mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-07-05 23:42:35 +00:00
first commit
This commit is contained in:
@ -0,0 +1,138 @@
|
||||
// Licensed to the Apache Software Foundation (ASF) under one
|
||||
// or more contributor license agreements. See the NOTICE file
|
||||
// distributed with this work for additional information
|
||||
// regarding copyright ownership. The ASF licenses this file
|
||||
// to you under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance
|
||||
// with the License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing,
|
||||
// software distributed under the License is distributed on an
|
||||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
// KIND, either express or implied. See the License for the
|
||||
// specific language governing permissions and limitations
|
||||
// under the License.
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdint>
|
||||
#include <string>
|
||||
|
||||
#include "benchmark/benchmark.h"
|
||||
|
||||
#include "arrow/util/cpu_info.h"
|
||||
|
||||
namespace arrow {
|
||||
|
||||
using internal::CpuInfo;
|
||||
|
||||
static CpuInfo* cpu_info = CpuInfo::GetInstance();
|
||||
|
||||
static const int64_t kL1Size = cpu_info->CacheSize(CpuInfo::L1_CACHE);
|
||||
static const int64_t kL2Size = cpu_info->CacheSize(CpuInfo::L2_CACHE);
|
||||
static const int64_t kL3Size = cpu_info->CacheSize(CpuInfo::L3_CACHE);
|
||||
static const int64_t kCantFitInL3Size = kL3Size * 4;
|
||||
static const std::vector<int64_t> kMemorySizes = {kL1Size, kL2Size, kL3Size,
|
||||
kCantFitInL3Size};
|
||||
|
||||
template <typename Func>
|
||||
struct BenchmarkArgsType;
|
||||
|
||||
// Pattern matching that extracts the vector element type of Benchmark::Args()
|
||||
template <typename Values>
|
||||
struct BenchmarkArgsType<benchmark::internal::Benchmark* (
|
||||
benchmark::internal::Benchmark::*)(const std::vector<Values>&)> {
|
||||
using type = Values;
|
||||
};
|
||||
|
||||
// Benchmark changed its parameter type between releases from
|
||||
// int to int64_t. As it doesn't have version macros, we need
|
||||
// to apply C++ template magic.
|
||||
using ArgsType =
|
||||
typename BenchmarkArgsType<decltype(&benchmark::internal::Benchmark::Args)>::type;
|
||||
|
||||
struct GenericItemsArgs {
|
||||
// number of items processed per iteration
|
||||
const int64_t size;
|
||||
|
||||
// proportion of nulls in generated arrays
|
||||
double null_proportion;
|
||||
|
||||
explicit GenericItemsArgs(benchmark::State& state)
|
||||
: size(state.range(0)), state_(state) {
|
||||
if (state.range(1) == 0) {
|
||||
this->null_proportion = 0.0;
|
||||
} else {
|
||||
this->null_proportion = std::min(1., 1. / static_cast<double>(state.range(1)));
|
||||
}
|
||||
}
|
||||
|
||||
~GenericItemsArgs() {
|
||||
state_.counters["size"] = static_cast<double>(size);
|
||||
state_.counters["null_percent"] = null_proportion * 100;
|
||||
state_.SetItemsProcessed(state_.iterations() * size);
|
||||
}
|
||||
|
||||
private:
|
||||
benchmark::State& state_;
|
||||
};
|
||||
|
||||
void BenchmarkSetArgsWithSizes(benchmark::internal::Benchmark* bench,
|
||||
const std::vector<int64_t>& sizes = kMemorySizes) {
|
||||
bench->Unit(benchmark::kMicrosecond);
|
||||
|
||||
// 0 is treated as "no nulls"
|
||||
for (const auto size : sizes) {
|
||||
for (const auto inverse_null_proportion :
|
||||
std::vector<ArgsType>({10000, 100, 10, 2, 1, 0})) {
|
||||
bench->Args({static_cast<ArgsType>(size), inverse_null_proportion});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void BenchmarkSetArgs(benchmark::internal::Benchmark* bench) {
|
||||
BenchmarkSetArgsWithSizes(bench, kMemorySizes);
|
||||
}
|
||||
|
||||
void RegressionSetArgs(benchmark::internal::Benchmark* bench) {
|
||||
// Regression do not need to account for cache hierarchy, thus optimize for
|
||||
// the best case.
|
||||
BenchmarkSetArgsWithSizes(bench, {kL1Size});
|
||||
}
|
||||
|
||||
// RAII struct to handle some of the boilerplate in regression benchmarks
|
||||
struct RegressionArgs {
|
||||
// size of memory tested (per iteration) in bytes
|
||||
const int64_t size;
|
||||
|
||||
// proportion of nulls in generated arrays
|
||||
double null_proportion;
|
||||
|
||||
// If size_is_bytes is true, then it's a number of bytes, otherwise it's the
|
||||
// number of items processed (for reporting)
|
||||
explicit RegressionArgs(benchmark::State& state, bool size_is_bytes = true)
|
||||
: size(state.range(0)), state_(state), size_is_bytes_(size_is_bytes) {
|
||||
if (state.range(1) == 0) {
|
||||
this->null_proportion = 0.0;
|
||||
} else {
|
||||
this->null_proportion = std::min(1., 1. / static_cast<double>(state.range(1)));
|
||||
}
|
||||
}
|
||||
|
||||
~RegressionArgs() {
|
||||
state_.counters["size"] = static_cast<double>(size);
|
||||
state_.counters["null_percent"] = null_proportion * 100;
|
||||
if (size_is_bytes_) {
|
||||
state_.SetBytesProcessed(state_.iterations() * size);
|
||||
} else {
|
||||
state_.SetItemsProcessed(state_.iterations() * size);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
benchmark::State& state_;
|
||||
bool size_is_bytes_;
|
||||
};
|
||||
|
||||
} // namespace arrow
|
Reference in New Issue
Block a user