mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-07-04 23:32:37 +00:00
first commit
This commit is contained in:
246
.venv/Lib/site-packages/pyarrow/include/arrow/tensor.h
Normal file
246
.venv/Lib/site-packages/pyarrow/include/arrow/tensor.h
Normal file
@ -0,0 +1,246 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "arrow/buffer.h"
|
||||
#include "arrow/compare.h"
|
||||
#include "arrow/result.h"
|
||||
#include "arrow/status.h"
|
||||
#include "arrow/type.h"
|
||||
#include "arrow/type_traits.h"
|
||||
#include "arrow/util/macros.h"
|
||||
#include "arrow/util/visibility.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
static inline bool is_tensor_supported(Type::type type_id) {
|
||||
switch (type_id) {
|
||||
case Type::UINT8:
|
||||
case Type::INT8:
|
||||
case Type::UINT16:
|
||||
case Type::INT16:
|
||||
case Type::UINT32:
|
||||
case Type::INT32:
|
||||
case Type::UINT64:
|
||||
case Type::INT64:
|
||||
case Type::HALF_FLOAT:
|
||||
case Type::FLOAT:
|
||||
case Type::DOUBLE:
|
||||
return true;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
ARROW_EXPORT
|
||||
Status ComputeRowMajorStrides(const FixedWidthType& type,
|
||||
const std::vector<int64_t>& shape,
|
||||
std::vector<int64_t>* strides);
|
||||
|
||||
ARROW_EXPORT
|
||||
Status ComputeColumnMajorStrides(const FixedWidthType& type,
|
||||
const std::vector<int64_t>& shape,
|
||||
std::vector<int64_t>* strides);
|
||||
|
||||
ARROW_EXPORT
|
||||
bool IsTensorStridesContiguous(const std::shared_ptr<DataType>& type,
|
||||
const std::vector<int64_t>& shape,
|
||||
const std::vector<int64_t>& strides);
|
||||
|
||||
ARROW_EXPORT
|
||||
Status ValidateTensorParameters(const std::shared_ptr<DataType>& type,
|
||||
const std::shared_ptr<Buffer>& data,
|
||||
const std::vector<int64_t>& shape,
|
||||
const std::vector<int64_t>& strides,
|
||||
const std::vector<std::string>& dim_names);
|
||||
|
||||
} // namespace internal
|
||||
|
||||
class ARROW_EXPORT Tensor {
|
||||
public:
|
||||
/// \brief Create a Tensor with full parameters
|
||||
///
|
||||
/// This factory function will return Status::Invalid when the parameters are
|
||||
/// inconsistent
|
||||
///
|
||||
/// \param[in] type The data type of the tensor values
|
||||
/// \param[in] data The buffer of the tensor content
|
||||
/// \param[in] shape The shape of the tensor
|
||||
/// \param[in] strides The strides of the tensor
|
||||
/// (if this is empty, the data assumed to be row-major)
|
||||
/// \param[in] dim_names The names of the tensor dimensions
|
||||
static inline Result<std::shared_ptr<Tensor>> Make(
|
||||
const std::shared_ptr<DataType>& type, const std::shared_ptr<Buffer>& data,
|
||||
const std::vector<int64_t>& shape, const std::vector<int64_t>& strides = {},
|
||||
const std::vector<std::string>& dim_names = {}) {
|
||||
ARROW_RETURN_NOT_OK(
|
||||
internal::ValidateTensorParameters(type, data, shape, strides, dim_names));
|
||||
return std::make_shared<Tensor>(type, data, shape, strides, dim_names);
|
||||
}
|
||||
|
||||
virtual ~Tensor() = default;
|
||||
|
||||
/// Constructor with no dimension names or strides, data assumed to be row-major
|
||||
Tensor(const std::shared_ptr<DataType>& type, const std::shared_ptr<Buffer>& data,
|
||||
const std::vector<int64_t>& shape);
|
||||
|
||||
/// Constructor with non-negative strides
|
||||
Tensor(const std::shared_ptr<DataType>& type, const std::shared_ptr<Buffer>& data,
|
||||
const std::vector<int64_t>& shape, const std::vector<int64_t>& strides);
|
||||
|
||||
/// Constructor with non-negative strides and dimension names
|
||||
Tensor(const std::shared_ptr<DataType>& type, const std::shared_ptr<Buffer>& data,
|
||||
const std::vector<int64_t>& shape, const std::vector<int64_t>& strides,
|
||||
const std::vector<std::string>& dim_names);
|
||||
|
||||
std::shared_ptr<DataType> type() const { return type_; }
|
||||
std::shared_ptr<Buffer> data() const { return data_; }
|
||||
|
||||
const uint8_t* raw_data() const { return data_->data(); }
|
||||
uint8_t* raw_mutable_data() { return data_->mutable_data(); }
|
||||
|
||||
const std::vector<int64_t>& shape() const { return shape_; }
|
||||
const std::vector<int64_t>& strides() const { return strides_; }
|
||||
|
||||
int ndim() const { return static_cast<int>(shape_.size()); }
|
||||
|
||||
const std::vector<std::string>& dim_names() const { return dim_names_; }
|
||||
const std::string& dim_name(int i) const;
|
||||
|
||||
/// Total number of value cells in the tensor
|
||||
int64_t size() const;
|
||||
|
||||
/// Return true if the underlying data buffer is mutable
|
||||
bool is_mutable() const { return data_->is_mutable(); }
|
||||
|
||||
/// Either row major or column major
|
||||
bool is_contiguous() const;
|
||||
|
||||
/// AKA "C order"
|
||||
bool is_row_major() const;
|
||||
|
||||
/// AKA "Fortran order"
|
||||
bool is_column_major() const;
|
||||
|
||||
Type::type type_id() const;
|
||||
|
||||
bool Equals(const Tensor& other, const EqualOptions& = EqualOptions::Defaults()) const;
|
||||
|
||||
/// Compute the number of non-zero values in the tensor
|
||||
Result<int64_t> CountNonZero() const;
|
||||
|
||||
/// Return the offset of the given index on the given strides
|
||||
static int64_t CalculateValueOffset(const std::vector<int64_t>& strides,
|
||||
const std::vector<int64_t>& index) {
|
||||
const int64_t n = static_cast<int64_t>(index.size());
|
||||
int64_t offset = 0;
|
||||
for (int64_t i = 0; i < n; ++i) {
|
||||
offset += index[i] * strides[i];
|
||||
}
|
||||
return offset;
|
||||
}
|
||||
|
||||
int64_t CalculateValueOffset(const std::vector<int64_t>& index) const {
|
||||
return Tensor::CalculateValueOffset(strides_, index);
|
||||
}
|
||||
|
||||
/// Returns the value at the given index without data-type and bounds checks
|
||||
template <typename ValueType>
|
||||
const typename ValueType::c_type& Value(const std::vector<int64_t>& index) const {
|
||||
using c_type = typename ValueType::c_type;
|
||||
const int64_t offset = CalculateValueOffset(index);
|
||||
const c_type* ptr = reinterpret_cast<const c_type*>(raw_data() + offset);
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
Status Validate() const {
|
||||
return internal::ValidateTensorParameters(type_, data_, shape_, strides_, dim_names_);
|
||||
}
|
||||
|
||||
protected:
|
||||
Tensor() {}
|
||||
|
||||
std::shared_ptr<DataType> type_;
|
||||
std::shared_ptr<Buffer> data_;
|
||||
std::vector<int64_t> shape_;
|
||||
std::vector<int64_t> strides_;
|
||||
|
||||
/// These names are optional
|
||||
std::vector<std::string> dim_names_;
|
||||
|
||||
template <typename SparseIndexType>
|
||||
friend class SparseTensorImpl;
|
||||
|
||||
private:
|
||||
ARROW_DISALLOW_COPY_AND_ASSIGN(Tensor);
|
||||
};
|
||||
|
||||
template <typename TYPE>
|
||||
class NumericTensor : public Tensor {
|
||||
public:
|
||||
using TypeClass = TYPE;
|
||||
using value_type = typename TypeClass::c_type;
|
||||
|
||||
/// \brief Create a NumericTensor with full parameters
|
||||
///
|
||||
/// This factory function will return Status::Invalid when the parameters are
|
||||
/// inconsistent
|
||||
///
|
||||
/// \param[in] data The buffer of the tensor content
|
||||
/// \param[in] shape The shape of the tensor
|
||||
/// \param[in] strides The strides of the tensor
|
||||
/// (if this is empty, the data assumed to be row-major)
|
||||
/// \param[in] dim_names The names of the tensor dimensions
|
||||
static Result<std::shared_ptr<NumericTensor<TYPE>>> Make(
|
||||
const std::shared_ptr<Buffer>& data, const std::vector<int64_t>& shape,
|
||||
const std::vector<int64_t>& strides = {},
|
||||
const std::vector<std::string>& dim_names = {}) {
|
||||
ARROW_RETURN_NOT_OK(internal::ValidateTensorParameters(
|
||||
TypeTraits<TYPE>::type_singleton(), data, shape, strides, dim_names));
|
||||
return std::make_shared<NumericTensor<TYPE>>(data, shape, strides, dim_names);
|
||||
}
|
||||
|
||||
/// Constructor with non-negative strides and dimension names
|
||||
NumericTensor(const std::shared_ptr<Buffer>& data, const std::vector<int64_t>& shape,
|
||||
const std::vector<int64_t>& strides,
|
||||
const std::vector<std::string>& dim_names)
|
||||
: Tensor(TypeTraits<TYPE>::type_singleton(), data, shape, strides, dim_names) {}
|
||||
|
||||
/// Constructor with no dimension names or strides, data assumed to be row-major
|
||||
NumericTensor(const std::shared_ptr<Buffer>& data, const std::vector<int64_t>& shape)
|
||||
: NumericTensor(data, shape, {}, {}) {}
|
||||
|
||||
/// Constructor with non-negative strides
|
||||
NumericTensor(const std::shared_ptr<Buffer>& data, const std::vector<int64_t>& shape,
|
||||
const std::vector<int64_t>& strides)
|
||||
: NumericTensor(data, shape, strides, {}) {}
|
||||
|
||||
const value_type& Value(const std::vector<int64_t>& index) const {
|
||||
return Tensor::Value<TypeClass>(index);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace arrow
|
Reference in New Issue
Block a user