranteed to evaluate to true. The
/// guaranteed_true_predicate need not be bound, but canonicalization is currently
/// deferred to producers of guarantees. For example in order to be recognized as a
/// guarantee on a field value, an Expression must be a call to "equal" with field_ref LHS
/// and literal RHS. Flipping the arguments, "is_in" with a one-long value_set, ... or
/// other semantically identical Expressions will not be recognized.
/// Weak canonicalization which establishes guarantees for subsequent passes. Even
/// equivalent Expressions may result in different canonicalized expressions.
/// TODO this could be a strong canonicalization
ARROW_EXPORT
Result<Expression> Canonicalize(Expression, ExecContext* = NULLPTR);
/// Simplify Expressions based on literal arguments (for example, add(null, x) will always
/// be null so replace the call with a null literal). Includes early evaluation of all
/// calls whose arguments are entirely literal.
ARROW_EXPORT
Result<Expression> FoldConstants(Expression);
/// Simplify Expressions by replacing with known values of the fields which it references.
ARROW_EXPORT
Result<Expression> ReplaceFieldsWithKnownValues(const KnownFieldValues& known_values,
Expression);
/// Simplify an expression by replacing subexpressions based on a guarantee:
/// a boolean expression which is guaranteed to evaluate to `true`. For example, this is
/// used to remove redundant function calls from a filter expression or to replace a
/// reference to a constant-value field with a literal.
ARROW_EXPORT
Result<Expression> SimplifyWithGuarantee(Expression,
const Expression& guaranteed_true_predicate);
/// @}
// Execution
/// Create an ExecBatch suitable for passing to ExecuteScalarExpression() from a
/// RecordBatch which may have missing or incorrectly ordered columns.
/// Missing fields will be replaced with null scalars.
ARROW_EXPORT Result<ExecBatch> MakeExecBatch(const Schema& full_schema,
const Datum& partial);
/// Execute a scalar expression against the provided state and input ExecBatch. This
/// expression must be bound.
ARROW_EXPORT
Result<Datum> ExecuteScalarExpression(const Expression&, const ExecBatch& input,
ExecContext* = NULLPTR);
/// Convenience function for invoking against a RecordBatch
ARROW_EXPORT
Result<Datum> ExecuteScalarExpression(const Expression&, const Schema& full_schema,
const Datum& partial_input, ExecContext* = NULLPTR);
// Serialization
ARROW_EXPORT
Result<std::shared_ptr<Buffer>> Serialize(const Expression&);
ARROW_EXPORT
Result<Expression> Deserialize(std::shared_ptr<Buffer>);
/// \defgroup expression-convenience Functions convenient expression creation
///
/// @{
ARROW_EXPORT Expression project(std::vector<Expression> values,
std::vector<std::string> names);
ARROW_EXPORT Expression equal(Expression lhs, Expression rhs);
ARROW_EXPORT Expression not_equal(Expression lhs, Expression rhs);
ARROW_EXPORT Expression less(Expression lhs, Expression rhs);
ARROW_EXPORT Expression less_equal(Expression lhs, Expression rhs);
ARROW_EXPORT Expression greater(Expression lhs, Expression rhs);
ARROW_EXPORT Expression greater_equal(Expression lhs, Expression rhs);
ARROW_EXPORT Expression is_null(Expression lhs, bool nan_is_null = false);
ARROW_EXPORT Expression is_valid(Expression lhs);
ARROW_EXPORT Expression and_(Expression lhs, Expression rhs);
ARROW_EXPORT Expression and_(const std::vector<Expression>&);
ARROW_EXPORT Expression or_(Expression lhs, Expression rhs);
ARROW_EXPORT Expression or_(const std::vector<Expression>&);
ARROW_EXPORT Expression not_(Expression operand);
/// @}
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,122 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <functional>
#include <memory>
#include <vector>
#include "arrow/compute/exec/options.h"
#include "arrow/compute/exec/schema_util.h"
#include "arrow/compute/exec/task_util.h"
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/type.h"
#include "arrow/util/tracing_internal.h"
namespace arrow {
namespace compute {
class ARROW_EXPORT HashJoinSchema {
public:
Status Init(JoinType join_type, const Schema& left_schema,
const std::vector<FieldRef>& left_keys, const Schema& right_schema,
const std::vector<FieldRef>& right_keys, const Expression& filter,
const std::string& left_field_name_prefix,
const std::string& right_field_name_prefix);
Status Init(JoinType join_type, const Schema& left_schema,
const std::vector<FieldRef>& left_keys,
const std::vector<FieldRef>& left_output, const Schema& right_schema,
const std::vector<FieldRef>& right_keys,
const std::vector<FieldRef>& right_output, const Expression& filter,
const std::string& left_field_name_prefix,
const std::string& right_field_name_prefix);
static Status ValidateSchemas(JoinType join_type, const Schema& left_schema,
const std::vector<FieldRef>& left_keys,
const std::vector<FieldRef>& left_output,
const Schema& right_schema,
const std::vector<FieldRef>& right_keys,
const std::vector<FieldRef>& right_output,
const std::string& left_field_name_prefix,
const std::string& right_field_name_prefix);
Result<Expression> BindFilter(Expression filter, const Schema& left_schema,
const Schema& right_schema);
std::shared_ptr<Schema> MakeOutputSchema(const std::string& left_field_name_suffix,
const std::string& right_field_name_suffix);
bool LeftPayloadIsEmpty() { return PayloadIsEmpty(0); }
bool RightPayloadIsEmpty() { return PayloadIsEmpty(1); }
static int kMissingField() {
return SchemaProjectionMaps<HashJoinProjection>::kMissingField;
}
SchemaProjectionMaps<HashJoinProjection> proj_maps[2];
private:
static bool IsTypeSupported(const DataType& type);
Status CollectFilterColumns(std::vector<FieldRef>& left_filter,
std::vector<FieldRef>& right_filter,
const Expression& filter, const Schema& left_schema,
const Schema& right_schema);
Expression RewriteFilterToUseFilterSchema(int right_filter_offset,
const SchemaProjectionMap& left_to_filter,
const SchemaProjectionMap& right_to_filter,
const Expression& filter);
bool PayloadIsEmpty(int side) {
ARROW_DCHECK(side == 0 || side == 1);
return proj_maps[side].num_cols(HashJoinProjection::PAYLOAD) == 0;
}
static Result<std::vector<FieldRef>> ComputePayload(const Schema& schema,
const std::vector<FieldRef>& output,
const std::vector<FieldRef>& filter,
const std::vector<FieldRef>& key);
};
class HashJoinImpl {
public:
using OutputBatchCallback = std::function<void(ExecBatch)>;
using FinishedCallback = std::function<void(int64_t)>;
virtual ~HashJoinImpl() = default;
virtual Status Init(ExecContext* ctx, JoinType join_type, bool use_sync_execution,
size_t num_threads, HashJoinSchema* schema_mgr,
std::vector<JoinKeyCmp> key_cmp, Expression filter,
OutputBatchCallback output_batch_callback,
FinishedCallback finished_callback,
TaskScheduler::ScheduleImpl schedule_task_callback) = 0;
virtual Status InputReceived(size_t thread_index, int side, ExecBatch batch) = 0;
virtual Status InputFinished(size_t thread_index, int side) = 0;
virtual void Abort(TaskScheduler::AbortContinuationImpl pos_abort_callback) = 0;
static Result<std::unique_ptr<HashJoinImpl>> MakeBasic();
protected:
util::tracing::Span span_;
};
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,315 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <memory>
#include <unordered_map>
#include "arrow/compute/exec.h"
#include "arrow/compute/exec/schema_util.h"
#include "arrow/compute/kernels/row_encoder.h"
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/type.h"
// This file contains hash join logic related to handling of dictionary encoded key
// columns.
//
// A key column from probe side of the join can be matched against a key column from build
// side of the join, as long as the underlying value types are equal. That means that:
// - both scalars and arrays can be used and even mixed in the same column
// - dictionary column can be matched against non-dictionary column if underlying value
// types are equal
// - dictionary column can be matched against dictionary column with a different index
// type, and potentially using a different dictionary, if underlying value types are equal
//
// We currently require in hash join that for all dictionary encoded columns, the same
// dictionary is used in all input exec batches.
//
// In order to allow matching columns with different dictionaries, different dictionary
// index types, and dictionary key against non-dictionary key, internally comparisons will
// be evaluated after remapping values on both sides of the join to a common
// representation (which will be called "unified representation"). This common
// representation is a column of int32() type (not a dictionary column). It represents an
// index in the unified dictionary computed for the (only) dictionary present on build
// side (an empty dictionary is still created for an empty build side). Null value is
// always represented in this common representation as null int32 value, unified
// dictionary will never contain a null value (so there is no ambiguity of representing
// nulls as either index to a null entry in the dictionary or null index).
//
// Unified dictionary represents values present on build side. There may be values on
// probe side that are not present in it. All such values, that are not null, are mapped
// in the common representation to a special constant kMissingValueId.
//
namespace arrow {
namespace compute {
using internal::RowEncoder;
/// Helper class with operations that are stateless and common to processing of dictionary
/// keys on both build and probe side.
class HashJoinDictUtil {
public:
// Null values in unified representation are always represented as null that has
// corresponding integer set to this constant
static constexpr int32_t kNullId = 0;
// Constant representing a value, that is not null, missing on the build side, in
// unified representation.
static constexpr int32_t kMissingValueId = -1;
// Check if data types of corresponding pair of key column on build and probe side are
// compatible
static bool KeyDataTypesValid(const std::shared_ptr<DataType>& probe_data_type,
const std::shared_ptr<DataType>& build_data_type);
// Input must be dictionary array or dictionary scalar.
// A precomputed and provided here lookup table in the form of int32() array will be
// used to remap input indices to unified representation.
//
static Result<std::shared_ptr<ArrayData>> IndexRemapUsingLUT(
ExecContext* ctx, const Datum& indices, int64_t batch_length,
const std::shared_ptr<ArrayData>& map_array,
const std::shared_ptr<DataType>& data_type);
// Return int32() array that contains indices of input dictionary array or scalar after
// type casting.
static Result<std::shared_ptr<ArrayData>> ConvertToInt32(
const std::shared_ptr<DataType>& from_type, const Datum& input,
int64_t batch_length, ExecContext* ctx);
// Return an array that contains elements of input int32() array after casting to a
// given integer type. This is used for mapping unified representation stored in the
// hash table on build side back to original input data type of hash join, when
// outputting hash join results to parent exec node.
//
static Result<std::shared_ptr<ArrayData>> ConvertFromInt32(
const std::shared_ptr<DataType>& to_type, const Datum& input, int64_t batch_length,
ExecContext* ctx);
// Return dictionary referenced in either dictionary array or dictionary scalar
static std::shared_ptr<Array> ExtractDictionary(const Datum& data);
};
/// Implements processing of dictionary arrays/scalars in key columns on the build side of
/// a hash join.
/// Each instance of this class corresponds to a single column and stores and
/// processes only the information related to that column.
/// Const methods are thread-safe, non-const methods are not (the caller must make sure
/// that only one thread at any time will access them).
///
class HashJoinDictBuild {
public:
// Returns true if the key column (described in input by its data type) requires any
// pre- or post-processing related to handling dictionaries.
//
static bool KeyNeedsProcessing(const std::shared_ptr<DataType>& build_data_type) {
return (build_data_type->id() == Type::DICTIONARY);
}
// Data type of unified representation
static std::shared_ptr<DataType> DataTypeAfterRemapping() { return int32(); }
// Should be called only once in hash join, before processing any build or probe
// batches.
//
// Takes a pointer to the dictionary for a corresponding key column on the build side as
// an input. If the build side is empty, it still needs to be called, but with
// dictionary pointer set to null.
//
// Currently it is required that all input batches on build side share the same
// dictionary. For each input batch during its pre-processing, dictionary will be
// checked and error will be returned if it is different then the one provided in the
// call to this method.
//
// Unifies the dictionary. The order of the values is still preserved.
// Null and duplicate entries are removed. If the dictionary is already unified, its
// copy will be produced and stored within this class.
//
// Prepares the mapping from ids within original dictionary to the ids in the resulting
// dictionary. This is used later on to pre-process (map to unified representation) key
// column on build side.
//
// Prepares the reverse mapping (in the form of hash table) from values to the ids in
// the resulting dictionary. This will be used later on to pre-process (map to unified
// representation) key column on probe side. Values on probe side that are not present
// in the original dictionary will be mapped to a special constant kMissingValueId. The
// exception is made for nulls, which get always mapped to nulls (both when null is
// represented as a dictionary id pointing to a null and a null dictionary id).
//
Status Init(ExecContext* ctx, std::shared_ptr<Array> dictionary,
std::shared_ptr<DataType> index_type, std::shared_ptr<DataType> value_type);
// Remap array or scalar values into unified representation (array of int32()).
// Outputs kMissingValueId if input value is not found in the unified dictionary.
// Outputs null for null input value (with corresponding data set to kNullId).
//
Result<std::shared_ptr<ArrayData>> RemapInputValues(ExecContext* ctx,
const Datum& values,
int64_t batch_length) const;
// Remap dictionary array or dictionary scalar on build side to unified representation.
// Dictionary referenced in the input must match the dictionary that was
// given during initialization.
// The output is a dictionary array that references unified dictionary.
//
Result<std::shared_ptr<ArrayData>> RemapInput(
ExecContext* ctx, const Datum& indices, int64_t batch_length,
const std::shared_ptr<DataType>& data_type) const;
// Outputs dictionary array referencing unified dictionary, given an array with 32-bit
// ids.
// Used to post-process values looked up in a hash table on build side of the hash join
// before outputting to the parent exec node.
//
Result<std::shared_ptr<ArrayData>> RemapOutput(const ArrayData& indices32Bit,
ExecContext* ctx) const;
// Release shared pointers and memory
void CleanUp();
private:
// Data type of dictionary ids for the input dictionary on build side
std::shared_ptr<DataType> index_type_;
// Data type of values for the input dictionary on build side
std::shared_ptr<DataType> value_type_;
// Mapping from (encoded as string) values to the ids in unified dictionary
std::unordered_map<std::string, int32_t> hash_table_;
// Mapping from input dictionary ids to unified dictionary ids
std::shared_ptr<ArrayData> remapped_ids_;
// Input dictionary
std::shared_ptr<Array> dictionary_;
// Unified dictionary
std::shared_ptr<ArrayData> unified_dictionary_;
};
/// Implements processing of dictionary arrays/scalars in key columns on the probe side of
/// a hash join.
/// Each instance of this class corresponds to a single column and stores and
/// processes only the information related to that column.
/// It is not thread-safe - every participating thread should use its own instance of
/// this class.
///
class HashJoinDictProbe {
public:
static bool KeyNeedsProcessing(const std::shared_ptr<DataType>& probe_data_type,
const std::shared_ptr<DataType>& build_data_type);
// Data type of the result of remapping input key column.
//
// The result of remapping is what is used in hash join for matching keys on build and
// probe side. The exact data types may be different, as described below, and therefore
// a common representation is needed for simplifying comparisons of pairs of keys on
// both sides.
//
// We support matching key that is of non-dictionary type with key that is of dictionary
// type, as long as the underlying value types are equal. We support matching when both
// keys are of dictionary type, regardless whether underlying dictionary index types are
// the same or not.
//
static std::shared_ptr<DataType> DataTypeAfterRemapping(
const std::shared_ptr<DataType>& build_data_type);
// Should only be called if KeyNeedsProcessing method returns true for a pair of
// corresponding key columns from build and probe side.
// Converts values in order to match the common representation for
// both build and probe side used in hash table comparison.
// Supports arrays and scalars as input.
// Argument opt_build_side should be null if dictionary key on probe side is matched
// with non-dictionary key on build side.
//
Result<std::shared_ptr<ArrayData>> RemapInput(
const HashJoinDictBuild* opt_build_side, const Datum& data, int64_t batch_length,
const std::shared_ptr<DataType>& probe_data_type,
const std::shared_ptr<DataType>& build_data_type, ExecContext* ctx);
void CleanUp();
private:
// May be null if probe side key is non-dictionary. Otherwise it is used to verify that
// only a single dictionary is referenced in exec batch on probe side of hash join.
std::shared_ptr<Array> dictionary_;
// Mapping from dictionary on probe side of hash join (if it is used) to unified
// representation.
std::shared_ptr<ArrayData> remapped_ids_;
// Encoder of key columns that uses unified representation instead of original data type
// for key columns that need to use it (have dictionaries on either side of the join).
internal::RowEncoder encoder_;
};
// Encapsulates dictionary handling logic for build side of hash join.
//
class HashJoinDictBuildMulti {
public:
Status Init(const SchemaProjectionMaps<HashJoinProjection>& proj_map,
const ExecBatch* opt_non_empty_batch, ExecContext* ctx);
static void InitEncoder(const SchemaProjectionMaps<HashJoinProjection>& proj_map,
RowEncoder* encoder, ExecContext* ctx);
Status EncodeBatch(size_t thread_index,
const SchemaProjectionMaps<HashJoinProjection>& proj_map,
const ExecBatch& batch, RowEncoder* encoder, ExecContext* ctx) const;
Status PostDecode(const SchemaProjectionMaps<HashJoinProjection>& proj_map,
ExecBatch* decoded_key_batch, ExecContext* ctx);
const HashJoinDictBuild& get_dict_build(int icol) const { return remap_imp_[icol]; }
private:
std::vector<bool> needs_remap_;
std::vector<HashJoinDictBuild> remap_imp_;
};
// Encapsulates dictionary handling logic for probe side of hash join
//
class HashJoinDictProbeMulti {
public:
void Init(size_t num_threads);
bool BatchRemapNeeded(size_t thread_index,
const SchemaProjectionMaps<HashJoinProjection>& proj_map_probe,
const SchemaProjectionMaps<HashJoinProjection>& proj_map_build,
ExecContext* ctx);
Status EncodeBatch(size_t thread_index,
const SchemaProjectionMaps<HashJoinProjection>& proj_map_probe,
const SchemaProjectionMaps<HashJoinProjection>& proj_map_build,
const HashJoinDictBuildMulti& dict_build, const ExecBatch& batch,
RowEncoder** out_encoder, ExecBatch* opt_out_key_batch,
ExecContext* ctx);
private:
void InitLocalStateIfNeeded(
size_t thread_index, const SchemaProjectionMaps<HashJoinProjection>& proj_map_probe,
const SchemaProjectionMaps<HashJoinProjection>& proj_map_build, ExecContext* ctx);
static void InitEncoder(const SchemaProjectionMaps<HashJoinProjection>& proj_map_probe,
const SchemaProjectionMaps<HashJoinProjection>& proj_map_build,
RowEncoder* encoder, ExecContext* ctx);
struct ThreadLocalState {
bool is_initialized;
// Whether any key column needs remapping (because of dictionaries used) before doing
// join hash table lookups
bool any_needs_remap;
// Whether each key column needs remapping before doing join hash table lookups
std::vector<bool> needs_remap;
std::vector<HashJoinDictProbe> remap_imp;
// Encoder of key columns that uses unified representation instead of original data
// type for key columns that need to use it (have dictionaries on either side of the
// join).
RowEncoder post_remap_encoder;
};
std::vector<ThreadLocalState> local_states_;
};
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,70 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <flatbuffers/flatbuffers.h>
#include "arrow/compute/exec/exec_plan.h"
#include "arrow/compute/exec/expression.h"
#include "arrow/compute/exec/options.h"
#include "arrow/datum.h"
#include "arrow/result.h"
#include "arrow/util/visibility.h"
#include "generated/Plan_generated.h"
namespace arrow {
namespace flatbuf = org::apache::arrow::flatbuf;
namespace compute {
namespace ir = org::apache::arrow::computeir::flatbuf;
class ARROW_EXPORT CatalogSourceNodeOptions : public ExecNodeOptions {
public:
CatalogSourceNodeOptions(std::string name, std::shared_ptr<Schema> schema,
Expression filter = literal(true),
std::vector<FieldRef> projection = {})
: name(std::move(name)),
schema(std::move(schema)),
filter(std::move(filter)),
projection(std::move(projection)) {}
std::string name;
std::shared_ptr<Schema> schema;
Expression filter;
std::vector<FieldRef> projection;
};
ARROW_EXPORT
Result<Datum> Convert(const ir::Literal& lit);
ARROW_EXPORT
Result<Expression> Convert(const ir::Expression& lit);
ARROW_EXPORT
Result<Declaration> Convert(const ir::Relation& rel);
template <typename Ir>
auto ConvertRoot(const Buffer& buf) -> decltype(Convert(std::declval<Ir>())) {
return Convert(*flatbuffers::GetRoot<Ir>(buf.data()));
}
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,134 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <cstdint>
#include "arrow/compute/exec/key_encode.h"
#include "arrow/compute/exec/util.h"
#include "arrow/memory_pool.h"
#include "arrow/result.h"
#include "arrow/status.h"
namespace arrow {
namespace compute {
class KeyCompare {
public:
// Returns a single 16-bit selection vector of rows that failed comparison.
// If there is input selection on the left, the resulting selection is a filtered image
// of input selection.
static void CompareColumnsToRows(
uint32_t num_rows_to_compare, const uint16_t* sel_left_maybe_null,
const uint32_t* left_to_right_map, KeyEncoder::KeyEncoderContext* ctx,
uint32_t* out_num_rows, uint16_t* out_sel_left_maybe_same,
const std::vector<KeyColumnArray>& cols, const KeyEncoder::KeyRowArray& rows);
private:
template <bool use_selection>
static void NullUpdateColumnToRow(uint32_t id_col, uint32_t num_rows_to_compare,
const uint16_t* sel_left_maybe_null,
const uint32_t* left_to_right_map,
KeyEncoder::KeyEncoderContext* ctx,
const KeyColumnArray& col,
const KeyEncoder::KeyRowArray& rows,
uint8_t* match_bytevector);
template <bool use_selection, class COMPARE_FN>
static void CompareBinaryColumnToRowHelper(
uint32_t offset_within_row, uint32_t first_row_to_compare,
uint32_t num_rows_to_compare, const uint16_t* sel_left_maybe_null,
const uint32_t* left_to_right_map, KeyEncoder::KeyEncoderContext* ctx,
const KeyColumnArray& col, const KeyEncoder::KeyRowArray& rows,
uint8_t* match_bytevector, COMPARE_FN compare_fn);
template <bool use_selection>
static void CompareBinaryColumnToRow(
uint32_t offset_within_row, uint32_t num_rows_to_compare,
const uint16_t* sel_left_maybe_null, const uint32_t* left_to_right_map,
KeyEncoder::KeyEncoderContext* ctx, const KeyColumnArray& col,
const KeyEncoder::KeyRowArray& rows, uint8_t* match_bytevector);
template <bool use_selection, bool is_first_varbinary_col>
static void CompareVarBinaryColumnToRow(
uint32_t id_varlen_col, uint32_t num_rows_to_compare,
const uint16_t* sel_left_maybe_null, const uint32_t* left_to_right_map,
KeyEncoder::KeyEncoderContext* ctx, const KeyColumnArray& col,
const KeyEncoder::KeyRowArray& rows, uint8_t* match_bytevector);
static void AndByteVectors(KeyEncoder::KeyEncoderContext* ctx, uint32_t num_elements,
uint8_t* bytevector_A, const uint8_t* bytevector_B);
#if defined(ARROW_HAVE_AVX2)
template <bool use_selection>
static uint32_t NullUpdateColumnToRowImp_avx2(
uint32_t id_col, uint32_t num_rows_to_compare, const uint16_t* sel_left_maybe_null,
const uint32_t* left_to_right_map, KeyEncoder::KeyEncoderContext* ctx,
const KeyColumnArray& col, const KeyEncoder::KeyRowArray& rows,
uint8_t* match_bytevector);
template <bool use_selection, class COMPARE8_FN>
static uint32_t CompareBinaryColumnToRowHelper_avx2(
uint32_t offset_within_row, uint32_t num_rows_to_compare,
const uint16_t* sel_left_maybe_null, const uint32_t* left_to_right_map,
KeyEncoder::KeyEncoderContext* ctx, const KeyColumnArray& col,
const KeyEncoder::KeyRowArray& rows, uint8_t* match_bytevector,
COMPARE8_FN compare8_fn);
template <bool use_selection>
static uint32_t CompareBinaryColumnToRowImp_avx2(
uint32_t offset_within_row, uint32_t num_rows_to_compare,
const uint16_t* sel_left_maybe_null, const uint32_t* left_to_right_map,
KeyEncoder::KeyEncoderContext* ctx, const KeyColumnArray& col,
const KeyEncoder::KeyRowArray& rows, uint8_t* match_bytevector);
template <bool use_selection, bool is_first_varbinary_col>
static void CompareVarBinaryColumnToRowImp_avx2(
uint32_t id_varlen_col, uint32_t num_rows_to_compare,
const uint16_t* sel_left_maybe_null, const uint32_t* left_to_right_map,
KeyEncoder::KeyEncoderContext* ctx, const KeyColumnArray& col,
const KeyEncoder::KeyRowArray& rows, uint8_t* match_bytevector);
static uint32_t AndByteVectors_avx2(uint32_t num_elements, uint8_t* bytevector_A,
const uint8_t* bytevector_B);
static uint32_t NullUpdateColumnToRow_avx2(
bool use_selection, uint32_t id_col, uint32_t num_rows_to_compare,
const uint16_t* sel_left_maybe_null, const uint32_t* left_to_right_map,
KeyEncoder::KeyEncoderContext* ctx, const KeyColumnArray& col,
const KeyEncoder::KeyRowArray& rows, uint8_t* match_bytevector);
static uint32_t CompareBinaryColumnToRow_avx2(
bool use_selection, uint32_t offset_within_row, uint32_t num_rows_to_compare,
const uint16_t* sel_left_maybe_null, const uint32_t* left_to_right_map,
KeyEncoder::KeyEncoderContext* ctx, const KeyColumnArray& col,
const KeyEncoder::KeyRowArray& rows, uint8_t* match_bytevector);
static void CompareVarBinaryColumnToRow_avx2(
bool use_selection, bool is_first_varbinary_col, uint32_t id_varlen_col,
uint32_t num_rows_to_compare, const uint16_t* sel_left_maybe_null,
const uint32_t* left_to_right_map, KeyEncoder::KeyEncoderContext* ctx,
const KeyColumnArray& col, const KeyEncoder::KeyRowArray& rows,
uint8_t* match_bytevector);
#endif
};
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,500 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <cstdint>
#include <memory>
#include <vector>
#include "arrow/compute/exec/util.h"
#include "arrow/compute/light_array.h"
#include "arrow/memory_pool.h"
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/util/bit_util.h"
namespace arrow {
namespace compute {
/// Converts between key representation as a collection of arrays for
/// individual columns and another representation as a single array of rows
/// combining data from all columns into one value.
/// This conversion is reversible.
/// Row-oriented storage is beneficial when there is a need for random access
/// of individual rows and at the same time all included columns are likely to
/// be accessed together, as in the case of hash table key.
class KeyEncoder {
public:
struct KeyEncoderContext {
bool has_avx2() const {
return (hardware_flags & arrow::internal::CpuInfo::AVX2) > 0;
}
int64_t hardware_flags;
util::TempVectorStack* stack;
};
/// Description of a storage format for rows produced by encoder.
struct KeyRowMetadata {
/// Is row a varying-length binary, using offsets array to find a beginning of a row,
/// or is it a fixed-length binary.
bool is_fixed_length;
/// For a fixed-length binary row, common size of rows in bytes,
/// rounded up to the multiple of alignment.
///
/// For a varying-length binary, size of all encoded fixed-length key columns,
/// including lengths of varying-length columns, rounded up to the multiple of string
/// alignment.
uint32_t fixed_length;
/// Offset within a row to the array of 32-bit offsets within a row of
/// ends of varbinary fields.
/// Used only when the row is not fixed-length, zero for fixed-length row.
/// There are N elements for N varbinary fields.
/// Each element is the offset within a row of the first byte after
/// the corresponding varbinary field bytes in that row.
/// If varbinary fields begin at aligned addresses, than the end of the previous
/// varbinary field needs to be rounded up according to the specified alignment
/// to obtain the beginning of the next varbinary field.
/// The first varbinary field starts at offset specified by fixed_length,
/// which should already be aligned.
uint32_t varbinary_end_array_offset;
/// Fixed number of bytes per row that are used to encode null masks.
/// Null masks indicate for a single row which of its key columns are null.
/// Nth bit in the sequence of bytes assigned to a row represents null
/// information for Nth field according to the order in which they are encoded.
int null_masks_bytes_per_row;
/// Power of 2. Every row will start at the offset aligned to that number of bytes.
int row_alignment;
/// Power of 2. Must be no greater than row alignment.
/// Every non-power-of-2 binary field and every varbinary field bytes
/// will start aligned to that number of bytes.
int string_alignment;
/// Metadata of encoded columns in their original order.
std::vector<KeyColumnMetadata> column_metadatas;
/// Order in which fields are encoded.
std::vector<uint32_t> column_order;
/// Offsets within a row to fields in their encoding order.
std::vector<uint32_t> column_offsets;
/// Rounding up offset to the nearest multiple of alignment value.
/// Alignment must be a power of 2.
static inline uint32_t padding_for_alignment(uint32_t offset,
int required_alignment) {
ARROW_DCHECK(ARROW_POPCOUNT64(required_alignment) == 1);
return static_cast<uint32_t>((-static_cast<int32_t>(offset)) &
(required_alignment - 1));
}
/// Rounding up offset to the beginning of next column,
/// chosing required alignment based on the data type of that column.
static inline uint32_t padding_for_alignment(uint32_t offset, int string_alignment,
const KeyColumnMetadata& col_metadata) {
if (!col_metadata.is_fixed_length ||
ARROW_POPCOUNT64(col_metadata.fixed_length) <= 1) {
return 0;
} else {
return padding_for_alignment(offset, string_alignment);
}
}
/// Returns an array of offsets within a row of ends of varbinary fields.
inline const uint32_t* varbinary_end_array(const uint8_t* row) const {
ARROW_DCHECK(!is_fixed_length);
return reinterpret_cast<const uint32_t*>(row + varbinary_end_array_offset);
}
inline uint32_t* varbinary_end_array(uint8_t* row) const {
ARROW_DCHECK(!is_fixed_length);
return reinterpret_cast<uint32_t*>(row + varbinary_end_array_offset);
}
/// Returns the offset within the row and length of the first varbinary field.
inline void first_varbinary_offset_and_length(const uint8_t* row, uint32_t* offset,
uint32_t* length) const {
ARROW_DCHECK(!is_fixed_length);
*offset = fixed_length;
*length = varbinary_end_array(row)[0] - fixed_length;
}
/// Returns the offset within the row and length of the second and further varbinary
/// fields.
inline void nth_varbinary_offset_and_length(const uint8_t* row, int varbinary_id,
uint32_t* out_offset,
uint32_t* out_length) const {
ARROW_DCHECK(!is_fixed_length);
ARROW_DCHECK(varbinary_id > 0);
const uint32_t* varbinary_end = varbinary_end_array(row);
uint32_t offset = varbinary_end[varbinary_id - 1];
offset += padding_for_alignment(offset, string_alignment);
*out_offset = offset;
*out_length = varbinary_end[varbinary_id] - offset;
}
uint32_t encoded_field_order(uint32_t icol) const { return column_order[icol]; }
uint32_t encoded_field_offset(uint32_t icol) const { return column_offsets[icol]; }
uint32_t num_cols() const { return static_cast<uint32_t>(column_metadatas.size()); }
uint32_t num_varbinary_cols() const;
void FromColumnMetadataVector(const std::vector<KeyColumnMetadata>& cols,
int in_row_alignment, int in_string_alignment);
bool is_compatible(const KeyRowMetadata& other) const;
};
class KeyRowArray {
public:
KeyRowArray();
Status Init(MemoryPool* pool, const KeyRowMetadata& metadata);
void Clean();
Status AppendEmpty(uint32_t num_rows_to_append, uint32_t num_extra_bytes_to_append);
Status AppendSelectionFrom(const KeyRowArray& from, uint32_t num_rows_to_append,
const uint16_t* source_row_ids);
const KeyRowMetadata& metadata() const { return metadata_; }
int64_t length() const { return num_rows_; }
const uint8_t* data(int i) const {
ARROW_DCHECK(i >= 0 && i <= max_buffers_);
return buffers_[i];
}
uint8_t* mutable_data(int i) {
ARROW_DCHECK(i >= 0 && i <= max_buffers_);
return mutable_buffers_[i];
}
const uint32_t* offsets() const { return reinterpret_cast<const uint32_t*>(data(1)); }
uint32_t* mutable_offsets() { return reinterpret_cast<uint32_t*>(mutable_data(1)); }
const uint8_t* null_masks() const { return null_masks_->data(); }
uint8_t* null_masks() { return null_masks_->mutable_data(); }
bool has_any_nulls(const KeyEncoderContext* ctx) const;
private:
Status ResizeFixedLengthBuffers(int64_t num_extra_rows);
Status ResizeOptionalVaryingLengthBuffer(int64_t num_extra_bytes);
int64_t size_null_masks(int64_t num_rows);
int64_t size_offsets(int64_t num_rows);
int64_t size_rows_fixed_length(int64_t num_rows);
int64_t size_rows_varying_length(int64_t num_bytes);
void update_buffer_pointers();
static constexpr int64_t padding_for_vectors = 64;
MemoryPool* pool_;
KeyRowMetadata metadata_;
/// Buffers can only expand during lifetime and never shrink.
std::unique_ptr<ResizableBuffer> null_masks_;
std::unique_ptr<ResizableBuffer> offsets_;
std::unique_ptr<ResizableBuffer> rows_;
static constexpr int max_buffers_ = 3;
const uint8_t* buffers_[max_buffers_];
uint8_t* mutable_buffers_[max_buffers_];
int64_t num_rows_;
int64_t rows_capacity_;
int64_t bytes_capacity_;
// Mutable to allow lazy evaluation
mutable int64_t num_rows_for_has_any_nulls_;
mutable bool has_any_nulls_;
};
void Init(const std::vector<KeyColumnMetadata>& cols, KeyEncoderContext* ctx,
int row_alignment, int string_alignment);
const KeyRowMetadata& row_metadata() { return row_metadata_; }
void PrepareEncodeSelected(int64_t start_row, int64_t num_rows,
const std::vector<KeyColumnArray>& cols);
Status EncodeSelected(KeyRowArray* rows, uint32_t num_selected,
const uint16_t* selection);
/// Decode a window of row oriented data into a corresponding
/// window of column oriented storage.
/// The output buffers need to be correctly allocated and sized before
/// calling each method.
/// For that reason decoding is split into two functions.
/// The output of the first one, that processes everything except for
/// varying length buffers, can be used to find out required varying
/// length buffers sizes.
void DecodeFixedLengthBuffers(int64_t start_row_input, int64_t start_row_output,
int64_t num_rows, const KeyRowArray& rows,
std::vector<KeyColumnArray>* cols);
void DecodeVaryingLengthBuffers(int64_t start_row_input, int64_t start_row_output,
int64_t num_rows, const KeyRowArray& rows,
std::vector<KeyColumnArray>* cols);
const std::vector<KeyColumnArray>& GetBatchColumns() const { return batch_all_cols_; }
private:
/// Prepare column array vectors.
/// Output column arrays represent a range of input column arrays
/// specified by starting row and number of rows.
/// Three vectors are generated:
/// - all columns
/// - fixed-length columns only
/// - varying-length columns only
void PrepareKeyColumnArrays(int64_t start_row, int64_t num_rows,
const std::vector<KeyColumnArray>& cols_in);
class TransformBoolean {
public:
static KeyColumnArray ArrayReplace(const KeyColumnArray& column,
const KeyColumnArray& temp);
static void PostDecode(const KeyColumnArray& input, KeyColumnArray* output,
KeyEncoderContext* ctx);
};
class EncoderInteger {
public:
static void Decode(uint32_t start_row, uint32_t num_rows, uint32_t offset_within_row,
const KeyRowArray& rows, KeyColumnArray* col,
KeyEncoderContext* ctx, KeyColumnArray* temp);
static bool UsesTransform(const KeyColumnArray& column);
static KeyColumnArray ArrayReplace(const KeyColumnArray& column,
const KeyColumnArray& temp);
static void PostDecode(const KeyColumnArray& input, KeyColumnArray* output,
KeyEncoderContext* ctx);
private:
static bool IsBoolean(const KeyColumnMetadata& metadata);
};
class EncoderBinary {
public:
static void EncodeSelected(uint32_t offset_within_row, KeyRowArray* rows,
const KeyColumnArray& col, uint32_t num_selected,
const uint16_t* selection);
static void Decode(uint32_t start_row, uint32_t num_rows, uint32_t offset_within_row,
const KeyRowArray& rows, KeyColumnArray* col,
KeyEncoderContext* ctx, KeyColumnArray* temp);
static bool IsInteger(const KeyColumnMetadata& metadata);
private:
template <class COPY_FN, class SET_NULL_FN>
static void EncodeSelectedImp(uint32_t offset_within_row, KeyRowArray* rows,
const KeyColumnArray& col, uint32_t num_selected,
const uint16_t* selection, COPY_FN copy_fn,
SET_NULL_FN set_null_fn);
template <bool is_row_fixed_length, class COPY_FN>
static inline void DecodeHelper(uint32_t start_row, uint32_t num_rows,
uint32_t offset_within_row,
const KeyRowArray* rows_const,
KeyRowArray* rows_mutable_maybe_null,
const KeyColumnArray* col_const,
KeyColumnArray* col_mutable_maybe_null,
COPY_FN copy_fn);
template <bool is_row_fixed_length>
static void DecodeImp(uint32_t start_row, uint32_t num_rows,
uint32_t offset_within_row, const KeyRowArray& rows,
KeyColumnArray* col);
#if defined(ARROW_HAVE_AVX2)
static void DecodeHelper_avx2(bool is_row_fixed_length, uint32_t start_row,
uint32_t num_rows, uint32_t offset_within_row,
const KeyRowArray& rows, KeyColumnArray* col);
template <bool is_row_fixed_length>
static void DecodeImp_avx2(uint32_t start_row, uint32_t num_rows,
uint32_t offset_within_row, const KeyRowArray& rows,
KeyColumnArray* col);
#endif
};
class EncoderBinaryPair {
public:
static bool CanProcessPair(const KeyColumnMetadata& col1,
const KeyColumnMetadata& col2) {
return EncoderBinary::IsInteger(col1) && EncoderBinary::IsInteger(col2);
}
static void Decode(uint32_t start_row, uint32_t num_rows, uint32_t offset_within_row,
const KeyRowArray& rows, KeyColumnArray* col1,
KeyColumnArray* col2, KeyEncoderContext* ctx,
KeyColumnArray* temp1, KeyColumnArray* temp2);
private:
template <bool is_row_fixed_length, typename col1_type, typename col2_type>
static void DecodeImp(uint32_t num_rows_to_skip, uint32_t start_row,
uint32_t num_rows, uint32_t offset_within_row,
const KeyRowArray& rows, KeyColumnArray* col1,
KeyColumnArray* col2);
#if defined(ARROW_HAVE_AVX2)
static uint32_t DecodeHelper_avx2(bool is_row_fixed_length, uint32_t col_width,
uint32_t start_row, uint32_t num_rows,
uint32_t offset_within_row, const KeyRowArray& rows,
KeyColumnArray* col1, KeyColumnArray* col2);
template <bool is_row_fixed_length, uint32_t col_width>
static uint32_t DecodeImp_avx2(uint32_t start_row, uint32_t num_rows,
uint32_t offset_within_row, const KeyRowArray& rows,
KeyColumnArray* col1, KeyColumnArray* col2);
#endif
};
class EncoderOffsets {
public:
static void GetRowOffsetsSelected(KeyRowArray* rows,
const std::vector<KeyColumnArray>& cols,
uint32_t num_selected, const uint16_t* selection);
static void EncodeSelected(KeyRowArray* rows, const std::vector<KeyColumnArray>& cols,
uint32_t num_selected, const uint16_t* selection);
static void Decode(uint32_t start_row, uint32_t num_rows, const KeyRowArray& rows,
std::vector<KeyColumnArray>* varbinary_cols,
const std::vector<uint32_t>& varbinary_cols_base_offset,
KeyEncoderContext* ctx);
private:
template <bool has_nulls, bool is_first_varbinary>
static void EncodeSelectedImp(uint32_t ivarbinary, KeyRowArray* rows,
const std::vector<KeyColumnArray>& cols,
uint32_t num_selected, const uint16_t* selection);
};
class EncoderVarBinary {
public:
static void EncodeSelected(uint32_t ivarbinary, KeyRowArray* rows,
const KeyColumnArray& cols, uint32_t num_selected,
const uint16_t* selection);
static void Decode(uint32_t start_row, uint32_t num_rows, uint32_t varbinary_col_id,
const KeyRowArray& rows, KeyColumnArray* col,
KeyEncoderContext* ctx);
private:
template <bool first_varbinary_col, class COPY_FN>
static inline void DecodeHelper(uint32_t start_row, uint32_t num_rows,
uint32_t varbinary_col_id,
const KeyRowArray* rows_const,
KeyRowArray* rows_mutable_maybe_null,
const KeyColumnArray* col_const,
KeyColumnArray* col_mutable_maybe_null,
COPY_FN copy_fn);
template <bool first_varbinary_col>
static void DecodeImp(uint32_t start_row, uint32_t num_rows,
uint32_t varbinary_col_id, const KeyRowArray& rows,
KeyColumnArray* col);
#if defined(ARROW_HAVE_AVX2)
static void DecodeHelper_avx2(uint32_t start_row, uint32_t num_rows,
uint32_t varbinary_col_id, const KeyRowArray& rows,
KeyColumnArray* col);
template <bool first_varbinary_col>
static void DecodeImp_avx2(uint32_t start_row, uint32_t num_rows,
uint32_t varbinary_col_id, const KeyRowArray& rows,
KeyColumnArray* col);
#endif
};
class EncoderNulls {
public:
static void EncodeSelected(KeyRowArray* rows, const std::vector<KeyColumnArray>& cols,
uint32_t num_selected, const uint16_t* selection);
static void Decode(uint32_t start_row, uint32_t num_rows, const KeyRowArray& rows,
std::vector<KeyColumnArray>* cols);
};
KeyEncoderContext* ctx_;
// Data initialized once, based on data types of key columns
KeyRowMetadata row_metadata_;
// Data initialized for each input batch.
// All elements are ordered according to the order of encoded fields in a row.
std::vector<KeyColumnArray> batch_all_cols_;
std::vector<KeyColumnArray> batch_varbinary_cols_;
std::vector<uint32_t> batch_varbinary_cols_base_offsets_;
};
template <bool is_row_fixed_length, class COPY_FN>
inline void KeyEncoder::EncoderBinary::DecodeHelper(
uint32_t start_row, uint32_t num_rows, uint32_t offset_within_row,
const KeyRowArray* rows_const, KeyRowArray* rows_mutable_maybe_null,
const KeyColumnArray* col_const, KeyColumnArray* col_mutable_maybe_null,
COPY_FN copy_fn) {
ARROW_DCHECK(col_const && col_const->metadata().is_fixed_length);
uint32_t col_width = col_const->metadata().fixed_length;
if (is_row_fixed_length) {
uint32_t row_width = rows_const->metadata().fixed_length;
for (uint32_t i = 0; i < num_rows; ++i) {
const uint8_t* src;
uint8_t* dst;
src = rows_const->data(1) + row_width * (start_row + i) + offset_within_row;
dst = col_mutable_maybe_null->mutable_data(1) + col_width * i;
copy_fn(dst, src, col_width);
}
} else {
const uint32_t* row_offsets = rows_const->offsets();
for (uint32_t i = 0; i < num_rows; ++i) {
const uint8_t* src;
uint8_t* dst;
src = rows_const->data(2) + row_offsets[start_row + i] + offset_within_row;
dst = col_mutable_maybe_null->mutable_data(1) + col_width * i;
copy_fn(dst, src, col_width);
}
}
}
template <bool first_varbinary_col, class COPY_FN>
inline void KeyEncoder::EncoderVarBinary::DecodeHelper(
uint32_t start_row, uint32_t num_rows, uint32_t varbinary_col_id,
const KeyRowArray* rows_const, KeyRowArray* rows_mutable_maybe_null,
const KeyColumnArray* col_const, KeyColumnArray* col_mutable_maybe_null,
COPY_FN copy_fn) {
// Column and rows need to be varying length
ARROW_DCHECK(!rows_const->metadata().is_fixed_length &&
!col_const->metadata().is_fixed_length);
const uint32_t* row_offsets_for_batch = rows_const->offsets() + start_row;
const uint32_t* col_offsets = col_const->offsets();
uint32_t col_offset_next = col_offsets[0];
for (uint32_t i = 0; i < num_rows; ++i) {
uint32_t col_offset = col_offset_next;
col_offset_next = col_offsets[i + 1];
uint32_t row_offset = row_offsets_for_batch[i];
const uint8_t* row = rows_const->data(2) + row_offset;
uint32_t offset_within_row;
uint32_t length;
if (first_varbinary_col) {
rows_const->metadata().first_varbinary_offset_and_length(row, &offset_within_row,
&length);
} else {
rows_const->metadata().nth_varbinary_offset_and_length(row, varbinary_col_id,
&offset_within_row, &length);
}
row_offset += offset_within_row;
const uint8_t* src;
uint8_t* dst;
src = rows_const->data(2) + row_offset;
dst = col_mutable_maybe_null->mutable_data(2) + col_offset;
copy_fn(dst, src, length);
}
}
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,213 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#if defined(ARROW_HAVE_AVX2)
#include <immintrin.h>
#endif
#include <cstdint>
#include "arrow/compute/exec/key_encode.h"
#include "arrow/compute/exec/util.h"
namespace arrow {
namespace compute {
// Forward declarations only needed for making test functions a friend of the classes in
// this file.
//
enum class BloomFilterBuildStrategy;
// Implementations are based on xxh3 32-bit algorithm description from:
// https://github.com/Cyan4973/xxHash/blob/dev/doc/xxhash_spec.md
//
class ARROW_EXPORT Hashing32 {
friend class TestVectorHash;
template <typename T>
friend void TestBloomLargeHashHelper(int64_t, int64_t, const std::vector<uint64_t>&,
int64_t, int, T*);
friend void TestBloomSmall(BloomFilterBuildStrategy, int64_t, int, bool, bool);
public:
static void HashMultiColumn(const std::vector<KeyColumnArray>& cols,
KeyEncoder::KeyEncoderContext* ctx, uint32_t* out_hash);
private:
static const uint32_t PRIME32_1 = 0x9E3779B1;
static const uint32_t PRIME32_2 = 0x85EBCA77;
static const uint32_t PRIME32_3 = 0xC2B2AE3D;
static const uint32_t PRIME32_4 = 0x27D4EB2F;
static const uint32_t PRIME32_5 = 0x165667B1;
static const uint32_t kCombineConst = 0x9e3779b9UL;
static const int64_t kStripeSize = 4 * sizeof(uint32_t);
static void HashFixed(int64_t hardware_flags, bool combine_hashes, uint32_t num_keys,
uint64_t length_key, const uint8_t* keys, uint32_t* hashes,
uint32_t* temp_hashes_for_combine);
static void HashVarLen(int64_t hardware_flags, bool combine_hashes, uint32_t num_rows,
const uint32_t* offsets, const uint8_t* concatenated_keys,
uint32_t* hashes, uint32_t* temp_hashes_for_combine);
static void HashVarLen(int64_t hardware_flags, bool combine_hashes, uint32_t num_rows,
const uint64_t* offsets, const uint8_t* concatenated_keys,
uint32_t* hashes, uint32_t* temp_hashes_for_combine);
static inline uint32_t Avalanche(uint32_t acc) {
acc ^= (acc >> 15);
acc *= PRIME32_2;
acc ^= (acc >> 13);
acc *= PRIME32_3;
acc ^= (acc >> 16);
return acc;
}
static inline uint32_t Round(uint32_t acc, uint32_t input);
static inline uint32_t CombineAccumulators(uint32_t acc1, uint32_t acc2, uint32_t acc3,
uint32_t acc4);
static inline uint32_t CombineHashesImp(uint32_t previous_hash, uint32_t hash) {
uint32_t next_hash = previous_hash ^ (hash + kCombineConst + (previous_hash << 6) +
(previous_hash >> 2));
return next_hash;
}
static inline void ProcessFullStripes(uint64_t num_stripes, const uint8_t* key,
uint32_t* out_acc1, uint32_t* out_acc2,
uint32_t* out_acc3, uint32_t* out_acc4);
static inline void ProcessLastStripe(uint32_t mask1, uint32_t mask2, uint32_t mask3,
uint32_t mask4, const uint8_t* last_stripe,
uint32_t* acc1, uint32_t* acc2, uint32_t* acc3,
uint32_t* acc4);
static inline void StripeMask(int i, uint32_t* mask1, uint32_t* mask2, uint32_t* mask3,
uint32_t* mask4);
template <bool T_COMBINE_HASHES>
static void HashFixedLenImp(uint32_t num_rows, uint64_t length, const uint8_t* keys,
uint32_t* hashes);
template <typename T, bool T_COMBINE_HASHES>
static void HashVarLenImp(uint32_t num_rows, const T* offsets,
const uint8_t* concatenated_keys, uint32_t* hashes);
template <bool T_COMBINE_HASHES>
static void HashBitImp(int64_t bit_offset, uint32_t num_keys, const uint8_t* keys,
uint32_t* hashes);
static void HashBit(bool combine_hashes, int64_t bit_offset, uint32_t num_keys,
const uint8_t* keys, uint32_t* hashes);
template <bool T_COMBINE_HASHES, typename T>
static void HashIntImp(uint32_t num_keys, const T* keys, uint32_t* hashes);
static void HashInt(bool combine_hashes, uint32_t num_keys, uint64_t length_key,
const uint8_t* keys, uint32_t* hashes);
#if defined(ARROW_HAVE_AVX2)
static inline __m256i Avalanche_avx2(__m256i hash);
static inline __m256i CombineHashesImp_avx2(__m256i previous_hash, __m256i hash);
template <bool T_COMBINE_HASHES>
static void AvalancheAll_avx2(uint32_t num_rows, uint32_t* hashes,
const uint32_t* hashes_temp_for_combine);
static inline __m256i Round_avx2(__m256i acc, __m256i input);
static inline uint64_t CombineAccumulators_avx2(__m256i acc);
static inline __m256i StripeMask_avx2(int i, int j);
template <bool two_equal_lengths>
static inline __m256i ProcessStripes_avx2(int64_t num_stripes_A, int64_t num_stripes_B,
__m256i mask_last_stripe, const uint8_t* keys,
int64_t offset_A, int64_t offset_B);
template <bool T_COMBINE_HASHES>
static uint32_t HashFixedLenImp_avx2(uint32_t num_rows, uint64_t length,
const uint8_t* keys, uint32_t* hashes,
uint32_t* hashes_temp_for_combine);
static uint32_t HashFixedLen_avx2(bool combine_hashes, uint32_t num_rows,
uint64_t length, const uint8_t* keys,
uint32_t* hashes, uint32_t* hashes_temp_for_combine);
template <typename T, bool T_COMBINE_HASHES>
static uint32_t HashVarLenImp_avx2(uint32_t num_rows, const T* offsets,
const uint8_t* concatenated_keys, uint32_t* hashes,
uint32_t* hashes_temp_for_combine);
static uint32_t HashVarLen_avx2(bool combine_hashes, uint32_t num_rows,
const uint32_t* offsets,
const uint8_t* concatenated_keys, uint32_t* hashes,
uint32_t* hashes_temp_for_combine);
static uint32_t HashVarLen_avx2(bool combine_hashes, uint32_t num_rows,
const uint64_t* offsets,
const uint8_t* concatenated_keys, uint32_t* hashes,
uint32_t* hashes_temp_for_combine);
#endif
};
class ARROW_EXPORT Hashing64 {
friend class TestVectorHash;
template <typename T>
friend void TestBloomLargeHashHelper(int64_t, int64_t, const std::vector<uint64_t>&,
int64_t, int, T*);
friend void TestBloomSmall(BloomFilterBuildStrategy, int64_t, int, bool, bool);
public:
static void HashMultiColumn(const std::vector<KeyColumnArray>& cols,
KeyEncoder::KeyEncoderContext* ctx, uint64_t* hashes);
private:
static const uint64_t PRIME64_1 = 0x9E3779B185EBCA87ULL;
static const uint64_t PRIME64_2 = 0xC2B2AE3D27D4EB4FULL;
static const uint64_t PRIME64_3 = 0x165667B19E3779F9ULL;
static const uint64_t PRIME64_4 = 0x85EBCA77C2B2AE63ULL;
static const uint64_t PRIME64_5 = 0x27D4EB2F165667C5ULL;
static const uint32_t kCombineConst = 0x9e3779b9UL;
static const int64_t kStripeSize = 4 * sizeof(uint64_t);
static void HashFixed(bool combine_hashes, uint32_t num_keys, uint64_t length_key,
const uint8_t* keys, uint64_t* hashes);
static void HashVarLen(bool combine_hashes, uint32_t num_rows, const uint32_t* offsets,
const uint8_t* concatenated_keys, uint64_t* hashes);
static void HashVarLen(bool combine_hashes, uint32_t num_rows, const uint64_t* offsets,
const uint8_t* concatenated_keys, uint64_t* hashes);
static inline uint64_t Avalanche(uint64_t acc);
static inline uint64_t Round(uint64_t acc, uint64_t input);
static inline uint64_t CombineAccumulators(uint64_t acc1, uint64_t acc2, uint64_t acc3,
uint64_t acc4);
static inline uint64_t CombineHashesImp(uint64_t previous_hash, uint64_t hash) {
uint64_t next_hash = previous_hash ^ (hash + kCombineConst + (previous_hash << 6) +
(previous_hash >> 2));
return next_hash;
}
static inline void ProcessFullStripes(uint64_t num_stripes, const uint8_t* key,
uint64_t* out_acc1, uint64_t* out_acc2,
uint64_t* out_acc3, uint64_t* out_acc4);
static inline void ProcessLastStripe(uint64_t mask1, uint64_t mask2, uint64_t mask3,
uint64_t mask4, const uint8_t* last_stripe,
uint64_t* acc1, uint64_t* acc2, uint64_t* acc3,
uint64_t* acc4);
static inline void StripeMask(int i, uint64_t* mask1, uint64_t* mask2, uint64_t* mask3,
uint64_t* mask4);
template <bool T_COMBINE_HASHES>
static void HashFixedLenImp(uint32_t num_rows, uint64_t length, const uint8_t* keys,
uint64_t* hashes);
template <typename T, bool T_COMBINE_HASHES>
static void HashVarLenImp(uint32_t num_rows, const T* offsets,
const uint8_t* concatenated_keys, uint64_t* hashes);
template <bool T_COMBINE_HASHES>
static void HashBitImp(int64_t bit_offset, uint32_t num_keys, const uint8_t* keys,
uint64_t* hashes);
static void HashBit(bool T_COMBINE_HASHES, int64_t bit_offset, uint32_t num_keys,
const uint8_t* keys, uint64_t* hashes);
template <bool T_COMBINE_HASHES, typename T>
static void HashIntImp(uint32_t num_keys, const T* keys, uint64_t* hashes);
static void HashInt(bool T_COMBINE_HASHES, uint32_t num_keys, uint64_t length_key,
const uint8_t* keys, uint64_t* hashes);
};
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,208 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <functional>
#include "arrow/compute/exec/util.h"
#include "arrow/memory_pool.h"
#include "arrow/result.h"
#include "arrow/status.h"
namespace arrow {
namespace compute {
class SwissTable {
public:
SwissTable() = default;
~SwissTable() { cleanup(); }
using EqualImpl =
std::function<void(int num_keys, const uint16_t* selection /* may be null */,
const uint32_t* group_ids, uint32_t* out_num_keys_mismatch,
uint16_t* out_selection_mismatch)>;
using AppendImpl = std::function<Status(int num_keys, const uint16_t* selection)>;
Status init(int64_t hardware_flags, MemoryPool* pool, util::TempVectorStack* temp_stack,
int log_minibatch, EqualImpl equal_impl, AppendImpl append_impl);
void cleanup();
void early_filter(const int num_keys, const uint32_t* hashes,
uint8_t* out_match_bitvector, uint8_t* out_local_slots) const;
void find(const int num_keys, const uint32_t* hashes, uint8_t* inout_match_bitvector,
const uint8_t* local_slots, uint32_t* out_group_ids) const;
Status map_new_keys(uint32_t num_ids, uint16_t* ids, const uint32_t* hashes,
uint32_t* group_ids);
private:
// Lookup helpers
/// \brief Scan bytes in block in reverse and stop as soon
/// as a position of interest is found.
///
/// Positions of interest:
/// a) slot with a matching stamp is encountered,
/// b) first empty slot is encountered,
/// c) we reach the end of the block.
///
/// Optionally an index of the first slot to start the search from can be specified.
/// In this case slots before it will be ignored.
///
/// \param[in] block 8 byte block of hash table
/// \param[in] stamp 7 bits of hash used as a stamp
/// \param[in] start_slot Index of the first slot in the block to start search from. We
/// assume that this index always points to a non-empty slot, equivalently
/// that it comes before any empty slots. (Used only by one template
/// variant.)
/// \param[out] out_slot index corresponding to the discovered position of interest (8
/// represents end of block).
/// \param[out] out_match_found an integer flag (0 or 1) indicating if we reached an
/// empty slot (0) or not (1). Therefore 1 can mean that either actual match was found
/// (case a) above) or we reached the end of full block (case b) above).
///
template <bool use_start_slot>
inline void search_block(uint64_t block, int stamp, int start_slot, int* out_slot,
int* out_match_found) const;
/// \brief Extract group id for a given slot in a given block.
///
inline uint64_t extract_group_id(const uint8_t* block_ptr, int slot,
uint64_t group_id_mask) const;
void extract_group_ids(const int num_keys, const uint16_t* optional_selection,
const uint32_t* hashes, const uint8_t* local_slots,
uint32_t* out_group_ids) const;
template <typename T, bool use_selection>
void extract_group_ids_imp(const int num_keys, const uint16_t* selection,
const uint32_t* hashes, const uint8_t* local_slots,
uint32_t* out_group_ids, int elements_offset,
int element_mutltiplier) const;
inline uint64_t next_slot_to_visit(uint64_t block_index, int slot,
int match_found) const;
inline uint64_t num_groups_for_resize() const;
inline uint64_t wrap_global_slot_id(uint64_t global_slot_id) const;
void init_slot_ids(const int num_keys, const uint16_t* selection,
const uint32_t* hashes, const uint8_t* local_slots,
const uint8_t* match_bitvector, uint32_t* out_slot_ids) const;
void init_slot_ids_for_new_keys(uint32_t num_ids, const uint16_t* ids,
const uint32_t* hashes, uint32_t* slot_ids) const;
// Quickly filter out keys that have no matches based only on hash value and the
// corresponding starting 64-bit block of slot status bytes. May return false positives.
//
void early_filter_imp(const int num_keys, const uint32_t* hashes,
uint8_t* out_match_bitvector, uint8_t* out_local_slots) const;
#if defined(ARROW_HAVE_AVX2)
void early_filter_imp_avx2_x8(const int num_hashes, const uint32_t* hashes,
uint8_t* out_match_bitvector,
uint8_t* out_local_slots) const;
void early_filter_imp_avx2_x32(const int num_hashes, const uint32_t* hashes,
uint8_t* out_match_bitvector,
uint8_t* out_local_slots) const;
void extract_group_ids_avx2(const int num_keys, const uint32_t* hashes,
const uint8_t* local_slots, uint32_t* out_group_ids,
int byte_offset, int byte_multiplier, int byte_size) const;
#endif
void run_comparisons(const int num_keys, const uint16_t* optional_selection_ids,
const uint8_t* optional_selection_bitvector,
const uint32_t* groupids, int* out_num_not_equal,
uint16_t* out_not_equal_selection) const;
inline bool find_next_stamp_match(const uint32_t hash, const uint32_t in_slot_id,
uint32_t* out_slot_id, uint32_t* out_group_id) const;
inline void insert_into_empty_slot(uint32_t slot_id, uint32_t hash, uint32_t group_id);
// Slow processing of input keys in the most generic case.
// Handles inserting new keys.
// Pre-existing keys will be handled correctly, although the intended use is for this
// call to follow a call to find() method, which would only pass on new keys that were
// not present in the hash table.
//
Status map_new_keys_helper(const uint32_t* hashes, uint32_t* inout_num_selected,
uint16_t* inout_selection, bool* out_need_resize,
uint32_t* out_group_ids, uint32_t* out_next_slot_ids);
// Resize small hash tables when 50% full (up to 8KB).
// Resize large hash tables when 75% full.
Status grow_double();
static int num_groupid_bits_from_log_blocks(int log_blocks) {
int required_bits = log_blocks + 3;
return required_bits <= 8 ? 8
: required_bits <= 16 ? 16
: required_bits <= 32 ? 32
: 64;
}
// Use 32-bit hash for now
static constexpr int bits_hash_ = 32;
// Number of hash bits stored in slots in a block.
// The highest bits of hash determine block id.
// The next set of highest bits is a "stamp" stored in a slot in a block.
static constexpr int bits_stamp_ = 7;
// Padding bytes added at the end of buffers for ease of SIMD access
static constexpr int padding_ = 64;
int log_minibatch_;
// Base 2 log of the number of blocks
int log_blocks_ = 0;
// Number of keys inserted into hash table
uint32_t num_inserted_ = 0;
// Data for blocks.
// Each block has 8 status bytes for 8 slots, followed by 8 bit packed group ids for
// these slots. In 8B status word, the order of bytes is reversed. Group ids are in
// normal order. There is 64B padding at the end.
//
// 0 byte - 7 bucket | 1. byte - 6 bucket | ...
// ---------------------------------------------------
// | Empty bit* | Empty bit |
// ---------------------------------------------------
// | 7-bit hash | 7-bit hash |
// ---------------------------------------------------
// * Empty bucket has value 0x80. Non-empty bucket has highest bit set to 0.
//
uint8_t* blocks_;
// Array of hashes of values inserted into slots.
// Undefined if the corresponding slot is empty.
// There is 64B padding at the end.
uint32_t* hashes_;
int64_t hardware_flags_;
MemoryPool* pool_;
util::TempVectorStack* temp_stack_;
EqualImpl equal_impl_;
AppendImpl append_impl_;
};
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,393 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <functional>
#include <memory>
#include <string>
#include <vector>
#include "arrow/compute/api_aggregate.h"
#include "arrow/compute/api_vector.h"
#include "arrow/compute/exec.h"
#include "arrow/compute/exec/expression.h"
#include "arrow/result.h"
#include "arrow/util/async_generator.h"
#include "arrow/util/async_util.h"
#include "arrow/util/optional.h"
#include "arrow/util/visibility.h"
namespace arrow {
namespace compute {
using AsyncExecBatchGenerator = AsyncGenerator<util::optional<ExecBatch>>;
/// \addtogroup execnode-options
/// @{
class ARROW_EXPORT ExecNodeOptions {
public:
virtual ~ExecNodeOptions() = default;
};
/// \brief Adapt an AsyncGenerator<ExecBatch> as a source node
///
/// plan->exec_context()->executor() will be used to parallelize pushing to
/// outputs, if provided.
class ARROW_EXPORT SourceNodeOptions : public ExecNodeOptions {
public:
SourceNodeOptions(std::shared_ptr<Schema> output_schema,
std::function<Future<util::optional<ExecBatch>>()> generator)
: output_schema(std::move(output_schema)), generator(std::move(generator)) {}
static Result<std::shared_ptr<SourceNodeOptions>> FromTable(const Table& table,
arrow::internal::Executor*);
std::shared_ptr<Schema> output_schema;
std::function<Future<util::optional<ExecBatch>>()> generator;
};
/// \brief An extended Source node which accepts a table
class ARROW_EXPORT TableSourceNodeOptions : public ExecNodeOptions {
public:
TableSourceNodeOptions(std::shared_ptr<Table> table, int64_t max_batch_size)
: table(table), max_batch_size(max_batch_size) {}
// arrow table which acts as the data source
std::shared_ptr<Table> table;
// Size of batches to emit from this node
// If the table is larger the node will emit multiple batches from the
// the table to be processed in parallel.
int64_t max_batch_size;
};
/// \brief Make a node which excludes some rows from batches passed through it
///
/// filter_expression will be evaluated against each batch which is pushed to
/// this node. Any rows for which filter_expression does not evaluate to `true` will be
/// excluded in the batch emitted by this node.
class ARROW_EXPORT FilterNodeOptions : public ExecNodeOptions {
public:
explicit FilterNodeOptions(Expression filter_expression, bool async_mode = true)
: filter_expression(std::move(filter_expression)), async_mode(async_mode) {}
Expression filter_expression;
bool async_mode;
};
/// \brief Make a node which executes expressions on input batches, producing new batches.
///
/// Each expression will be evaluated against each batch which is pushed to
/// this node to produce a corresponding output column.
///
/// If names are not provided, the string representations of exprs will be used.
class ARROW_EXPORT ProjectNodeOptions : public ExecNodeOptions {
public:
explicit ProjectNodeOptions(std::vector<Expression> expressions,
std::vector<std::string> names = {}, bool async_mode = true)
: expressions(std::move(expressions)),
names(std::move(names)),
async_mode(async_mode) {}
std::vector<Expression> expressions;
std::vector<std::string> names;
bool async_mode;
};
/// \brief Make a node which aggregates input batches, optionally grouped by keys.
class ARROW_EXPORT AggregateNodeOptions : public ExecNodeOptions {
public:
AggregateNodeOptions(std::vector<internal::Aggregate> aggregates,
std::vector<FieldRef> targets, std::vector<std::string> names,
std::vector<FieldRef> keys = {})
: aggregates(std::move(aggregates)),
targets(std::move(targets)),
names(std::move(names)),
keys(std::move(keys)) {}
// aggregations which will be applied to the targetted fields
std::vector<internal::Aggregate> aggregates;
// fields to which aggregations will be applied
std::vector<FieldRef> targets;
// output field names for aggregations
std::vector<std::string> names;
// keys by which aggregations will be grouped
std::vector<FieldRef> keys;
};
constexpr int32_t kDefaultBackpressureHighBytes = 1 << 30; // 1GiB
constexpr int32_t kDefaultBackpressureLowBytes = 1 << 28; // 256MiB
class ARROW_EXPORT BackpressureMonitor {
public:
virtual ~BackpressureMonitor() = default;
virtual uint64_t bytes_in_use() const = 0;
virtual bool is_paused() const = 0;
};
/// \brief Options to control backpressure behavior
struct ARROW_EXPORT BackpressureOptions {
/// \brief Create default options that perform no backpressure
BackpressureOptions() : resume_if_below(0), pause_if_above(0) {}
/// \brief Create options that will perform backpressure
///
/// \param resume_if_below The producer should resume producing if the backpressure
/// queue has fewer than resume_if_below items.
/// \param pause_if_above The producer should pause producing if the backpressure
/// queue has more than pause_if_above items
BackpressureOptions(uint32_t resume_if_below, uint32_t pause_if_above)
: resume_if_below(resume_if_below), pause_if_above(pause_if_above) {}
static BackpressureOptions DefaultBackpressure() {
return BackpressureOptions(kDefaultBackpressureLowBytes,
kDefaultBackpressureHighBytes);
}
bool should_apply_backpressure() const { return pause_if_above > 0; }
uint64_t resume_if_below;
uint64_t pause_if_above;
};
/// \brief Add a sink node which forwards to an AsyncGenerator<ExecBatch>
///
/// Emitted batches will not be ordered.
class ARROW_EXPORT SinkNodeOptions : public ExecNodeOptions {
public:
explicit SinkNodeOptions(std::function<Future<util::optional<ExecBatch>>()>* generator,
BackpressureOptions backpressure = {},
BackpressureMonitor** backpressure_monitor = NULLPTR)
: generator(generator),
backpressure(std::move(backpressure)),
backpressure_monitor(backpressure_monitor) {}
/// \brief A pointer to a generator of batches.
///
/// This will be set when the node is added to the plan and should be used to consume
/// data from the plan. If this function is not called frequently enough then the sink
/// node will start to accumulate data and may apply backpressure.
std::function<Future<util::optional<ExecBatch>>()>* generator;
/// \brief Options to control when to apply backpressure
///
/// This is optional, the default is to never apply backpressure. If the plan is not
/// consumed quickly enough the system may eventually run out of memory.
BackpressureOptions backpressure;
/// \brief A pointer to a backpressure monitor
///
/// This will be set when the node is added to the plan. This can be used to inspect
/// the amount of data currently queued in the sink node. This is an optional utility
/// and backpressure can be applied even if this is not used.
BackpressureMonitor** backpressure_monitor;
};
/// \brief Control used by a SinkNodeConsumer to pause & resume
///
/// Callers should ensure that they do not call Pause and Resume simultaneously and they
/// should sequence things so that a call to Pause() is always followed by an eventual
/// call to Resume()
class ARROW_EXPORT BackpressureControl {
public:
virtual ~BackpressureControl() = default;
/// \brief Ask the input to pause
///
/// This is best effort, batches may continue to arrive
/// Must eventually be followed by a call to Resume() or deadlock will occur
virtual void Pause() = 0;
/// \brief Ask the input to resume
virtual void Resume() = 0;
};
class ARROW_EXPORT SinkNodeConsumer {
public:
virtual ~SinkNodeConsumer() = default;
/// \brief Prepare any consumer state
///
/// This will be run once the schema is finalized as the plan is starting and
/// before any calls to Consume. A common use is to save off the schema so that
/// batches can be interpreted.
virtual Status Init(const std::shared_ptr<Schema>& schema,
BackpressureControl* backpressure_control) = 0;
/// \brief Consume a batch of data
virtual Status Consume(ExecBatch batch) = 0;
/// \brief Signal to the consumer that the last batch has been delivered
///
/// The returned future should only finish when all outstanding tasks have completed
virtual Future<> Finish() = 0;
};
/// \brief Add a sink node which consumes data within the exec plan run
class ARROW_EXPORT ConsumingSinkNodeOptions : public ExecNodeOptions {
public:
explicit ConsumingSinkNodeOptions(std::shared_ptr<SinkNodeConsumer> consumer)
: consumer(std::move(consumer)) {}
std::shared_ptr<SinkNodeConsumer> consumer;
};
/// \brief Make a node which sorts rows passed through it
///
/// All batches pushed to this node will be accumulated, then sorted, by the given
/// fields. Then sorted batches will be forwarded to the generator in sorted order.
class ARROW_EXPORT OrderBySinkNodeOptions : public SinkNodeOptions {
public:
explicit OrderBySinkNodeOptions(
SortOptions sort_options,
std::function<Future<util::optional<ExecBatch>>()>* generator)
: SinkNodeOptions(generator), sort_options(std::move(sort_options)) {}
SortOptions sort_options;
};
/// @}
enum class JoinType {
LEFT_SEMI,
RIGHT_SEMI,
LEFT_ANTI,
RIGHT_ANTI,
INNER,
LEFT_OUTER,
RIGHT_OUTER,
FULL_OUTER
};
std::string ToString(JoinType t);
enum class JoinKeyCmp { EQ, IS };
/// \addtogroup execnode-options
/// @{
/// \brief Make a node which implements join operation using hash join strategy.
class ARROW_EXPORT HashJoinNodeOptions : public ExecNodeOptions {
public:
static constexpr const char* default_output_suffix_for_left = "";
static constexpr const char* default_output_suffix_for_right = "";
HashJoinNodeOptions(
JoinType in_join_type, std::vector<FieldRef> in_left_keys,
std::vector<FieldRef> in_right_keys, Expression filter = literal(true),
std::string output_suffix_for_left = default_output_suffix_for_left,
std::string output_suffix_for_right = default_output_suffix_for_right)
: join_type(in_join_type),
left_keys(std::move(in_left_keys)),
right_keys(std::move(in_right_keys)),
output_all(true),
output_suffix_for_left(std::move(output_suffix_for_left)),
output_suffix_for_right(std::move(output_suffix_for_right)),
filter(std::move(filter)) {
this->key_cmp.resize(this->left_keys.size());
for (size_t i = 0; i < this->left_keys.size(); ++i) {
this->key_cmp[i] = JoinKeyCmp::EQ;
}
}
HashJoinNodeOptions(
JoinType join_type, std::vector<FieldRef> left_keys,
std::vector<FieldRef> right_keys, std::vector<FieldRef> left_output,
std::vector<FieldRef> right_output, Expression filter = literal(true),
std::string output_suffix_for_left = default_output_suffix_for_left,
std::string output_suffix_for_right = default_output_suffix_for_right)
: join_type(join_type),
left_keys(std::move(left_keys)),
right_keys(std::move(right_keys)),
output_all(false),
left_output(std::move(left_output)),
right_output(std::move(right_output)),
output_suffix_for_left(std::move(output_suffix_for_left)),
output_suffix_for_right(std::move(output_suffix_for_right)),
filter(std::move(filter)) {
this->key_cmp.resize(this->left_keys.size());
for (size_t i = 0; i < this->left_keys.size(); ++i) {
this->key_cmp[i] = JoinKeyCmp::EQ;
}
}
HashJoinNodeOptions(
JoinType join_type, std::vector<FieldRef> left_keys,
std::vector<FieldRef> right_keys, std::vector<FieldRef> left_output,
std::vector<FieldRef> right_output, std::vector<JoinKeyCmp> key_cmp,
Expression filter = literal(true),
std::string output_suffix_for_left = default_output_suffix_for_left,
std::string output_suffix_for_right = default_output_suffix_for_right)
: join_type(join_type),
left_keys(std::move(left_keys)),
right_keys(std::move(right_keys)),
output_all(false),
left_output(std::move(left_output)),
right_output(std::move(right_output)),
key_cmp(std::move(key_cmp)),
output_suffix_for_left(std::move(output_suffix_for_left)),
output_suffix_for_right(std::move(output_suffix_for_right)),
filter(std::move(filter)) {}
// type of join (inner, left, semi...)
JoinType join_type;
// key fields from left input
std::vector<FieldRef> left_keys;
// key fields from right input
std::vector<FieldRef> right_keys;
// if set all valid fields from both left and right input will be output
// (and field ref vectors for output fields will be ignored)
bool output_all;
// output fields passed from left input
std::vector<FieldRef> left_output;
// output fields passed from right input
std::vector<FieldRef> right_output;
// key comparison function (determines whether a null key is equal another null
// key or not)
std::vector<JoinKeyCmp> key_cmp;
// suffix added to names of output fields coming from left input (used to distinguish,
// if necessary, between fields of the same name in left and right input and can be left
// empty if there are no name collisions)
std::string output_suffix_for_left;
// suffix added to names of output fields coming from right input
std::string output_suffix_for_right;
// residual filter which is applied to matching rows. Rows that do not match
// the filter are not included. The filter is applied against the
// concatenated input schema (left fields then right fields) and can reference
// fields that are not included in the output.
Expression filter;
};
/// \brief Make a node which select top_k/bottom_k rows passed through it
///
/// All batches pushed to this node will be accumulated, then selected, by the given
/// fields. Then sorted batches will be forwarded to the generator in sorted order.
class ARROW_EXPORT SelectKSinkNodeOptions : public SinkNodeOptions {
public:
explicit SelectKSinkNodeOptions(
SelectKOptions select_k_options,
std::function<Future<util::optional<ExecBatch>>()>* generator)
: SinkNodeOptions(generator), select_k_options(std::move(select_k_options)) {}
/// SelectK options
SelectKOptions select_k_options;
};
/// @}
/// \brief Adapt a Table as a sink node
///
/// obtains the output of an execution plan to
/// a table pointer.
class ARROW_EXPORT TableSinkNodeOptions : public ExecNodeOptions {
public:
explicit TableSinkNodeOptions(std::shared_ptr<Table>* output_table)
: output_table(output_table) {}
std::shared_ptr<Table>* output_table;
};
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,53 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <functional>
#include <memory>
#include <vector>
#include "arrow/compute/exec/options.h"
#include "arrow/record_batch.h"
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/type.h"
namespace arrow {
namespace compute {
class OrderByImpl {
public:
virtual ~OrderByImpl() = default;
virtual void InputReceived(const std::shared_ptr<RecordBatch>& batch) = 0;
virtual Result<Datum> DoFinish() = 0;
virtual std::string ToString() const = 0;
static Result<std::unique_ptr<OrderByImpl>> MakeSort(
ExecContext* ctx, const std::shared_ptr<Schema>& output_schema,
const SortOptions& options);
static Result<std::unique_ptr<OrderByImpl>> MakeSelectK(
ExecContext* ctx, const std::shared_ptr<Schema>& output_schema,
const SelectKOptions& options);
};
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,136 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <atomic>
#include <cassert>
#include <cstdint>
#include <functional>
#include <random>
#include "arrow/buffer.h"
#include "arrow/compute/exec/util.h"
namespace arrow {
namespace compute {
class PartitionSort {
public:
/// \brief Bucket sort rows on partition ids in O(num_rows) time.
///
/// Include in the output exclusive cummulative sum of bucket sizes.
/// This corresponds to ranges in the sorted array containing all row ids for
/// each of the partitions.
///
/// prtn_ranges must be initailized and have at least prtn_ranges + 1 elements
/// when this method returns prtn_ranges[i] will contains the total number of
/// elements in partitions 0 through i. prtn_ranges[0] will be 0.
///
/// prtn_id_impl must be a function that takes in a row id (int) and returns
/// a partition id (int). The returned partition id must be between 0 and
/// num_prtns (exclusive).
///
/// output_pos_impl is a function that takes in a row id (int) and a position (int)
/// in the bucket sorted output. The function should insert the row in the
/// output.
///
/// For example:
///
/// in_arr: [5, 7, 2, 3, 5, 4]
/// num_prtns: 3
/// prtn_id_impl: [&in_arr] (int row_id) { return in_arr[row_id] / 3; }
/// output_pos_impl: [&out_arr] (int row_id, int pos) { out_arr[pos] = row_id; }
///
/// After Execution
/// out_arr: [2, 5, 3, 5, 4, 7]
/// prtn_ranges: [0, 1, 5, 6]
template <class INPUT_PRTN_ID_FN, class OUTPUT_POS_FN>
static void Eval(int num_rows, int num_prtns, uint16_t* prtn_ranges,
INPUT_PRTN_ID_FN prtn_id_impl, OUTPUT_POS_FN output_pos_impl) {
ARROW_DCHECK(num_rows > 0 && num_rows <= (1 << 15));
ARROW_DCHECK(num_prtns >= 1 && num_prtns <= (1 << 15));
memset(prtn_ranges, 0, (num_prtns + 1) * sizeof(uint16_t));
for (int i = 0; i < num_rows; ++i) {
int prtn_id = static_cast<int>(prtn_id_impl(i));
++prtn_ranges[prtn_id + 1];
}
uint16_t sum = 0;
for (int i = 0; i < num_prtns; ++i) {
uint16_t sum_next = sum + prtn_ranges[i + 1];
prtn_ranges[i + 1] = sum;
sum = sum_next;
}
for (int i = 0; i < num_rows; ++i) {
int prtn_id = static_cast<int>(prtn_id_impl(i));
int pos = prtn_ranges[prtn_id + 1]++;
output_pos_impl(i, pos);
}
}
};
/// \brief A control for synchronizing threads on a partitionable workload
class PartitionLocks {
public:
PartitionLocks();
~PartitionLocks();
/// \brief Initializes the control, must be called before use
///
/// \param num_prtns Number of partitions to synchronize
void Init(int num_prtns);
/// \brief Cleans up the control, it should not be used after this call
void CleanUp();
/// \brief Acquire a partition to work on one
///
/// \param num_prtns Length of prtns_to_try, must be <= num_prtns used in Init
/// \param prtns_to_try An array of partitions that still have remaining work
/// \param limit_retries If false, this method will spinwait forever until success
/// \param max_retries Max times to attempt checking out work before returning false
/// \param[out] locked_prtn_id The id of the partition locked
/// \param[out] locked_prtn_id_pos The index of the partition locked in prtns_to_try
/// \return True if a partition was locked, false if max_retries was attempted
/// without successfully acquiring a lock
///
/// This method is thread safe
bool AcquirePartitionLock(int num_prtns, const int* prtns_to_try, bool limit_retries,
int max_retries, int* locked_prtn_id,
int* locked_prtn_id_pos);
/// \brief Release a partition so that other threads can work on it
void ReleasePartitionLock(int prtn_id);
private:
std::atomic<bool>* lock_ptr(int prtn_id);
int random_int(int num_values);
struct PartitionLock {
static constexpr int kCacheLineBytes = 64;
std::atomic<bool> lock;
uint8_t padding[kCacheLineBytes];
};
int num_prtns_;
std::unique_ptr<PartitionLock[]> locks_;
std::seed_seq rand_seed_;
std::mt19937 rand_engine_;
std::uniform_int_distribution<uint64_t> rand_distribution_;
};
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,215 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <cstdint>
#include <memory>
#include <string>
#include <vector>
#include "arrow/compute/exec/key_encode.h" // for KeyColumnMetadata
#include "arrow/type.h" // for DataType, FieldRef, Field and Schema
#include "arrow/util/mutex.h"
namespace arrow {
using internal::checked_cast;
namespace compute {
// Identifiers for all different row schemas that are used in a join
//
enum class HashJoinProjection : int {
INPUT = 0,
KEY = 1,
PAYLOAD = 2,
FILTER = 3,
OUTPUT = 4
};
struct SchemaProjectionMap {
static constexpr int kMissingField = -1;
int num_cols;
const int* source_to_base;
const int* base_to_target;
inline int get(int i) const {
ARROW_DCHECK(i >= 0 && i < num_cols);
ARROW_DCHECK(source_to_base[i] != kMissingField);
return base_to_target[source_to_base[i]];
}
};
/// Helper class for managing different projections of the same row schema.
/// Used to efficiently map any field in one projection to a corresponding field in
/// another projection.
/// Materialized mappings are generated lazily at the time of the first access.
/// Thread-safe apart from initialization.
template <typename ProjectionIdEnum>
class SchemaProjectionMaps {
public:
static constexpr int kMissingField = -1;
Status Init(ProjectionIdEnum full_schema_handle, const Schema& schema,
const std::vector<ProjectionIdEnum>& projection_handles,
const std::vector<const std::vector<FieldRef>*>& projections) {
ARROW_DCHECK(projection_handles.size() == projections.size());
ARROW_RETURN_NOT_OK(RegisterSchema(full_schema_handle, schema));
for (size_t i = 0; i < projections.size(); ++i) {
ARROW_RETURN_NOT_OK(
RegisterProjectedSchema(projection_handles[i], *(projections[i]), schema));
}
RegisterEnd();
return Status::OK();
}
int num_cols(ProjectionIdEnum schema_handle) const {
int id = schema_id(schema_handle);
return static_cast<int>(schemas_[id].second.size());
}
const std::string& field_name(ProjectionIdEnum schema_handle, int field_id) const {
return field(schema_handle, field_id).field_name;
}
const std::shared_ptr<DataType>& data_type(ProjectionIdEnum schema_handle,
int field_id) const {
return field(schema_handle, field_id).data_type;
}
SchemaProjectionMap map(ProjectionIdEnum from, ProjectionIdEnum to) const {
int id_from = schema_id(from);
int id_to = schema_id(to);
SchemaProjectionMap result;
result.num_cols = num_cols(from);
result.source_to_base = mappings_[id_from].data();
result.base_to_target = inverse_mappings_[id_to].data();
return result;
}
protected:
struct FieldInfo {
int field_path;
std::string field_name;
std::shared_ptr<DataType> data_type;
};
Status RegisterSchema(ProjectionIdEnum handle, const Schema& schema) {
std::vector<FieldInfo> out_fields;
const FieldVector& in_fields = schema.fields();
out_fields.resize(in_fields.size());
for (size_t i = 0; i < in_fields.size(); ++i) {
const std::string& name = in_fields[i]->name();
const std::shared_ptr<DataType>& type = in_fields[i]->type();
out_fields[i].field_path = static_cast<int>(i);
out_fields[i].field_name = name;
out_fields[i].data_type = type;
}
schemas_.push_back(std::make_pair(handle, out_fields));
return Status::OK();
}
Status RegisterProjectedSchema(ProjectionIdEnum handle,
const std::vector<FieldRef>& selected_fields,
const Schema& full_schema) {
std::vector<FieldInfo> out_fields;
const FieldVector& in_fields = full_schema.fields();
out_fields.resize(selected_fields.size());
for (size_t i = 0; i < selected_fields.size(); ++i) {
// All fields must be found in schema without ambiguity
ARROW_ASSIGN_OR_RAISE(auto match, selected_fields[i].FindOne(full_schema));
const std::string& name = in_fields[match[0]]->name();
const std::shared_ptr<DataType>& type = in_fields[match[0]]->type();
out_fields[i].field_path = match[0];
out_fields[i].field_name = name;
out_fields[i].data_type = type;
}
schemas_.push_back(std::make_pair(handle, out_fields));
return Status::OK();
}
void RegisterEnd() {
size_t size = schemas_.size();
mappings_.resize(size);
inverse_mappings_.resize(size);
int id_base = 0;
for (size_t i = 0; i < size; ++i) {
GenerateMapForProjection(static_cast<int>(i), id_base);
}
}
int schema_id(ProjectionIdEnum schema_handle) const {
for (size_t i = 0; i < schemas_.size(); ++i) {
if (schemas_[i].first == schema_handle) {
return static_cast<int>(i);
}
}
// We should never get here
ARROW_DCHECK(false);
return -1;
}
const FieldInfo& field(ProjectionIdEnum schema_handle, int field_id) const {
int id = schema_id(schema_handle);
const std::vector<FieldInfo>& field_infos = schemas_[id].second;
return field_infos[field_id];
}
void GenerateMapForProjection(int id_proj, int id_base) {
int num_cols_proj = static_cast<int>(schemas_[id_proj].second.size());
int num_cols_base = static_cast<int>(schemas_[id_base].second.size());
std::vector<int>& mapping = mappings_[id_proj];
std::vector<int>& inverse_mapping = inverse_mappings_[id_proj];
mapping.resize(num_cols_proj);
inverse_mapping.resize(num_cols_base);
if (id_proj == id_base) {
for (int i = 0; i < num_cols_base; ++i) {
mapping[i] = inverse_mapping[i] = i;
}
} else {
const std::vector<FieldInfo>& fields_proj = schemas_[id_proj].second;
const std::vector<FieldInfo>& fields_base = schemas_[id_base].second;
for (int i = 0; i < num_cols_base; ++i) {
inverse_mapping[i] = SchemaProjectionMap::kMissingField;
}
for (int i = 0; i < num_cols_proj; ++i) {
int field_id = SchemaProjectionMap::kMissingField;
for (int j = 0; j < num_cols_base; ++j) {
if (fields_proj[i].field_path == fields_base[j].field_path) {
field_id = j;
// If there are multiple matches for the same input field,
// it will be mapped to the first match.
break;
}
}
ARROW_DCHECK(field_id != SchemaProjectionMap::kMissingField);
mapping[i] = field_id;
inverse_mapping[field_id] = i;
}
}
}
// vector used as a mapping from ProjectionIdEnum to fields
std::vector<std::pair<ProjectionIdEnum, std::vector<FieldInfo>>> schemas_;
std::vector<std::vector<int>> mappings_;
std::vector<std::vector<int>> inverse_mappings_;
};
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,100 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <atomic>
#include <cstdint>
#include <functional>
#include <vector>
#include "arrow/status.h"
#include "arrow/util/logging.h"
namespace arrow {
namespace compute {
// Atomic value surrounded by padding bytes to avoid cache line invalidation
// whenever it is modified by a concurrent thread on a different CPU core.
//
template <typename T>
class AtomicWithPadding {
private:
static constexpr int kCacheLineSize = 64;
uint8_t padding_before[kCacheLineSize];
public:
std::atomic<T> value;
private:
uint8_t padding_after[kCacheLineSize];
};
// Used for asynchronous execution of operations that can be broken into
// a fixed number of symmetric tasks that can be executed concurrently.
//
// Implements priorities between multiple such operations, called task groups.
//
// Allows to specify the maximum number of in-flight tasks at any moment.
//
// Also allows for executing next pending tasks immediately using a caller thread.
//
class TaskScheduler {
public:
using TaskImpl = std::function<Status(size_t, int64_t)>;
using TaskGroupContinuationImpl = std::function<Status(size_t)>;
using ScheduleImpl = std::function<Status(TaskGroupContinuationImpl)>;
using AbortContinuationImpl = std::function<void()>;
virtual ~TaskScheduler() = default;
// Order in which task groups are registered represents priorities of their tasks
// (the first group has the highest priority).
//
// Returns task group identifier that is used to request operations on the task group.
virtual int RegisterTaskGroup(TaskImpl task_impl,
TaskGroupContinuationImpl cont_impl) = 0;
virtual void RegisterEnd() = 0;
// total_num_tasks may be zero, in which case task group continuation will be executed
// immediately
virtual Status StartTaskGroup(size_t thread_id, int group_id,
int64_t total_num_tasks) = 0;
// Execute given number of tasks immediately using caller thread
virtual Status ExecuteMore(size_t thread_id, int num_tasks_to_execute,
bool execute_all) = 0;
// Begin scheduling tasks using provided callback and
// the limit on the number of in-flight tasks at any moment.
//
// Scheduling will continue as long as there are waiting tasks.
//
// It will automatically resume whenever new task group gets started.
virtual Status StartScheduling(size_t thread_id, ScheduleImpl schedule_impl,
int num_concurrent_tasks, bool use_sync_execution) = 0;
// Abort scheduling and execution.
// Used in case of being notified about unrecoverable error for the entire query.
virtual void Abort(AbortContinuationImpl impl) = 0;
static std::unique_ptr<TaskScheduler> Make();
};
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,132 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <arrow/testing/gtest_util.h>
#include <arrow/util/vector.h>
#include <functional>
#include <random>
#include <string>
#include <vector>
#include "arrow/compute/exec.h"
#include "arrow/compute/exec/exec_plan.h"
#include "arrow/testing/visibility.h"
#include "arrow/util/async_generator.h"
#include "arrow/util/pcg_random.h"
#include "arrow/util/string_view.h"
namespace arrow {
namespace compute {
using StartProducingFunc = std::function<Status(ExecNode*)>;
using StopProducingFunc = std::function<void(ExecNode*)>;
// Make a dummy node that has no execution behaviour
ARROW_TESTING_EXPORT
ExecNode* MakeDummyNode(ExecPlan* plan, std::string label, std::vector<ExecNode*> inputs,
int num_outputs, StartProducingFunc = {}, StopProducingFunc = {});
ARROW_TESTING_EXPORT
ExecBatch ExecBatchFromJSON(const std::vector<ValueDescr>& descrs,
util::string_view json);
struct BatchesWithSchema {
std::vector<ExecBatch> batches;
std::shared_ptr<Schema> schema;
AsyncGenerator<util::optional<ExecBatch>> gen(bool parallel, bool slow) const {
auto opt_batches = ::arrow::internal::MapVector(
[](ExecBatch batch) { return util::make_optional(std::move(batch)); }, batches);
AsyncGenerator<util::optional<ExecBatch>> gen;
if (parallel) {
// emulate batches completing initial decode-after-scan on a cpu thread
gen = MakeBackgroundGenerator(MakeVectorIterator(std::move(opt_batches)),
::arrow::internal::GetCpuThreadPool())
.ValueOrDie();
// ensure that callbacks are not executed immediately on a background thread
gen =
MakeTransferredGenerator(std::move(gen), ::arrow::internal::GetCpuThreadPool());
} else {
gen = MakeVectorGenerator(std::move(opt_batches));
}
if (slow) {
gen =
MakeMappedGenerator(std::move(gen), [](const util::optional<ExecBatch>& batch) {
SleepABit();
return batch;
});
}
return gen;
}
};
ARROW_TESTING_EXPORT
Future<std::vector<ExecBatch>> StartAndCollect(
ExecPlan* plan, AsyncGenerator<util::optional<ExecBatch>> gen);
ARROW_TESTING_EXPORT
BatchesWithSchema MakeBasicBatches();
ARROW_TESTING_EXPORT
BatchesWithSchema MakeNestedBatches();
ARROW_TESTING_EXPORT
BatchesWithSchema MakeRandomBatches(const std::shared_ptr<Schema>& schema,
int num_batches = 10, int batch_size = 4);
ARROW_TESTING_EXPORT
Result<std::shared_ptr<Table>> SortTableOnAllFields(const std::shared_ptr<Table>& tab);
ARROW_TESTING_EXPORT
void AssertTablesEqual(const std::shared_ptr<Table>& exp,
const std::shared_ptr<Table>& act);
ARROW_TESTING_EXPORT
void AssertExecBatchesEqual(const std::shared_ptr<Schema>& schema,
const std::vector<ExecBatch>& exp,
const std::vector<ExecBatch>& act);
ARROW_TESTING_EXPORT
bool operator==(const Declaration&, const Declaration&);
ARROW_TESTING_EXPORT
void PrintTo(const Declaration& decl, std::ostream* os);
class Random64Bit {
public:
explicit Random64Bit(int32_t seed) : rng_(seed) {}
uint64_t next() { return dist_(rng_); }
template <typename T>
inline T from_range(const T& min_val, const T& max_val) {
return static_cast<T>(min_val + (next() % (max_val - min_val + 1)));
}
private:
random::pcg32_fast rng_;
std::uniform_int_distribution<uint64_t> dist_;
};
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,64 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <memory>
#include <string>
#include <vector>
#include "arrow/compute/type_fwd.h"
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/util/optional.h"
namespace arrow {
namespace compute {
namespace internal {
class ARROW_EXPORT TpchGen {
public:
virtual ~TpchGen() = default;
/*
* \brief Create a factory for nodes that generate TPC-H data
*
* Note: Individual tables will reference each other. It is important that you only
* create a single TpchGen instance for each plan and then you can create nodes for each
* table from that single TpchGen instance. Note: Every batch will be scheduled as a new
* task using the ExecPlan's scheduler.
*/
static Result<std::unique_ptr<TpchGen>> Make(
ExecPlan* plan, double scale_factor = 1.0, int64_t batch_size = 4096,
util::optional<int64_t> seed = util::nullopt);
// The below methods will create and add an ExecNode to the plan that generates
// data for the desired table. If columns is empty, all columns will be generated.
// The methods return the added ExecNode, which should be used for inputs.
virtual Result<ExecNode*> Supplier(std::vector<std::string> columns = {}) = 0;
virtual Result<ExecNode*> Part(std::vector<std::string> columns = {}) = 0;
virtual Result<ExecNode*> PartSupp(std::vector<std::string> columns = {}) = 0;
virtual Result<ExecNode*> Customer(std::vector<std::string> columns = {}) = 0;
virtual Result<ExecNode*> Orders(std::vector<std::string> columns = {}) = 0;
virtual Result<ExecNode*> Lineitem(std::vector<std::string> columns = {}) = 0;
virtual Result<ExecNode*> Nation(std::vector<std::string> columns = {}) = 0;
virtual Result<ExecNode*> Region(std::vector<std::string> columns = {}) = 0;
};
} // namespace internal
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,297 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <atomic>
#include <cstdint>
#include <thread>
#include <unordered_map>
#include <vector>
#include "arrow/buffer.h"
#include "arrow/compute/type_fwd.h"
#include "arrow/memory_pool.h"
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/util/bit_util.h"
#include "arrow/util/cpu_info.h"
#include "arrow/util/logging.h"
#include "arrow/util/mutex.h"
#include "arrow/util/optional.h"
#include "arrow/util/thread_pool.h"
#if defined(__clang__) || defined(__GNUC__)
#define BYTESWAP(x) __builtin_bswap64(x)
#define ROTL(x, n) (((x) << (n)) | ((x) >> ((-n) & 31)))
#define ROTL64(x, n) (((x) << (n)) | ((x) >> ((-n) & 63)))
#define PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
#elif defined(_MSC_VER)
#include <intrin.h>
#define BYTESWAP(x) _byteswap_uint64(x)
#define ROTL(x, n) _rotl((x), (n))
#define ROTL64(x, n) _rotl64((x), (n))
#if defined(_M_X64) || defined(_M_I86)
#include <mmintrin.h> // https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx
#define PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
#else
#define PREFETCH(ptr) (void)(ptr) /* disabled */
#endif
#endif
namespace arrow {
namespace util {
template <typename T>
inline void CheckAlignment(const void* ptr) {
ARROW_DCHECK(reinterpret_cast<uint64_t>(ptr) % sizeof(T) == 0);
}
// Some platforms typedef int64_t as long int instead of long long int,
// which breaks the _mm256_i64gather_epi64 and _mm256_i32gather_epi64 intrinsics
// which need long long.
// We use the cast to the type below in these intrinsics to make the code
// compile in all cases.
//
using int64_for_gather_t = const long long int; // NOLINT runtime-int
// All MiniBatch... classes use TempVectorStack for vector allocations and can
// only work with vectors up to 1024 elements.
//
// They should only be allocated on the stack to guarantee the right sequence
// of allocation and deallocation of vectors from TempVectorStack.
//
class MiniBatch {
public:
static constexpr int kMiniBatchLength = 1024;
};
/// Storage used to allocate temporary vectors of a batch size.
/// Temporary vectors should resemble allocating temporary variables on the stack
/// but in the context of vectorized processing where we need to store a vector of
/// temporaries instead of a single value.
class TempVectorStack {
template <typename>
friend class TempVectorHolder;
public:
Status Init(MemoryPool* pool, int64_t size) {
num_vectors_ = 0;
top_ = 0;
buffer_size_ = size;
ARROW_ASSIGN_OR_RAISE(auto buffer, AllocateResizableBuffer(size, pool));
// Ensure later operations don't accidentally read uninitialized memory.
std::memset(buffer->mutable_data(), 0xFF, size);
buffer_ = std::move(buffer);
return Status::OK();
}
private:
int64_t PaddedAllocationSize(int64_t num_bytes) {
// Round up allocation size to multiple of 8 bytes
// to avoid returning temp vectors with unaligned address.
//
// Also add padding at the end to facilitate loads and stores
// using SIMD when number of vector elements is not divisible
// by the number of SIMD lanes.
//
return ::arrow::bit_util::RoundUp(num_bytes, sizeof(int64_t)) + kPadding;
}
void alloc(uint32_t num_bytes, uint8_t** data, int* id) {
int64_t old_top = top_;
top_ += PaddedAllocationSize(num_bytes) + 2 * sizeof(uint64_t);
// Stack overflow check
ARROW_DCHECK(top_ <= buffer_size_);
*data = buffer_->mutable_data() + old_top + sizeof(uint64_t);
// We set 8 bytes before the beginning of the allocated range and
// 8 bytes after the end to check for stack overflow (which would
// result in those known bytes being corrupted).
reinterpret_cast<uint64_t*>(buffer_->mutable_data() + old_top)[0] = kGuard1;
reinterpret_cast<uint64_t*>(buffer_->mutable_data() + top_)[-1] = kGuard2;
*id = num_vectors_++;
}
void release(int id, uint32_t num_bytes) {
ARROW_DCHECK(num_vectors_ == id + 1);
int64_t size = PaddedAllocationSize(num_bytes) + 2 * sizeof(uint64_t);
ARROW_DCHECK(reinterpret_cast<const uint64_t*>(buffer_->mutable_data() + top_)[-1] ==
kGuard2);
ARROW_DCHECK(top_ >= size);
top_ -= size;
ARROW_DCHECK(reinterpret_cast<const uint64_t*>(buffer_->mutable_data() + top_)[0] ==
kGuard1);
--num_vectors_;
}
static constexpr uint64_t kGuard1 = 0x3141592653589793ULL;
static constexpr uint64_t kGuard2 = 0x0577215664901532ULL;
static constexpr int64_t kPadding = 64;
int num_vectors_;
int64_t top_;
std::unique_ptr<Buffer> buffer_;
int64_t buffer_size_;
};
template <typename T>
class TempVectorHolder {
friend class TempVectorStack;
public:
~TempVectorHolder() { stack_->release(id_, num_elements_ * sizeof(T)); }
T* mutable_data() { return reinterpret_cast<T*>(data_); }
TempVectorHolder(TempVectorStack* stack, uint32_t num_elements) {
stack_ = stack;
num_elements_ = num_elements;
stack_->alloc(num_elements * sizeof(T), &data_, &id_);
}
private:
TempVectorStack* stack_;
uint8_t* data_;
int id_;
uint32_t num_elements_;
};
class bit_util {
public:
static void bits_to_indexes(int bit_to_search, int64_t hardware_flags,
const int num_bits, const uint8_t* bits, int* num_indexes,
uint16_t* indexes, int bit_offset = 0);
static void bits_filter_indexes(int bit_to_search, int64_t hardware_flags,
const int num_bits, const uint8_t* bits,
const uint16_t* input_indexes, int* num_indexes,
uint16_t* indexes, int bit_offset = 0);
// Input and output indexes may be pointing to the same data (in-place filtering).
static void bits_split_indexes(int64_t hardware_flags, const int num_bits,
const uint8_t* bits, int* num_indexes_bit0,
uint16_t* indexes_bit0, uint16_t* indexes_bit1,
int bit_offset = 0);
// Bit 1 is replaced with byte 0xFF.
static void bits_to_bytes(int64_t hardware_flags, const int num_bits,
const uint8_t* bits, uint8_t* bytes, int bit_offset = 0);
// Return highest bit of each byte.
static void bytes_to_bits(int64_t hardware_flags, const int num_bits,
const uint8_t* bytes, uint8_t* bits, int bit_offset = 0);
static bool are_all_bytes_zero(int64_t hardware_flags, const uint8_t* bytes,
uint32_t num_bytes);
private:
inline static void bits_to_indexes_helper(uint64_t word, uint16_t base_index,
int* num_indexes, uint16_t* indexes);
inline static void bits_filter_indexes_helper(uint64_t word,
const uint16_t* input_indexes,
int* num_indexes, uint16_t* indexes);
template <int bit_to_search, bool filter_input_indexes>
static void bits_to_indexes_internal(int64_t hardware_flags, const int num_bits,
const uint8_t* bits, const uint16_t* input_indexes,
int* num_indexes, uint16_t* indexes,
uint16_t base_index = 0);
#if defined(ARROW_HAVE_AVX2)
static void bits_to_indexes_avx2(int bit_to_search, const int num_bits,
const uint8_t* bits, int* num_indexes,
uint16_t* indexes, uint16_t base_index = 0);
static void bits_filter_indexes_avx2(int bit_to_search, const int num_bits,
const uint8_t* bits, const uint16_t* input_indexes,
int* num_indexes, uint16_t* indexes);
template <int bit_to_search>
static void bits_to_indexes_imp_avx2(const int num_bits, const uint8_t* bits,
int* num_indexes, uint16_t* indexes,
uint16_t base_index = 0);
template <int bit_to_search>
static void bits_filter_indexes_imp_avx2(const int num_bits, const uint8_t* bits,
const uint16_t* input_indexes,
int* num_indexes, uint16_t* indexes);
static void bits_to_bytes_avx2(const int num_bits, const uint8_t* bits, uint8_t* bytes);
static void bytes_to_bits_avx2(const int num_bits, const uint8_t* bytes, uint8_t* bits);
static bool are_all_bytes_zero_avx2(const uint8_t* bytes, uint32_t num_bytes);
#endif
};
} // namespace util
namespace compute {
ARROW_EXPORT
Status ValidateExecNodeInputs(ExecPlan* plan, const std::vector<ExecNode*>& inputs,
int expected_num_inputs, const char* kind_name);
ARROW_EXPORT
Result<std::shared_ptr<Table>> TableFromExecBatches(
const std::shared_ptr<Schema>& schema, const std::vector<ExecBatch>& exec_batches);
class AtomicCounter {
public:
AtomicCounter() = default;
int count() const { return count_.load(); }
util::optional<int> total() const {
int total = total_.load();
if (total == -1) return {};
return total;
}
// return true if the counter is complete
bool Increment() {
DCHECK_NE(count_.load(), total_.load());
int count = count_.fetch_add(1) + 1;
if (count != total_.load()) return false;
return DoneOnce();
}
// return true if the counter is complete
bool SetTotal(int total) {
total_.store(total);
if (count_.load() != total) return false;
return DoneOnce();
}
// return true if the counter has not already been completed
bool Cancel() { return DoneOnce(); }
// return true if the counter has finished or been cancelled
bool Completed() { return complete_.load(); }
private:
// ensure there is only one true return from Increment(), SetTotal(), or Cancel()
bool DoneOnce() {
bool expected = false;
return complete_.compare_exchange_strong(expected, true);
}
std::atomic<int> count_{0}, total_{-1};
std::atomic<bool> complete_{false};
};
class ThreadIndexer {
public:
size_t operator()();
static size_t Capacity();
private:
static size_t Check(size_t thread_index);
util::Mutex mutex_;
std::unordered_map<std::thread::id, size_t> id_to_index_;
};
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,403 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// NOTE: API is EXPERIMENTAL and will change without going through a
// deprecation cycle.
#pragma once
#include <string>
#include <utility>
#include <vector>
#include "arrow/compute/kernel.h"
#include "arrow/compute/type_fwd.h"
#include "arrow/datum.h"
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/util/compare.h"
#include "arrow/util/macros.h"
#include "arrow/util/visibility.h"
namespace arrow {
namespace compute {
/// \defgroup compute-functions Abstract compute function API
///
/// @{
/// \brief Extension point for defining options outside libarrow (but
/// still within this project).
class ARROW_EXPORT FunctionOptionsType {
public:
virtual ~FunctionOptionsType() = default;
virtual const char* type_name() const = 0;
virtual std::string Stringify(const FunctionOptions&) const = 0;
virtual bool Compare(const FunctionOptions&, const FunctionOptions&) const = 0;
virtual Result<std::shared_ptr<Buffer>> Serialize(const FunctionOptions&) const;
virtual Result<std::unique_ptr<FunctionOptions>> Deserialize(
const Buffer& buffer) const;
virtual std::unique_ptr<FunctionOptions> Copy(const FunctionOptions&) const = 0;
};
/// \brief Base class for specifying options configuring a function's behavior,
/// such as error handling.
class ARROW_EXPORT FunctionOptions : public util::EqualityComparable<FunctionOptions> {
public:
virtual ~FunctionOptions() = default;
const FunctionOptionsType* options_type() const { return options_type_; }
const char* type_name() const { return options_type()->type_name(); }
bool Equals(const FunctionOptions& other) const;
using util::EqualityComparable<FunctionOptions>::Equals;
using util::EqualityComparable<FunctionOptions>::operator==;
using util::EqualityComparable<FunctionOptions>::operator!=;
std::string ToString() const;
std::unique_ptr<FunctionOptions> Copy() const;
/// \brief Serialize an options struct to a buffer.
Result<std::shared_ptr<Buffer>> Serialize() const;
/// \brief Deserialize an options struct from a buffer.
/// Note: this will only look for `type_name` in the default FunctionRegistry;
/// to use a custom FunctionRegistry, look up the FunctionOptionsType, then
/// call FunctionOptionsType::Deserialize().
static Result<std::unique_ptr<FunctionOptions>> Deserialize(
const std::string& type_name, const Buffer& buffer);
protected:
explicit FunctionOptions(const FunctionOptionsType* type) : options_type_(type) {}
const FunctionOptionsType* options_type_;
};
ARROW_EXPORT void PrintTo(const FunctionOptions&, std::ostream*);
/// \brief Contains the number of required arguments for the function.
///
/// Naming conventions taken from https://en.wikipedia.org/wiki/Arity.
struct ARROW_EXPORT Arity {
/// \brief A function taking no arguments
static Arity Nullary() { return Arity(0, false); }
/// \brief A function taking 1 argument
static Arity Unary() { return Arity(1, false); }
/// \brief A function taking 2 arguments
static Arity Binary() { return Arity(2, false); }
/// \brief A function taking 3 arguments
static Arity Ternary() { return Arity(3, false); }
/// \brief A function taking a variable number of arguments
///
/// \param[in] min_args the minimum number of arguments required when
/// invoking the function
static Arity VarArgs(int min_args = 0) { return Arity(min_args, true); }
// NOTE: the 0-argument form (default constructor) is required for Cython
explicit Arity(int num_args = 0, bool is_varargs = false)
: num_args(num_args), is_varargs(is_varargs) {}
/// The number of required arguments (or the minimum number for varargs
/// functions).
int num_args;
/// If true, then the num_args is the minimum number of required arguments.
bool is_varargs = false;
};
struct ARROW_EXPORT FunctionDoc {
/// \brief A one-line summary of the function, using a verb.
///
/// For example, "Add two numeric arrays or scalars".
std::string summary;
/// \brief A detailed description of the function, meant to follow the summary.
std::string description;
/// \brief Symbolic names (identifiers) for the function arguments.
///
/// Some bindings may use this to generate nicer function signatures.
std::vector<std::string> arg_names;
// TODO add argument descriptions?
/// \brief Name of the options class, if any.
std::string options_class;
/// \brief Whether options are required for function execution
///
/// If false, then either the function does not have an options class
/// or there is a usable default options value.
bool options_required;
FunctionDoc() = default;
FunctionDoc(std::string summary, std::string description,
std::vector<std::string> arg_names, std::string options_class = "",
bool options_required = false)
: summary(std::move(summary)),
description(std::move(description)),
arg_names(std::move(arg_names)),
options_class(std::move(options_class)),
options_required(options_required) {}
static const FunctionDoc& Empty();
};
/// \brief Base class for compute functions. Function implementations contain a
/// collection of "kernels" which are implementations of the function for
/// specific argument types. Selecting a viable kernel for executing a function
/// is referred to as "dispatching".
class ARROW_EXPORT Function {
public:
/// \brief The kind of function, which indicates in what contexts it is
/// valid for use.
enum Kind {
/// A function that performs scalar data operations on whole arrays of
/// data. Can generally process Array or Scalar values. The size of the
/// output will be the same as the size (or broadcasted size, in the case
/// of mixing Array and Scalar inputs) of the input.
SCALAR,
/// A function with array input and output whose behavior depends on the
/// values of the entire arrays passed, rather than the value of each scalar
/// value.
VECTOR,
/// A function that computes scalar summary statistics from array input.
SCALAR_AGGREGATE,
/// A function that computes grouped summary statistics from array input
/// and an array of group identifiers.
HASH_AGGREGATE,
/// A function that dispatches to other functions and does not contain its
/// own kernels.
META
};
virtual ~Function() = default;
/// \brief The name of the kernel. The registry enforces uniqueness of names.
const std::string& name() const { return name_; }
/// \brief The kind of kernel, which indicates in what contexts it is valid
/// for use.
Function::Kind kind() const { return kind_; }
/// \brief Contains the number of arguments the function requires, or if the
/// function accepts variable numbers of arguments.
const Arity& arity() const { return arity_; }
/// \brief Return the function documentation
const FunctionDoc& doc() const { return *doc_; }
/// \brief Returns the number of registered kernels for this function.
virtual int num_kernels() const = 0;
/// \brief Return a kernel that can execute the function given the exact
/// argument types (without implicit type casts or scalar->array promotions).
///
/// NB: This function is overridden in CastFunction.
virtual Result<const Kernel*> DispatchExact(
const std::vector<ValueDescr>& values) const;
/// \brief Return a best-match kernel that can execute the function given the argument
/// types, after implicit casts are applied.
///
/// \param[in,out] values Argument types. An element may be modified to indicate that
/// the returned kernel only approximately matches the input value descriptors; callers
/// are responsible for casting inputs to the type and shape required by the kernel.
virtual Result<const Kernel*> DispatchBest(std::vector<ValueDescr>* values) const;
/// \brief Execute the function eagerly with the passed input arguments with
/// kernel dispatch, batch iteration, and memory allocation details taken
/// care of.
///
/// If the `options` pointer is null, then `default_options()` will be used.
///
/// This function can be overridden in subclasses.
virtual Result<Datum> Execute(const std::vector<Datum>& args,
const FunctionOptions* options, ExecContext* ctx) const;
/// \brief Returns the default options for this function.
///
/// Whatever option semantics a Function has, implementations must guarantee
/// that default_options() is valid to pass to Execute as options.
const FunctionOptions* default_options() const { return default_options_; }
virtual Status Validate() const;
protected:
Function(std::string name, Function::Kind kind, const Arity& arity,
const FunctionDoc* doc, const FunctionOptions* default_options)
: name_(std::move(name)),
kind_(kind),
arity_(arity),
doc_(doc ? doc : &FunctionDoc::Empty()),
default_options_(default_options) {}
Status CheckArity(const std::vector<InputType>&) const;
Status CheckArity(const std::vector<ValueDescr>&) const;
std::string name_;
Function::Kind kind_;
Arity arity_;
const FunctionDoc* doc_;
const FunctionOptions* default_options_ = NULLPTR;
};
namespace detail {
template <typename KernelType>
class FunctionImpl : public Function {
public:
/// \brief Return pointers to current-available kernels for inspection
std::vector<const KernelType*> kernels() const {
std::vector<const KernelType*> result;
for (const auto& kernel : kernels_) {
result.push_back(&kernel);
}
return result;
}
int num_kernels() const override { return static_cast<int>(kernels_.size()); }
protected:
FunctionImpl(std::string name, Function::Kind kind, const Arity& arity,
const FunctionDoc* doc, const FunctionOptions* default_options)
: Function(std::move(name), kind, arity, doc, default_options) {}
std::vector<KernelType> kernels_;
};
/// \brief Look up a kernel in a function. If no Kernel is found, nullptr is returned.
ARROW_EXPORT
const Kernel* DispatchExactImpl(const Function* func, const std::vector<ValueDescr>&);
/// \brief Return an error message if no Kernel is found.
ARROW_EXPORT
Status NoMatchingKernel(const Function* func, const std::vector<ValueDescr>&);
} // namespace detail
/// \brief A function that executes elementwise operations on arrays or
/// scalars, and therefore whose results generally do not depend on the order
/// of the values in the arguments. Accepts and returns arrays that are all of
/// the same size. These functions roughly correspond to the functions used in
/// SQL expressions.
class ARROW_EXPORT ScalarFunction : public detail::FunctionImpl<ScalarKernel> {
public:
using KernelType = ScalarKernel;
ScalarFunction(std::string name, const Arity& arity, const FunctionDoc* doc,
const FunctionOptions* default_options = NULLPTR)
: detail::FunctionImpl<ScalarKernel>(std::move(name), Function::SCALAR, arity, doc,
default_options) {}
/// \brief Add a kernel with given input/output types, no required state
/// initialization, preallocation for fixed-width types, and default null
/// handling (intersect validity bitmaps of inputs).
Status AddKernel(std::vector<InputType> in_types, OutputType out_type,
ArrayKernelExec exec, KernelInit init = NULLPTR);
/// \brief Add a kernel (function implementation). Returns error if the
/// kernel's signature does not match the function's arity.
Status AddKernel(ScalarKernel kernel);
};
/// \brief A function that executes general array operations that may yield
/// outputs of different sizes or have results that depend on the whole array
/// contents. These functions roughly correspond to the functions found in
/// non-SQL array languages like APL and its derivatives.
class ARROW_EXPORT VectorFunction : public detail::FunctionImpl<VectorKernel> {
public:
using KernelType = VectorKernel;
VectorFunction(std::string name, const Arity& arity, const FunctionDoc* doc,
const FunctionOptions* default_options = NULLPTR)
: detail::FunctionImpl<VectorKernel>(std::move(name), Function::VECTOR, arity, doc,
default_options) {}
/// \brief Add a simple kernel with given input/output types, no required
/// state initialization, no data preallocation, and no preallocation of the
/// validity bitmap.
Status AddKernel(std::vector<InputType> in_types, OutputType out_type,
ArrayKernelExec exec, KernelInit init = NULLPTR);
/// \brief Add a kernel (function implementation). Returns error if the
/// kernel's signature does not match the function's arity.
Status AddKernel(VectorKernel kernel);
};
class ARROW_EXPORT ScalarAggregateFunction
: public detail::FunctionImpl<ScalarAggregateKernel> {
public:
using KernelType = ScalarAggregateKernel;
ScalarAggregateFunction(std::string name, const Arity& arity, const FunctionDoc* doc,
const FunctionOptions* default_options = NULLPTR)
: detail::FunctionImpl<ScalarAggregateKernel>(
std::move(name), Function::SCALAR_AGGREGATE, arity, doc, default_options) {}
/// \brief Add a kernel (function implementation). Returns error if the
/// kernel's signature does not match the function's arity.
Status AddKernel(ScalarAggregateKernel kernel);
};
class ARROW_EXPORT HashAggregateFunction
: public detail::FunctionImpl<HashAggregateKernel> {
public:
using KernelType = HashAggregateKernel;
HashAggregateFunction(std::string name, const Arity& arity, const FunctionDoc* doc,
const FunctionOptions* default_options = NULLPTR)
: detail::FunctionImpl<HashAggregateKernel>(
std::move(name), Function::HASH_AGGREGATE, arity, doc, default_options) {}
/// \brief Add a kernel (function implementation). Returns error if the
/// kernel's signature does not match the function's arity.
Status AddKernel(HashAggregateKernel kernel);
};
/// \brief A function that dispatches to other functions. Must implement
/// MetaFunction::ExecuteImpl.
///
/// For Array, ChunkedArray, and Scalar Datum kinds, may rely on the execution
/// of concrete Function types, but must handle other Datum kinds on its own.
class ARROW_EXPORT MetaFunction : public Function {
public:
int num_kernels() const override { return 0; }
Result<Datum> Execute(const std::vector<Datum>& args, const FunctionOptions* options,
ExecContext* ctx) const override;
protected:
virtual Result<Datum> ExecuteImpl(const std::vector<Datum>& args,
const FunctionOptions* options,
ExecContext* ctx) const = 0;
MetaFunction(std::string name, const Arity& arity, const FunctionDoc* doc,
const FunctionOptions* default_options = NULLPTR)
: Function(std::move(name), Function::META, arity, doc, default_options) {}
};
/// @}
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,752 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// NOTE: API is EXPERIMENTAL and will change without going through a
// deprecation cycle
#pragma once
#include <cstddef>
#include <cstdint>
#include <functional>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "arrow/buffer.h"
#include "arrow/compute/exec.h"
#include "arrow/datum.h"
#include "arrow/memory_pool.h"
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/type.h"
#include "arrow/util/macros.h"
#include "arrow/util/visibility.h"
namespace arrow {
namespace compute {
class FunctionOptions;
/// \brief Base class for opaque kernel-specific state. For example, if there
/// is some kind of initialization required.
struct ARROW_EXPORT KernelState {
virtual ~KernelState() = default;
};
/// \brief Context/state for the execution of a particular kernel.
class ARROW_EXPORT KernelContext {
public:
explicit KernelContext(ExecContext* exec_ctx) : exec_ctx_(exec_ctx) {}
/// \brief Allocate buffer from the context's memory pool. The contents are
/// not initialized.
Result<std::shared_ptr<ResizableBuffer>> Allocate(int64_t nbytes);
/// \brief Allocate buffer for bitmap from the context's memory pool. Like
/// Allocate, the contents of the buffer are not initialized but the last
/// byte is preemptively zeroed to help avoid ASAN or valgrind issues.
Result<std::shared_ptr<ResizableBuffer>> AllocateBitmap(int64_t num_bits);
/// \brief Assign the active KernelState to be utilized for each stage of
/// kernel execution. Ownership and memory lifetime of the KernelState must
/// be minded separately.
void SetState(KernelState* state) { state_ = state; }
KernelState* state() { return state_; }
/// \brief Configuration related to function execution that is to be shared
/// across multiple kernels.
ExecContext* exec_context() { return exec_ctx_; }
/// \brief The memory pool to use for allocations. For now, it uses the
/// MemoryPool contained in the ExecContext used to create the KernelContext.
MemoryPool* memory_pool() { return exec_ctx_->memory_pool(); }
private:
ExecContext* exec_ctx_;
KernelState* state_ = NULLPTR;
};
/// \brief The standard kernel execution API that must be implemented for
/// SCALAR and VECTOR kernel types. This includes both stateless and stateful
/// kernels. Kernels depending on some execution state access that state via
/// subclasses of KernelState set on the KernelContext object. May be used for
/// SCALAR and VECTOR kernel kinds. Implementations should endeavor to write
/// into pre-allocated memory if they are able, though for some kernels
/// (e.g. in cases when a builder like StringBuilder) must be employed this may
/// not be possible.
using ArrayKernelExec = std::function<Status(KernelContext*, const ExecBatch&, Datum*)>;
/// \brief An type-checking interface to permit customizable validation rules
/// for use with InputType and KernelSignature. This is for scenarios where the
/// acceptance is not an exact type instance, such as a TIMESTAMP type for a
/// specific TimeUnit, but permitting any time zone.
struct ARROW_EXPORT TypeMatcher {
virtual ~TypeMatcher() = default;
/// \brief Return true if this matcher accepts the data type.
virtual bool Matches(const DataType& type) const = 0;
/// \brief A human-interpretable string representation of what the type
/// matcher checks for, usable when printing KernelSignature or formatting
/// error messages.
virtual std::string ToString() const = 0;
/// \brief Return true if this TypeMatcher contains the same matching rule as
/// the other. Currently depends on RTTI.
virtual bool Equals(const TypeMatcher& other) const = 0;
};
namespace match {
/// \brief Match any DataType instance having the same DataType::id.
ARROW_EXPORT std::shared_ptr<TypeMatcher> SameTypeId(Type::type type_id);
/// \brief Match any TimestampType instance having the same unit, but the time
/// zones can be different.
ARROW_EXPORT std::shared_ptr<TypeMatcher> TimestampTypeUnit(TimeUnit::type unit);
ARROW_EXPORT std::shared_ptr<TypeMatcher> Time32TypeUnit(TimeUnit::type unit);
ARROW_EXPORT std::shared_ptr<TypeMatcher> Time64TypeUnit(TimeUnit::type unit);
ARROW_EXPORT std::shared_ptr<TypeMatcher> DurationTypeUnit(TimeUnit::type unit);
// \brief Match any integer type
ARROW_EXPORT std::shared_ptr<TypeMatcher> Integer();
// Match types using 32-bit varbinary representation
ARROW_EXPORT std::shared_ptr<TypeMatcher> BinaryLike();
// Match types using 64-bit varbinary representation
ARROW_EXPORT std::shared_ptr<TypeMatcher> LargeBinaryLike();
// Match any fixed binary type
ARROW_EXPORT std::shared_ptr<TypeMatcher> FixedSizeBinaryLike();
// \brief Match any primitive type (boolean or any type representable as a C
// Type)
ARROW_EXPORT std::shared_ptr<TypeMatcher> Primitive();
} // namespace match
/// \brief An object used for type- and shape-checking arguments to be passed
/// to a kernel and stored in a KernelSignature. Distinguishes between ARRAY
/// and SCALAR arguments using ValueDescr::Shape. The type-checking rule can be
/// supplied either with an exact DataType instance or a custom TypeMatcher.
class ARROW_EXPORT InputType {
public:
/// \brief The kind of type-checking rule that the InputType contains.
enum Kind {
/// \brief Accept any value type.
ANY_TYPE,
/// \brief A fixed arrow::DataType and will only exact match having this
/// exact type (e.g. same TimestampType unit, same decimal scale and
/// precision, or same nested child types).
EXACT_TYPE,
/// \brief Uses a TypeMatcher implementation to check the type.
USE_TYPE_MATCHER
};
/// \brief Accept any value type but with a specific shape (e.g. any Array or
/// any Scalar).
InputType(ValueDescr::Shape shape = ValueDescr::ANY) // NOLINT implicit construction
: kind_(ANY_TYPE), shape_(shape) {}
/// \brief Accept an exact value type.
InputType(std::shared_ptr<DataType> type, // NOLINT implicit construction
ValueDescr::Shape shape = ValueDescr::ANY)
: kind_(EXACT_TYPE), shape_(shape), type_(std::move(type)) {}
/// \brief Accept an exact value type and shape provided by a ValueDescr.
InputType(const ValueDescr& descr) // NOLINT implicit construction
: InputType(descr.type, descr.shape) {}
/// \brief Use the passed TypeMatcher to type check.
InputType(std::shared_ptr<TypeMatcher> type_matcher, // NOLINT implicit construction
ValueDescr::Shape shape = ValueDescr::ANY)
: kind_(USE_TYPE_MATCHER), shape_(shape), type_matcher_(std::move(type_matcher)) {}
/// \brief Match any type with the given Type::type. Uses a TypeMatcher for
/// its implementation.
explicit InputType(Type::type type_id, ValueDescr::Shape shape = ValueDescr::ANY)
: InputType(match::SameTypeId(type_id), shape) {}
InputType(const InputType& other) { CopyInto(other); }
void operator=(const InputType& other) { CopyInto(other); }
InputType(InputType&& other) { MoveInto(std::forward<InputType>(other)); }
void operator=(InputType&& other) { MoveInto(std::forward<InputType>(other)); }
// \brief Match an array with the given exact type. Convenience constructor.
static InputType Array(std::shared_ptr<DataType> type) {
return InputType(std::move(type), ValueDescr::ARRAY);
}
// \brief Match a scalar with the given exact type. Convenience constructor.
static InputType Scalar(std::shared_ptr<DataType> type) {
return InputType(std::move(type), ValueDescr::SCALAR);
}
// \brief Match an array with the given Type::type id. Convenience
// constructor.
static InputType Array(Type::type id) { return InputType(id, ValueDescr::ARRAY); }
// \brief Match a scalar with the given Type::type id. Convenience
// constructor.
static InputType Scalar(Type::type id) { return InputType(id, ValueDescr::SCALAR); }
/// \brief Return true if this input type matches the same type cases as the
/// other.
bool Equals(const InputType& other) const;
bool operator==(const InputType& other) const { return this->Equals(other); }
bool operator!=(const InputType& other) const { return !(*this == other); }
/// \brief Return hash code.
size_t Hash() const;
/// \brief Render a human-readable string representation.
std::string ToString() const;
/// \brief Return true if the value matches this argument kind in type
/// and shape.
bool Matches(const Datum& value) const;
/// \brief Return true if the value descriptor matches this argument kind in
/// type and shape.
bool Matches(const ValueDescr& value) const;
/// \brief The type matching rule that this InputType uses.
Kind kind() const { return kind_; }
/// \brief Indicates whether this InputType matches Array (ValueDescr::ARRAY),
/// Scalar (ValueDescr::SCALAR) values, or both (ValueDescr::ANY).
ValueDescr::Shape shape() const { return shape_; }
/// \brief For InputType::EXACT_TYPE kind, the exact type that this InputType
/// must match. Otherwise this function should not be used and will assert in
/// debug builds.
const std::shared_ptr<DataType>& type() const;
/// \brief For InputType::USE_TYPE_MATCHER, the TypeMatcher to be used for
/// checking the type of a value. Otherwise this function should not be used
/// and will assert in debug builds.
const TypeMatcher& type_matcher() const;
private:
void CopyInto(const InputType& other) {
this->kind_ = other.kind_;
this->shape_ = other.shape_;
this->type_ = other.type_;
this->type_matcher_ = other.type_matcher_;
}
void MoveInto(InputType&& other) {
this->kind_ = other.kind_;
this->shape_ = other.shape_;
this->type_ = std::move(other.type_);
this->type_matcher_ = std::move(other.type_matcher_);
}
Kind kind_;
ValueDescr::Shape shape_ = ValueDescr::ANY;
// For EXACT_TYPE Kind
std::shared_ptr<DataType> type_;
// For USE_TYPE_MATCHER Kind
std::shared_ptr<TypeMatcher> type_matcher_;
};
/// \brief Container to capture both exact and input-dependent output types.
///
/// The value shape returned by Resolve will be determined by broadcasting the
/// shapes of the input arguments, otherwise this is handled by the
/// user-defined resolver function:
///
/// * Any ARRAY shape -> output shape is ARRAY
/// * All SCALAR shapes -> output shape is SCALAR
class ARROW_EXPORT OutputType {
public:
/// \brief An enum indicating whether the value type is an invariant fixed
/// value or one that's computed by a kernel-defined resolver function.
enum ResolveKind { FIXED, COMPUTED };
/// Type resolution function. Given input types and shapes, return output
/// type and shape. This function MAY may use the kernel state to decide
/// the output type based on the functionoptions.
///
/// This function SHOULD _not_ be used to check for arity, that is to be
/// performed one or more layers above.
using Resolver =
std::function<Result<ValueDescr>(KernelContext*, const std::vector<ValueDescr>&)>;
/// \brief Output an exact type, but with shape determined by promoting the
/// shapes of the inputs (any ARRAY argument yields ARRAY).
OutputType(std::shared_ptr<DataType> type) // NOLINT implicit construction
: kind_(FIXED), type_(std::move(type)) {}
/// \brief Output the exact type and shape provided by a ValueDescr
OutputType(ValueDescr descr); // NOLINT implicit construction
/// \brief Output a computed type depending on actual input types
OutputType(Resolver resolver) // NOLINT implicit construction
: kind_(COMPUTED), resolver_(std::move(resolver)) {}
OutputType(const OutputType& other) {
this->kind_ = other.kind_;
this->shape_ = other.shape_;
this->type_ = other.type_;
this->resolver_ = other.resolver_;
}
OutputType(OutputType&& other) {
this->kind_ = other.kind_;
this->type_ = std::move(other.type_);
this->shape_ = other.shape_;
this->resolver_ = other.resolver_;
}
OutputType& operator=(const OutputType&) = default;
OutputType& operator=(OutputType&&) = default;
/// \brief Return the shape and type of the expected output value of the
/// kernel given the value descriptors (shapes and types) of the input
/// arguments. The resolver may make use of state information kept in the
/// KernelContext.
Result<ValueDescr> Resolve(KernelContext* ctx,
const std::vector<ValueDescr>& args) const;
/// \brief The exact output value type for the FIXED kind.
const std::shared_ptr<DataType>& type() const;
/// \brief For use with COMPUTED resolution strategy. It may be more
/// convenient to invoke this with OutputType::Resolve returned from this
/// method.
const Resolver& resolver() const;
/// \brief Render a human-readable string representation.
std::string ToString() const;
/// \brief Return the kind of type resolution of this output type, whether
/// fixed/invariant or computed by a resolver.
ResolveKind kind() const { return kind_; }
/// \brief If the shape is ANY, then Resolve will compute the shape based on
/// the input arguments.
ValueDescr::Shape shape() const { return shape_; }
private:
ResolveKind kind_;
// For FIXED resolution
std::shared_ptr<DataType> type_;
/// \brief The shape of the output type to return when using Resolve. If ANY
/// will promote the input shapes.
ValueDescr::Shape shape_ = ValueDescr::ANY;
// For COMPUTED resolution
Resolver resolver_;
};
/// \brief Holds the input types and output type of the kernel.
///
/// VarArgs functions with minimum N arguments should pass up to N input types to be
/// used to validate the input types of a function invocation. The first N-1 types
/// will be matched against the first N-1 arguments, and the last type will be
/// matched against the remaining arguments.
class ARROW_EXPORT KernelSignature {
public:
KernelSignature(std::vector<InputType> in_types, OutputType out_type,
bool is_varargs = false);
/// \brief Convenience ctor since make_shared can be awkward
static std::shared_ptr<KernelSignature> Make(std::vector<InputType> in_types,
OutputType out_type,
bool is_varargs = false);
/// \brief Return true if the signature if compatible with the list of input
/// value descriptors.
bool MatchesInputs(const std::vector<ValueDescr>& descriptors) const;
/// \brief Returns true if the input types of each signature are
/// equal. Well-formed functions should have a deterministic output type
/// given input types, but currently it is the responsibility of the
/// developer to ensure this.
bool Equals(const KernelSignature& other) const;
bool operator==(const KernelSignature& other) const { return this->Equals(other); }
bool operator!=(const KernelSignature& other) const { return !(*this == other); }
/// \brief Compute a hash code for the signature
size_t Hash() const;
/// \brief The input types for the kernel. For VarArgs functions, this should
/// generally contain a single validator to use for validating all of the
/// function arguments.
const std::vector<InputType>& in_types() const { return in_types_; }
/// \brief The output type for the kernel. Use Resolve to return the exact
/// output given input argument ValueDescrs, since many kernels' output types
/// depend on their input types (or their type metadata).
const OutputType& out_type() const { return out_type_; }
/// \brief Render a human-readable string representation
std::string ToString() const;
bool is_varargs() const { return is_varargs_; }
private:
std::vector<InputType> in_types_;
OutputType out_type_;
bool is_varargs_;
// For caching the hash code after it's computed the first time
mutable uint64_t hash_code_;
};
/// \brief A function may contain multiple variants of a kernel for a given
/// type combination for different SIMD levels. Based on the active system's
/// CPU info or the user's preferences, we can elect to use one over the other.
struct SimdLevel {
enum type { NONE = 0, SSE4_2, AVX, AVX2, AVX512, NEON, MAX };
};
/// \brief The strategy to use for propagating or otherwise populating the
/// validity bitmap of a kernel output.
struct NullHandling {
enum type {
/// Compute the output validity bitmap by intersecting the validity bitmaps
/// of the arguments using bitwise-and operations. This means that values
/// in the output are valid/non-null only if the corresponding values in
/// all input arguments were valid/non-null. Kernel generally need not
/// touch the bitmap thereafter, but a kernel's exec function is permitted
/// to alter the bitmap after the null intersection is computed if it needs
/// to.
INTERSECTION,
/// Kernel expects a pre-allocated buffer to write the result bitmap
/// into. The preallocated memory is not zeroed (except for the last byte),
/// so the kernel should ensure to completely populate the bitmap.
COMPUTED_PREALLOCATE,
/// Kernel allocates and sets the validity bitmap of the output.
COMPUTED_NO_PREALLOCATE,
/// Kernel output is never null and a validity bitmap does not need to be
/// allocated.
OUTPUT_NOT_NULL
};
};
/// \brief The preference for memory preallocation of fixed-width type outputs
/// in kernel execution.
struct MemAllocation {
enum type {
// For data types that support pre-allocation (i.e. fixed-width), the
// kernel expects to be provided a pre-allocated data buffer to write
// into. Non-fixed-width types must always allocate their own data
// buffers. The allocation made for the same length as the execution batch,
// so vector kernels yielding differently sized output should not use this.
//
// It is valid for the data to not be preallocated but the validity bitmap
// is (or is computed using the intersection/bitwise-and method).
//
// For variable-size output types like BinaryType or StringType, or for
// nested types, this option has no effect.
PREALLOCATE,
// The kernel is responsible for allocating its own data buffer for
// fixed-width type outputs.
NO_PREALLOCATE
};
};
struct Kernel;
/// \brief Arguments to pass to a KernelInit function. A struct is used to help
/// avoid API breakage should the arguments passed need to be expanded.
struct KernelInitArgs {
/// \brief A pointer to the kernel being initialized. The init function may
/// depend on the kernel's KernelSignature or other data contained there.
const Kernel* kernel;
/// \brief The types and shapes of the input arguments that the kernel is
/// about to be executed against.
///
/// TODO: should this be const std::vector<ValueDescr>*? const-ref is being
/// used to avoid the cost of copying the struct into the args struct.
const std::vector<ValueDescr>& inputs;
/// \brief Opaque options specific to this kernel. May be nullptr for functions
/// that do not require options.
const FunctionOptions* options;
};
/// \brief Common initializer function for all kernel types.
using KernelInit = std::function<Result<std::unique_ptr<KernelState>>(
KernelContext*, const KernelInitArgs&)>;
/// \brief Base type for kernels. Contains the function signature and
/// optionally the state initialization function, along with some common
/// attributes
struct Kernel {
Kernel() = default;
Kernel(std::shared_ptr<KernelSignature> sig, KernelInit init)
: signature(std::move(sig)), init(std::move(init)) {}
Kernel(std::vector<InputType> in_types, OutputType out_type, KernelInit init)
: Kernel(KernelSignature::Make(std::move(in_types), std::move(out_type)),
std::move(init)) {}
/// \brief The "signature" of the kernel containing the InputType input
/// argument validators and OutputType output type and shape resolver.
std::shared_ptr<KernelSignature> signature;
/// \brief Create a new KernelState for invocations of this kernel, e.g. to
/// set up any options or state relevant for execution.
KernelInit init;
/// \brief Create a vector of new KernelState for invocations of this kernel.
static Status InitAll(KernelContext*, const KernelInitArgs&,
std::vector<std::unique_ptr<KernelState>>*);
/// \brief Indicates whether execution can benefit from parallelization
/// (splitting large chunks into smaller chunks and using multiple
/// threads). Some kernels may not support parallel execution at
/// all. Synchronization and concurrency-related issues are currently the
/// responsibility of the Kernel's implementation.
bool parallelizable = true;
/// \brief Indicates the level of SIMD instruction support in the host CPU is
/// required to use the function. The intention is for functions to be able to
/// contain multiple kernels with the same signature but different levels of SIMD,
/// so that the most optimized kernel supported on a host's processor can be chosen.
SimdLevel::type simd_level = SimdLevel::NONE;
};
/// \brief Common kernel base data structure for ScalarKernel and
/// VectorKernel. It is called "ArrayKernel" in that the functions generally
/// output array values (as opposed to scalar values in the case of aggregate
/// functions).
struct ArrayKernel : public Kernel {
ArrayKernel() = default;
ArrayKernel(std::shared_ptr<KernelSignature> sig, ArrayKernelExec exec,
KernelInit init = NULLPTR)
: Kernel(std::move(sig), init), exec(std::move(exec)) {}
ArrayKernel(std::vector<InputType> in_types, OutputType out_type, ArrayKernelExec exec,
KernelInit init = NULLPTR)
: Kernel(std::move(in_types), std::move(out_type), std::move(init)),
exec(std::move(exec)) {}
/// \brief Perform a single invocation of this kernel. Depending on the
/// implementation, it may only write into preallocated memory, while in some
/// cases it will allocate its own memory. Any required state is managed
/// through the KernelContext.
ArrayKernelExec exec;
/// \brief Writing execution results into larger contiguous allocations
/// requires that the kernel be able to write into sliced output ArrayData*,
/// including sliced output validity bitmaps. Some kernel implementations may
/// not be able to do this, so setting this to false disables this
/// functionality.
bool can_write_into_slices = true;
};
/// \brief Kernel data structure for implementations of ScalarFunction. In
/// addition to the members found in ArrayKernel, contains the null handling
/// and memory pre-allocation preferences.
struct ScalarKernel : public ArrayKernel {
using ArrayKernel::ArrayKernel;
// For scalar functions preallocated data and intersecting arg validity
// bitmaps is a reasonable default
NullHandling::type null_handling = NullHandling::INTERSECTION;
MemAllocation::type mem_allocation = MemAllocation::PREALLOCATE;
};
// ----------------------------------------------------------------------
// VectorKernel (for VectorFunction)
/// \brief See VectorKernel::finalize member for usage
using VectorFinalize = std::function<Status(KernelContext*, std::vector<Datum>*)>;
/// \brief Kernel data structure for implementations of VectorFunction. In
/// addition to the members found in ArrayKernel, contains an optional
/// finalizer function, the null handling and memory pre-allocation preferences
/// (which have different defaults from ScalarKernel), and some other
/// execution-related options.
struct VectorKernel : public ArrayKernel {
VectorKernel() = default;
VectorKernel(std::shared_ptr<KernelSignature> sig, ArrayKernelExec exec)
: ArrayKernel(std::move(sig), std::move(exec)) {}
VectorKernel(std::vector<InputType> in_types, OutputType out_type, ArrayKernelExec exec,
KernelInit init = NULLPTR, VectorFinalize finalize = NULLPTR)
: ArrayKernel(std::move(in_types), std::move(out_type), std::move(exec),
std::move(init)),
finalize(std::move(finalize)) {}
VectorKernel(std::shared_ptr<KernelSignature> sig, ArrayKernelExec exec,
KernelInit init = NULLPTR, VectorFinalize finalize = NULLPTR)
: ArrayKernel(std::move(sig), std::move(exec), std::move(init)),
finalize(std::move(finalize)) {}
/// \brief For VectorKernel, convert intermediate results into finalized
/// results. Mutates input argument. Some kernels may accumulate state
/// (example: hashing-related functions) through processing chunked inputs, and
/// then need to attach some accumulated state to each of the outputs of
/// processing each chunk of data.
VectorFinalize finalize;
/// Since vector kernels generally are implemented rather differently from
/// scalar/elementwise kernels (and they may not even yield arrays of the same
/// size), so we make the developer opt-in to any memory preallocation rather
/// than having to turn it off.
NullHandling::type null_handling = NullHandling::COMPUTED_NO_PREALLOCATE;
MemAllocation::type mem_allocation = MemAllocation::NO_PREALLOCATE;
/// Some vector kernels can do chunkwise execution using ExecBatchIterator,
/// in some cases accumulating some state. Other kernels (like Take) need to
/// be passed whole arrays and don't work on ChunkedArray inputs
bool can_execute_chunkwise = true;
/// Some kernels (like unique and value_counts) yield non-chunked output from
/// chunked-array inputs. This option controls how the results are boxed when
/// returned from ExecVectorFunction
///
/// true -> ChunkedArray
/// false -> Array
bool output_chunked = true;
};
// ----------------------------------------------------------------------
// ScalarAggregateKernel (for ScalarAggregateFunction)
using ScalarAggregateConsume = std::function<Status(KernelContext*, const ExecBatch&)>;
using ScalarAggregateMerge =
std::function<Status(KernelContext*, KernelState&&, KernelState*)>;
// Finalize returns Datum to permit multiple return values
using ScalarAggregateFinalize = std::function<Status(KernelContext*, Datum*)>;
/// \brief Kernel data structure for implementations of
/// ScalarAggregateFunction. The four necessary components of an aggregation
/// kernel are the init, consume, merge, and finalize functions.
///
/// * init: creates a new KernelState for a kernel.
/// * consume: processes an ExecBatch and updates the KernelState found in the
/// KernelContext.
/// * merge: combines one KernelState with another.
/// * finalize: produces the end result of the aggregation using the
/// KernelState in the KernelContext.
struct ScalarAggregateKernel : public Kernel {
ScalarAggregateKernel() = default;
ScalarAggregateKernel(std::shared_ptr<KernelSignature> sig, KernelInit init,
ScalarAggregateConsume consume, ScalarAggregateMerge merge,
ScalarAggregateFinalize finalize)
: Kernel(std::move(sig), std::move(init)),
consume(std::move(consume)),
merge(std::move(merge)),
finalize(std::move(finalize)) {}
ScalarAggregateKernel(std::vector<InputType> in_types, OutputType out_type,
KernelInit init, ScalarAggregateConsume consume,
ScalarAggregateMerge merge, ScalarAggregateFinalize finalize)
: ScalarAggregateKernel(
KernelSignature::Make(std::move(in_types), std::move(out_type)),
std::move(init), std::move(consume), std::move(merge), std::move(finalize)) {}
/// \brief Merge a vector of KernelStates into a single KernelState.
/// The merged state will be returned and will be set on the KernelContext.
static Result<std::unique_ptr<KernelState>> MergeAll(
const ScalarAggregateKernel* kernel, KernelContext* ctx,
std::vector<std::unique_ptr<KernelState>> states);
ScalarAggregateConsume consume;
ScalarAggregateMerge merge;
ScalarAggregateFinalize finalize;
};
// ----------------------------------------------------------------------
// HashAggregateKernel (for HashAggregateFunction)
using HashAggregateResize = std::function<Status(KernelContext*, int64_t)>;
using HashAggregateConsume = std::function<Status(KernelContext*, const ExecBatch&)>;
using HashAggregateMerge =
std::function<Status(KernelContext*, KernelState&&, const ArrayData&)>;
// Finalize returns Datum to permit multiple return values
using HashAggregateFinalize = std::function<Status(KernelContext*, Datum*)>;
/// \brief Kernel data structure for implementations of
/// HashAggregateFunction. The four necessary components of an aggregation
/// kernel are the init, consume, merge, and finalize functions.
///
/// * init: creates a new KernelState for a kernel.
/// * resize: ensure that the KernelState can accommodate the specified number of groups.
/// * consume: processes an ExecBatch (which includes the argument as well
/// as an array of group identifiers) and updates the KernelState found in the
/// KernelContext.
/// * merge: combines one KernelState with another.
/// * finalize: produces the end result of the aggregation using the
/// KernelState in the KernelContext.
struct HashAggregateKernel : public Kernel {
HashAggregateKernel() = default;
HashAggregateKernel(std::shared_ptr<KernelSignature> sig, KernelInit init,
HashAggregateResize resize, HashAggregateConsume consume,
HashAggregateMerge merge, HashAggregateFinalize finalize)
: Kernel(std::move(sig), std::move(init)),
resize(std::move(resize)),
consume(std::move(consume)),
merge(std::move(merge)),
finalize(std::move(finalize)) {}
HashAggregateKernel(std::vector<InputType> in_types, OutputType out_type,
KernelInit init, HashAggregateConsume consume,
HashAggregateResize resize, HashAggregateMerge merge,
HashAggregateFinalize finalize)
: HashAggregateKernel(
KernelSignature::Make(std::move(in_types), std::move(out_type)),
std::move(init), std::move(resize), std::move(consume), std::move(merge),
std::move(finalize)) {}
HashAggregateResize resize;
HashAggregateConsume consume;
HashAggregateMerge merge;
HashAggregateFinalize finalize;
};
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,382 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <cstdint>
#include "arrow/array.h"
#include "arrow/compute/exec.h"
#include "arrow/type.h"
#include "arrow/util/logging.h"
/// This file contains lightweight containers for Arrow buffers. These containers
/// makes compromises in terms of strong ownership and the range of data types supported
/// in order to gain performance and reduced overhead.
namespace arrow {
namespace compute {
/// \brief Description of the layout of a "key" column
///
/// A "key" column is a non-nested, non-union column.
/// Every key column has either 0 (null), 2 (e.g. int32) or 3 (e.g. string) buffers
/// and no children.
///
/// This metadata object is a zero-allocation analogue of arrow::DataType
struct ARROW_EXPORT KeyColumnMetadata {
KeyColumnMetadata() = default;
KeyColumnMetadata(bool is_fixed_length_in, uint32_t fixed_length_in,
bool is_null_type_in = false)
: is_fixed_length(is_fixed_length_in),
is_null_type(is_null_type_in),
fixed_length(fixed_length_in) {}
/// \brief True if the column is not a varying-length binary type
///
/// If this is true the column will have a validity buffer and
/// a data buffer and the third buffer will be unused.
bool is_fixed_length;
/// \brief True if this column is the null type
bool is_null_type;
/// \brief The number of bytes for each item
///
/// Zero has a special meaning, indicating a bit vector with one bit per value if it
/// isn't a null type column.
///
/// For a varying-length binary column this represents the number of bytes per offset.
uint32_t fixed_length;
};
/// \brief A lightweight view into a "key" array
///
/// A "key" column is a non-nested, non-union column \see KeyColumnMetadata
///
/// This metadata object is a zero-allocation analogue of arrow::ArrayData
class ARROW_EXPORT KeyColumnArray {
public:
/// \brief Create an uninitialized KeyColumnArray
KeyColumnArray() = default;
/// \brief Create a read-only view from buffers
///
/// This is a view only and does not take ownership of the buffers. The lifetime
/// of the buffers must exceed the lifetime of this view
KeyColumnArray(const KeyColumnMetadata& metadata, int64_t length,
const uint8_t* validity_buffer, const uint8_t* fixed_length_buffer,
const uint8_t* var_length_buffer, int bit_offset_validity = 0,
int bit_offset_fixed = 0);
/// \brief Create a mutable view from buffers
///
/// This is a view only and does not take ownership of the buffers. The lifetime
/// of the buffers must exceed the lifetime of this view
KeyColumnArray(const KeyColumnMetadata& metadata, int64_t length,
uint8_t* validity_buffer, uint8_t* fixed_length_buffer,
uint8_t* var_length_buffer, int bit_offset_validity = 0,
int bit_offset_fixed = 0);
/// \brief Create a sliced view of `this`
///
/// The number of rows used in offset must be divisible by 8
/// in order to not split bit vectors within a single byte.
KeyColumnArray Slice(int64_t offset, int64_t length) const;
/// \brief Create a copy of `this` with a buffer from `other`
///
/// The copy will be identical to `this` except the buffer at buffer_id_to_replace
/// will be replaced by the corresponding buffer in `other`.
KeyColumnArray WithBufferFrom(const KeyColumnArray& other,
int buffer_id_to_replace) const;
/// \brief Create a copy of `this` with new metadata
KeyColumnArray WithMetadata(const KeyColumnMetadata& metadata) const;
// Constants used for accessing buffers using data() and mutable_data().
static constexpr int kValidityBuffer = 0;
static constexpr int kFixedLengthBuffer = 1;
static constexpr int kVariableLengthBuffer = 2;
/// \brief Return one of the underlying mutable buffers
uint8_t* mutable_data(int i) {
ARROW_DCHECK(i >= 0 && i <= kMaxBuffers);
return mutable_buffers_[i];
}
/// \brief Return one of the underlying read-only buffers
const uint8_t* data(int i) const {
ARROW_DCHECK(i >= 0 && i <= kMaxBuffers);
return buffers_[i];
}
/// \brief Return a mutable version of the offsets buffer
///
/// Only valid if this is a view into a varbinary type
uint32_t* mutable_offsets() {
DCHECK(!metadata_.is_fixed_length);
return reinterpret_cast<uint32_t*>(mutable_data(kFixedLengthBuffer));
}
/// \brief Return a read-only version of the offsets buffer
///
/// Only valid if this is a view into a varbinary type
const uint32_t* offsets() const {
DCHECK(!metadata_.is_fixed_length);
return reinterpret_cast<const uint32_t*>(data(kFixedLengthBuffer));
}
/// \brief Return the type metadata
const KeyColumnMetadata& metadata() const { return metadata_; }
/// \brief Return the length (in rows) of the array
int64_t length() const { return length_; }
/// \brief Return the bit offset into the corresponding vector
///
/// if i == 1 then this must be a bool array
int bit_offset(int i) const {
ARROW_DCHECK(i >= 0 && i < kMaxBuffers);
return bit_offset_[i];
}
private:
static constexpr int kMaxBuffers = 3;
const uint8_t* buffers_[kMaxBuffers];
uint8_t* mutable_buffers_[kMaxBuffers];
KeyColumnMetadata metadata_;
int64_t length_;
// Starting bit offset within the first byte (between 0 and 7)
// to be used when accessing buffers that store bit vectors.
int bit_offset_[kMaxBuffers - 1];
};
/// \brief Create KeyColumnMetadata from a DataType
///
/// If `type` is a dictionary type then this will return the KeyColumnMetadata for
/// the indices type
///
/// This should only be called on "key" columns. Calling this with
/// a non-key column will return Status::TypeError.
ARROW_EXPORT Result<KeyColumnMetadata> ColumnMetadataFromDataType(
const std::shared_ptr<DataType>& type);
/// \brief Create KeyColumnArray from ArrayData
///
/// If `type` is a dictionary type then this will return the KeyColumnArray for
/// the indices array
///
/// The caller should ensure this is only called on "key" columns.
/// \see ColumnMetadataFromDataType for details
ARROW_EXPORT Result<KeyColumnArray> ColumnArrayFromArrayData(
const std::shared_ptr<ArrayData>& array_data, int start_row, int num_rows);
/// \brief Create KeyColumnMetadata instances from an ExecBatch
///
/// column_metadatas will be resized to fit
///
/// All columns in `batch` must be eligible "key" columns and have an array shape
/// \see ColumnMetadataFromDataType for more details
ARROW_EXPORT Status ColumnMetadatasFromExecBatch(
const ExecBatch& batch, std::vector<KeyColumnMetadata>* column_metadatas);
/// \brief Create KeyColumnArray instances from a slice of an ExecBatch
///
/// column_arrays will be resized to fit
///
/// All columns in `batch` must be eligible "key" columns and have an array shape
/// \see ColumnArrayFromArrayData for more details
ARROW_EXPORT Status ColumnArraysFromExecBatch(const ExecBatch& batch, int start_row,
int num_rows,
std::vector<KeyColumnArray>* column_arrays);
/// \brief Create KeyColumnArray instances from an ExecBatch
///
/// column_arrays will be resized to fit
///
/// All columns in `batch` must be eligible "key" columns and have an array shape
/// \see ColumnArrayFromArrayData for more details
ARROW_EXPORT Status ColumnArraysFromExecBatch(const ExecBatch& batch,
std::vector<KeyColumnArray>* column_arrays);
/// A lightweight resizable array for "key" columns
///
/// Unlike KeyColumnArray this instance owns its buffers
///
/// Resizing is handled by arrow::ResizableBuffer and a doubling approach is
/// used so that resizes will always grow up to the next power of 2
class ARROW_EXPORT ResizableArrayData {
public:
/// \brief Create an uninitialized instance
///
/// Init must be called before calling any other operations
ResizableArrayData()
: log_num_rows_min_(0),
pool_(NULLPTR),
num_rows_(0),
num_rows_allocated_(0),
var_len_buf_size_(0) {}
~ResizableArrayData() { Clear(true); }
/// \brief Initialize the array
/// \param data_type The data type this array is holding data for.
/// \param pool The pool to make allocations on
/// \param log_num_rows_min All resize operations will allocate at least enough
/// space for (1 << log_num_rows_min) rows
void Init(const std::shared_ptr<DataType>& data_type, MemoryPool* pool,
int log_num_rows_min);
/// \brief Resets the array back to an empty state
/// \param release_buffers If true then allocated memory is released and the
/// next resize operation will have to reallocate memory
void Clear(bool release_buffers);
/// \brief Resize the fixed length buffers
///
/// The buffers will be resized to hold at least `num_rows_new` rows of data
Status ResizeFixedLengthBuffers(int num_rows_new);
/// \brief Resize the varying length buffer if this array is a variable binary type
///
/// This must be called after offsets have been populated and the buffer will be
/// resized to hold at least as much data as the offsets require
///
/// Does nothing if the array is not a variable binary type
Status ResizeVaryingLengthBuffer();
/// \brief The current length (in rows) of the array
int num_rows() const { return num_rows_; }
/// \brief A non-owning view into this array
KeyColumnArray column_array() const;
/// \brief A lightweight descriptor of the data held by this array
Result<KeyColumnMetadata> column_metadata() const {
return ColumnMetadataFromDataType(data_type_);
}
/// \brief Convert the data to an arrow::ArrayData
///
/// This is a zero copy operation and the created ArrayData will reference the
/// buffers held by this instance.
std::shared_ptr<ArrayData> array_data() const;
// Constants used for accessing buffers using mutable_data().
static constexpr int kValidityBuffer = 0;
static constexpr int kFixedLengthBuffer = 1;
static constexpr int kVariableLengthBuffer = 2;
/// \brief A raw pointer to the requested buffer
///
/// If i is 0 (kValidityBuffer) then this returns the validity buffer
/// If i is 1 (kFixedLengthBuffer) then this returns the buffer used for values (if this
/// is a fixed
/// length data type) or offsets (if this is a variable binary type)
/// If i is 2 (kVariableLengthBuffer) then this returns the buffer used for variable
/// length binary data
uint8_t* mutable_data(int i) { return buffers_[i]->mutable_data(); }
private:
static constexpr int64_t kNumPaddingBytes = 64;
int log_num_rows_min_;
std::shared_ptr<DataType> data_type_;
MemoryPool* pool_;
int num_rows_;
int num_rows_allocated_;
int var_len_buf_size_;
static constexpr int kMaxBuffers = 3;
std::shared_ptr<ResizableBuffer> buffers_[kMaxBuffers];
};
/// \brief A builder to concatenate batches of data into a larger batch
///
/// Will only store num_rows_max() rows
class ARROW_EXPORT ExecBatchBuilder {
public:
/// \brief Add rows from `source` into `target` column
///
/// If `target` is uninitialized or cleared it will be initialized to use
/// the given pool.
static Status AppendSelected(const std::shared_ptr<ArrayData>& source,
ResizableArrayData* target, int num_rows_to_append,
const uint16_t* row_ids, MemoryPool* pool);
/// \brief Add nulls into `target` column
///
/// If `target` is uninitialized or cleared it will be initialized to use
/// the given pool.
static Status AppendNulls(const std::shared_ptr<DataType>& type,
ResizableArrayData& target, int num_rows_to_append,
MemoryPool* pool);
/// \brief Add selected rows from `batch`
///
/// If `col_ids` is null then `num_cols` should less than batch.num_values() and
/// the first `num_cols` columns of batch will be appended.
///
/// All columns in `batch` must have array shape
Status AppendSelected(MemoryPool* pool, const ExecBatch& batch, int num_rows_to_append,
const uint16_t* row_ids, int num_cols,
const int* col_ids = NULLPTR);
/// \brief Add all-null rows
Status AppendNulls(MemoryPool* pool,
const std::vector<std::shared_ptr<DataType>>& types,
int num_rows_to_append);
/// \brief Create an ExecBatch with the data that has been appended so far
/// and clear this builder to be used again
///
/// Should only be called if num_rows() returns non-zero.
ExecBatch Flush();
int num_rows() const { return values_.empty() ? 0 : values_[0].num_rows(); }
static int num_rows_max() { return 1 << kLogNumRows; }
private:
static constexpr int kLogNumRows = 15;
// Calculate how many rows to skip from the tail of the
// sequence of selected rows, such that the total size of skipped rows is at
// least equal to the size specified by the caller.
//
// Skipping of the tail rows
// is used to allow for faster processing by the caller of remaining rows
// without checking buffer bounds (useful with SIMD or fixed size memory loads
// and stores).
//
// The sequence of row_ids provided must be non-decreasing.
//
static int NumRowsToSkip(const std::shared_ptr<ArrayData>& column, int num_rows,
const uint16_t* row_ids, int num_tail_bytes_to_skip);
// The supplied lambda will be called for each row in the given list of rows.
// The arguments given to it will be:
// - index of a row (within the set of selected rows),
// - pointer to the value,
// - byte length of the value.
//
// The information about nulls (validity bitmap) is not used in this call and
// has to be processed separately.
//
template <class PROCESS_VALUE_FN>
static void Visit(const std::shared_ptr<ArrayData>& column, int num_rows,
const uint16_t* row_ids, PROCESS_VALUE_FN process_value_fn);
template <bool OUTPUT_BYTE_ALIGNED>
static void CollectBitsImp(const uint8_t* input_bits, int64_t input_bits_offset,
uint8_t* output_bits, int64_t output_bits_offset,
int num_rows, const uint16_t* row_ids);
static void CollectBits(const uint8_t* input_bits, int64_t input_bits_offset,
uint8_t* output_bits, int64_t output_bits_offset, int num_rows,
const uint16_t* row_ids);
std::vector<ResizableArrayData> values_;
};
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,93 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// NOTE: API is EXPERIMENTAL and will change without going through a
// deprecation cycle
#pragma once
#include <memory>
#include <string>
#include <vector>
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/util/visibility.h"
namespace arrow {
namespace compute {
class Function;
class FunctionOptionsType;
/// \brief A mutable central function registry for built-in functions as well
/// as user-defined functions. Functions are implementations of
/// arrow::compute::Function.
///
/// Generally, each function contains kernels which are implementations of a
/// function for a specific argument signature. After looking up a function in
/// the registry, one can either execute it eagerly with Function::Execute or
/// use one of the function's dispatch methods to pick a suitable kernel for
/// lower-level function execution.
class ARROW_EXPORT FunctionRegistry {
public:
~FunctionRegistry();
/// \brief Construct a new registry. Most users only need to use the global
/// registry
static std::unique_ptr<FunctionRegistry> Make();
/// \brief Add a new function to the registry. Returns Status::KeyError if a
/// function with the same name is already registered
Status AddFunction(std::shared_ptr<Function> function, bool allow_overwrite = false);
/// \brief Add aliases for the given function name. Returns Status::KeyError if the
/// function with the given name is not registered
Status AddAlias(const std::string& target_name, const std::string& source_name);
/// \brief Add a new function options type to the registry. Returns Status::KeyError if
/// a function options type with the same name is already registered
Status AddFunctionOptionsType(const FunctionOptionsType* options_type,
bool allow_overwrite = false);
/// \brief Retrieve a function by name from the registry
Result<std::shared_ptr<Function>> GetFunction(const std::string& name) const;
/// \brief Return vector of all entry names in the registry. Helpful for
/// displaying a manifest of available functions
std::vector<std::string> GetFunctionNames() const;
/// \brief Retrieve a function options type by name from the registry
Result<const FunctionOptionsType*> GetFunctionOptionsType(
const std::string& name) const;
/// \brief The number of currently registered functions
int num_functions() const;
private:
FunctionRegistry();
// Use PIMPL pattern to not have std::unordered_map here
class FunctionRegistryImpl;
std::unique_ptr<FunctionRegistryImpl> impl_;
};
/// \brief Return the process-global function registry
ARROW_EXPORT FunctionRegistry* GetFunctionRegistry();
} // namespace compute
} // namespace arrow

View File

@@ -0,0 +1,50 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
namespace arrow {
struct Datum;
struct ValueDescr;
namespace compute {
class Function;
class FunctionOptions;
class CastOptions;
struct ExecBatch;
class ExecContext;
class KernelContext;
struct Kernel;
struct ScalarKernel;
struct ScalarAggregateKernel;
struct VectorKernel;
struct KernelState;
class Expression;
class ExecNode;
class ExecPlan;
class ExecNodeOptions;
class ExecFactoryRegistry;
} // namespace compute
} // namespace arrow