first commit

This commit is contained in:
Ayxan
2022-05-23 00:16:32 +04:00
commit d660f2a4ca
24786 changed files with 4428337 additions and 0 deletions

View File

@@ -0,0 +1,13 @@
# Copyright 2018-2022 Streamlit Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

View File

@@ -0,0 +1,271 @@
# Copyright 2018-2022 Streamlit Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
def intro():
import streamlit as st
st.sidebar.success("Select a demo above.")
st.markdown(
"""
Streamlit is an open-source app framework built specifically for
Machine Learning and Data Science projects.
**👈 Select a demo from the dropdown on the left** to see some examples
of what Streamlit can do!
### Want to learn more?
- Check out [streamlit.io](https://streamlit.io)
- Jump into our [documentation](https://docs.streamlit.io)
- Ask a question in our [community
forums](https://discuss.streamlit.io)
### See more complex demos
- Use a neural net to [analyze the Udacity Self-driving Car Image
Dataset](https://github.com/streamlit/demo-self-driving)
- Explore a [New York City rideshare dataset](https://github.com/streamlit/demo-uber-nyc-pickups)
"""
)
# Turn off black formatting for this function to present the user with more
# compact code.
# fmt: off
def mapping_demo():
import streamlit as st
import pandas as pd
import pydeck as pdk
from urllib.error import URLError
@st.cache
def from_data_file(filename):
url = (
"http://raw.githubusercontent.com/streamlit/"
"example-data/master/hello/v1/%s" % filename)
return pd.read_json(url)
try:
ALL_LAYERS = {
"Bike Rentals": pdk.Layer(
"HexagonLayer",
data=from_data_file("bike_rental_stats.json"),
get_position=["lon", "lat"],
radius=200,
elevation_scale=4,
elevation_range=[0, 1000],
extruded=True,
),
"Bart Stop Exits": pdk.Layer(
"ScatterplotLayer",
data=from_data_file("bart_stop_stats.json"),
get_position=["lon", "lat"],
get_color=[200, 30, 0, 160],
get_radius="[exits]",
radius_scale=0.05,
),
"Bart Stop Names": pdk.Layer(
"TextLayer",
data=from_data_file("bart_stop_stats.json"),
get_position=["lon", "lat"],
get_text="name",
get_color=[0, 0, 0, 200],
get_size=15,
get_alignment_baseline="'bottom'",
),
"Outbound Flow": pdk.Layer(
"ArcLayer",
data=from_data_file("bart_path_stats.json"),
get_source_position=["lon", "lat"],
get_target_position=["lon2", "lat2"],
get_source_color=[200, 30, 0, 160],
get_target_color=[200, 30, 0, 160],
auto_highlight=True,
width_scale=0.0001,
get_width="outbound",
width_min_pixels=3,
width_max_pixels=30,
),
}
st.sidebar.markdown('### Map Layers')
selected_layers = [
layer for layer_name, layer in ALL_LAYERS.items()
if st.sidebar.checkbox(layer_name, True)]
if selected_layers:
st.pydeck_chart(pdk.Deck(
map_style="mapbox://styles/mapbox/light-v9",
initial_view_state={"latitude": 37.76,
"longitude": -122.4, "zoom": 11, "pitch": 50},
layers=selected_layers,
))
else:
st.error("Please choose at least one layer above.")
except URLError as e:
st.error("""
**This demo requires internet access.**
Connection error: %s
""" % e.reason)
# fmt: on
# Turn off black formatting for this function to present the user with more
# compact code.
# fmt: off
def fractal_demo():
import streamlit as st
import numpy as np
# Interactive Streamlit elements, like these sliders, return their value.
# This gives you an extremely simple interaction model.
iterations = st.sidebar.slider("Level of detail", 2, 20, 10, 1)
separation = st.sidebar.slider("Separation", 0.7, 2.0, 0.7885)
# Non-interactive elements return a placeholder to their location
# in the app. Here we're storing progress_bar to update it later.
progress_bar = st.sidebar.progress(0)
# These two elements will be filled in later, so we create a placeholder
# for them using st.empty()
frame_text = st.sidebar.empty()
image = st.empty()
m, n, s = 960, 640, 400
x = np.linspace(-m / s, m / s, num=m).reshape((1, m))
y = np.linspace(-n / s, n / s, num=n).reshape((n, 1))
for frame_num, a in enumerate(np.linspace(0.0, 4 * np.pi, 100)):
# Here were setting value for these two elements.
progress_bar.progress(frame_num)
frame_text.text("Frame %i/100" % (frame_num + 1))
# Performing some fractal wizardry.
c = separation * np.exp(1j * a)
Z = np.tile(x, (n, 1)) + 1j * np.tile(y, (1, m))
C = np.full((n, m), c)
M: Any = np.full((n, m), True, dtype=bool)
N = np.zeros((n, m))
for i in range(iterations):
Z[M] = Z[M] * Z[M] + C[M]
M[np.abs(Z) > 2] = False
N[M] = i
# Update the image placeholder by calling the image() function on it.
image.image(1.0 - (N / N.max()), use_column_width=True)
# We clear elements by calling empty on them.
progress_bar.empty()
frame_text.empty()
# Streamlit widgets automatically run the script from top to bottom. Since
# this button is not connected to any other logic, it just causes a plain
# rerun.
st.button("Re-run")
# fmt: on
# Turn off black formatting for this function to present the user with more
# compact code.
# fmt: off
def plotting_demo():
import streamlit as st
import time
import numpy as np
progress_bar = st.sidebar.progress(0)
status_text = st.sidebar.empty()
last_rows = np.random.randn(1, 1)
chart = st.line_chart(last_rows)
for i in range(1, 101):
new_rows = last_rows[-1, :] + np.random.randn(5, 1).cumsum(axis=0)
status_text.text("%i%% Complete" % i)
chart.add_rows(new_rows)
progress_bar.progress(i)
last_rows = new_rows
time.sleep(0.05)
progress_bar.empty()
# Streamlit widgets automatically run the script from top to bottom. Since
# this button is not connected to any other logic, it just causes a plain
# rerun.
st.button("Re-run")
# fmt: on
# Turn off black formatting for this function to present the user with more
# compact code.
# fmt: off
def data_frame_demo():
import streamlit as st
import pandas as pd
import altair as alt
from urllib.error import URLError
@st.cache
def get_UN_data():
AWS_BUCKET_URL = "http://streamlit-demo-data.s3-us-west-2.amazonaws.com"
df = pd.read_csv(AWS_BUCKET_URL + "/agri.csv.gz")
return df.set_index("Region")
try:
df = get_UN_data()
countries = st.multiselect(
"Choose countries", list(df.index), ["China", "United States of America"]
)
if not countries:
st.error("Please select at least one country.")
else:
data = df.loc[countries]
data /= 1000000.0
st.write("### Gross Agricultural Production ($B)", data.sort_index())
data = data.T.reset_index()
data = pd.melt(data, id_vars=["index"]).rename(
columns={"index": "year", "value": "Gross Agricultural Product ($B)"}
)
chart = (
alt.Chart(data)
.mark_area(opacity=0.3)
.encode(
x="year:T",
y=alt.Y("Gross Agricultural Product ($B):Q", stack=None),
color="Region:N",
)
)
st.altair_chart(chart, use_container_width=True)
except URLError as e:
st.error(
"""
**This demo requires internet access.**
Connection error: %s
"""
% e.reason
)
# fmt: on

View File

@@ -0,0 +1,105 @@
# Copyright 2018-2022 Streamlit Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import textwrap
from collections import OrderedDict
import streamlit as st
from streamlit.logger import get_logger
from streamlit.hello import demos
LOGGER = get_logger(__name__)
# Dictionary of
# demo_name -> (demo_function, demo_description)
DEMOS = OrderedDict(
[
("", (demos.intro, None)),
(
"Animation Demo",
(
demos.fractal_demo,
"""
This app shows how you can use Streamlit to build cool animations.
It displays an animated fractal based on the the Julia Set. Use the slider
to tune different parameters.
""",
),
),
(
"Plotting Demo",
(
demos.plotting_demo,
"""
This demo illustrates a combination of plotting and animation with
Streamlit. We're generating a bunch of random numbers in a loop for around
5 seconds. Enjoy!
""",
),
),
(
"Mapping Demo",
(
demos.mapping_demo,
"""
This demo shows how to use
[`st.pydeck_chart`](https://docs.streamlit.io/library/api-reference/charts/st.pydeck_chart)
to display geospatial data.
""",
),
),
(
"DataFrame Demo",
(
demos.data_frame_demo,
"""
This demo shows how to use `st.write` to visualize Pandas DataFrames.
(Data courtesy of the [UN Data Explorer](http://data.un.org/Explorer.aspx).)
""",
),
),
]
)
def run():
demo_name = st.sidebar.selectbox("Choose a demo", list(DEMOS.keys()), 0)
demo = DEMOS[demo_name][0]
if demo_name == "":
show_code = False
st.write("# Welcome to Streamlit! 👋")
else:
show_code = st.sidebar.checkbox("Show code", True)
st.markdown("# %s" % demo_name)
description = DEMOS[demo_name][1]
if description:
st.write(description)
# Clear everything from the intro page.
# We only have 4 elements in the page so this is intentional overkill.
for i in range(10):
st.empty()
demo()
if show_code:
st.markdown("## Code")
sourcelines, _ = inspect.getsourcelines(demo)
st.code(textwrap.dedent("".join(sourcelines[1:])))
if __name__ == "__main__":
run()