// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #pragma once #include #include #include #include #include #include #include "arrow/util/endian.h" #include "arrow/util/macros.h" #include "arrow/util/type_traits.h" #include "arrow/util/visibility.h" namespace arrow { enum class DecimalStatus { kSuccess, kDivideByZero, kOverflow, kRescaleDataLoss, }; template class ARROW_EXPORT GenericBasicDecimal { protected: struct LittleEndianArrayTag {}; #if ARROW_LITTLE_ENDIAN static constexpr int kHighWordIndex = NWORDS - 1; #else static constexpr int kHighWordIndex = 0; #endif public: static constexpr int kBitWidth = BIT_WIDTH; static constexpr int kByteWidth = kBitWidth / 8; // A constructor tag to introduce a little-endian encoded array static constexpr LittleEndianArrayTag LittleEndianArray{}; using WordArray = std::array; /// \brief Empty constructor creates a decimal with a value of 0. constexpr GenericBasicDecimal() noexcept : array_({0}) {} /// \brief Create a decimal from the two's complement representation. /// /// Input array is assumed to be in native endianness. constexpr GenericBasicDecimal(const WordArray& array) noexcept : array_(array) {} /// \brief Create a decimal from the two's complement representation. /// /// Input array is assumed to be in little endianness, with native endian elements. GenericBasicDecimal(LittleEndianArrayTag, const WordArray& array) noexcept : GenericBasicDecimal(bit_util::little_endian::ToNative(array)) {} /// \brief Create a decimal from an array of bytes. /// /// Bytes are assumed to be in native-endian byte order. explicit GenericBasicDecimal(const uint8_t* bytes) { memcpy(array_.data(), bytes, sizeof(array_)); } /// \brief Get the bits of the two's complement representation of the number. /// /// The elements are in native endian order. The bits within each uint64_t element /// are in native endian order. For example, on a little endian machine, /// BasicDecimal128(123).native_endian_array() = {123, 0}; /// but on a big endian machine, /// BasicDecimal128(123).native_endian_array() = {0, 123}; constexpr const WordArray& native_endian_array() const { return array_; } /// \brief Get the bits of the two's complement representation of the number. /// /// The elements are in little endian order. However, the bits within each /// uint64_t element are in native endian order. /// For example, BasicDecimal128(123).little_endian_array() = {123, 0}; WordArray little_endian_array() const { return bit_util::little_endian::FromNative(array_); } const uint8_t* native_endian_bytes() const { return reinterpret_cast(array_.data()); } uint8_t* mutable_native_endian_bytes() { return reinterpret_cast(array_.data()); } /// \brief Return the raw bytes of the value in native-endian byte order. std::array ToBytes() const { std::array out{{0}}; memcpy(out.data(), array_.data(), kByteWidth); return out; } /// \brief Copy the raw bytes of the value in native-endian byte order. void ToBytes(uint8_t* out) const { memcpy(out, array_.data(), kByteWidth); } /// Return 1 if positive or zero, -1 if strictly negative. int64_t Sign() const { return 1 | (static_cast(array_[kHighWordIndex]) >> 63); } bool IsNegative() const { return static_cast(array_[kHighWordIndex]) < 0; } protected: WordArray array_; }; /// Represents a signed 128-bit integer in two's complement. /// /// This class is also compiled into LLVM IR - so, it should not have cpp references like /// streams and boost. class ARROW_EXPORT BasicDecimal128 : public GenericBasicDecimal { public: static constexpr int kMaxPrecision = 38; static constexpr int kMaxScale = 38; using GenericBasicDecimal::GenericBasicDecimal; constexpr BasicDecimal128() noexcept : GenericBasicDecimal() {} /// \brief Create a BasicDecimal128 from the two's complement representation. #if ARROW_LITTLE_ENDIAN constexpr BasicDecimal128(int64_t high, uint64_t low) noexcept : BasicDecimal128(WordArray{low, static_cast(high)}) {} #else constexpr BasicDecimal128(int64_t high, uint64_t low) noexcept : BasicDecimal128(WordArray{static_cast(high), low}) {} #endif /// \brief Convert any integer value into a BasicDecimal128. template ::value && (sizeof(T) <= sizeof(uint64_t)), T>::type> constexpr BasicDecimal128(T value) noexcept : BasicDecimal128(value >= T{0} ? 0 : -1, static_cast(value)) { // NOLINT } /// \brief Negate the current value (in-place) BasicDecimal128& Negate(); /// \brief Absolute value (in-place) BasicDecimal128& Abs(); /// \brief Absolute value static BasicDecimal128 Abs(const BasicDecimal128& left); /// \brief Add a number to this one. The result is truncated to 128 bits. BasicDecimal128& operator+=(const BasicDecimal128& right); /// \brief Subtract a number from this one. The result is truncated to 128 bits. BasicDecimal128& operator-=(const BasicDecimal128& right); /// \brief Multiply this number by another number. The result is truncated to 128 bits. BasicDecimal128& operator*=(const BasicDecimal128& right); /// Divide this number by right and return the result. /// /// This operation is not destructive. /// The answer rounds to zero. Signs work like: /// 21 / 5 -> 4, 1 /// -21 / 5 -> -4, -1 /// 21 / -5 -> -4, 1 /// -21 / -5 -> 4, -1 /// \param[in] divisor the number to divide by /// \param[out] result the quotient /// \param[out] remainder the remainder after the division DecimalStatus Divide(const BasicDecimal128& divisor, BasicDecimal128* result, BasicDecimal128* remainder) const; /// \brief In-place division. BasicDecimal128& operator/=(const BasicDecimal128& right); /// \brief Bitwise "or" between two BasicDecimal128. BasicDecimal128& operator|=(const BasicDecimal128& right); /// \brief Bitwise "and" between two BasicDecimal128. BasicDecimal128& operator&=(const BasicDecimal128& right); /// \brief Shift left by the given number of bits. BasicDecimal128& operator<<=(uint32_t bits); BasicDecimal128 operator<<(uint32_t bits) const { auto res = *this; res <<= bits; return res; } /// \brief Shift right by the given number of bits. Negative values will BasicDecimal128& operator>>=(uint32_t bits); BasicDecimal128 operator>>(uint32_t bits) const { auto res = *this; res >>= bits; return res; } /// \brief Get the high bits of the two's complement representation of the number. constexpr int64_t high_bits() const { #if ARROW_LITTLE_ENDIAN return static_cast(array_[1]); #else return static_cast(array_[0]); #endif } /// \brief Get the low bits of the two's complement representation of the number. constexpr uint64_t low_bits() const { #if ARROW_LITTLE_ENDIAN return array_[0]; #else return array_[1]; #endif } /// \brief separate the integer and fractional parts for the given scale. void GetWholeAndFraction(int32_t scale, BasicDecimal128* whole, BasicDecimal128* fraction) const; /// \brief Scale multiplier for given scale value. static const BasicDecimal128& GetScaleMultiplier(int32_t scale); /// \brief Half-scale multiplier for given scale value. static const BasicDecimal128& GetHalfScaleMultiplier(int32_t scale); /// \brief Convert BasicDecimal128 from one scale to another DecimalStatus Rescale(int32_t original_scale, int32_t new_scale, BasicDecimal128* out) const; /// \brief Scale up. BasicDecimal128 IncreaseScaleBy(int32_t increase_by) const; /// \brief Scale down. /// - If 'round' is true, the right-most digits are dropped and the result value is /// rounded up (+1 for +ve, -1 for -ve) based on the value of the dropped digits /// (>= 10^reduce_by / 2). /// - If 'round' is false, the right-most digits are simply dropped. BasicDecimal128 ReduceScaleBy(int32_t reduce_by, bool round = true) const; /// \brief Whether this number fits in the given precision /// /// Return true if the number of significant digits is less or equal to `precision`. bool FitsInPrecision(int32_t precision) const; /// \brief count the number of leading binary zeroes. int32_t CountLeadingBinaryZeros() const; /// \brief Get the maximum valid unscaled decimal value. static const BasicDecimal128& GetMaxValue(); /// \brief Get the maximum valid unscaled decimal value for the given precision. static BasicDecimal128 GetMaxValue(int32_t precision); /// \brief Get the maximum decimal value (is not a valid value). static constexpr BasicDecimal128 GetMaxSentinel() { return BasicDecimal128(/*high=*/std::numeric_limits::max(), /*low=*/std::numeric_limits::max()); } /// \brief Get the minimum decimal value (is not a valid value). static constexpr BasicDecimal128 GetMinSentinel() { return BasicDecimal128(/*high=*/std::numeric_limits::min(), /*low=*/std::numeric_limits::min()); } }; ARROW_EXPORT bool operator==(const BasicDecimal128& left, const BasicDecimal128& right); ARROW_EXPORT bool operator!=(const BasicDecimal128& left, const BasicDecimal128& right); ARROW_EXPORT bool operator<(const BasicDecimal128& left, const BasicDecimal128& right); ARROW_EXPORT bool operator<=(const BasicDecimal128& left, const BasicDecimal128& right); ARROW_EXPORT bool operator>(const BasicDecimal128& left, const BasicDecimal128& right); ARROW_EXPORT bool operator>=(const BasicDecimal128& left, const BasicDecimal128& right); ARROW_EXPORT BasicDecimal128 operator-(const BasicDecimal128& operand); ARROW_EXPORT BasicDecimal128 operator~(const BasicDecimal128& operand); ARROW_EXPORT BasicDecimal128 operator+(const BasicDecimal128& left, const BasicDecimal128& right); ARROW_EXPORT BasicDecimal128 operator-(const BasicDecimal128& left, const BasicDecimal128& right); ARROW_EXPORT BasicDecimal128 operator*(const BasicDecimal128& left, const BasicDecimal128& right); ARROW_EXPORT BasicDecimal128 operator/(const BasicDecimal128& left, const BasicDecimal128& right); ARROW_EXPORT BasicDecimal128 operator%(const BasicDecimal128& left, const BasicDecimal128& right); class ARROW_EXPORT BasicDecimal256 : public GenericBasicDecimal { private: // Due to a bug in clang, we have to declare the extend method prior to its // usage. template static constexpr uint64_t extend(T low_bits) noexcept { return low_bits >= T() ? uint64_t{0} : ~uint64_t{0}; } public: using GenericBasicDecimal::GenericBasicDecimal; static constexpr int kMaxPrecision = 76; static constexpr int kMaxScale = 76; constexpr BasicDecimal256() noexcept : GenericBasicDecimal() {} /// \brief Convert any integer value into a BasicDecimal256. template ::value && (sizeof(T) <= sizeof(uint64_t)), T>::type> constexpr BasicDecimal256(T value) noexcept : BasicDecimal256(bit_util::little_endian::ToNative( {static_cast(value), extend(value), extend(value), extend(value)})) {} explicit BasicDecimal256(const BasicDecimal128& value) noexcept : BasicDecimal256(bit_util::little_endian::ToNative( {value.low_bits(), static_cast(value.high_bits()), extend(value.high_bits()), extend(value.high_bits())})) {} /// \brief Negate the current value (in-place) BasicDecimal256& Negate(); /// \brief Absolute value (in-place) BasicDecimal256& Abs(); /// \brief Absolute value static BasicDecimal256 Abs(const BasicDecimal256& left); /// \brief Add a number to this one. The result is truncated to 256 bits. BasicDecimal256& operator+=(const BasicDecimal256& right); /// \brief Subtract a number from this one. The result is truncated to 256 bits. BasicDecimal256& operator-=(const BasicDecimal256& right); /// \brief Get the lowest bits of the two's complement representation of the number. uint64_t low_bits() const { return bit_util::little_endian::Make(array_)[0]; } /// \brief Scale multiplier for given scale value. static const BasicDecimal256& GetScaleMultiplier(int32_t scale); /// \brief Half-scale multiplier for given scale value. static const BasicDecimal256& GetHalfScaleMultiplier(int32_t scale); /// \brief Convert BasicDecimal256 from one scale to another DecimalStatus Rescale(int32_t original_scale, int32_t new_scale, BasicDecimal256* out) const; /// \brief Scale up. BasicDecimal256 IncreaseScaleBy(int32_t increase_by) const; /// \brief Scale down. /// - If 'round' is true, the right-most digits are dropped and the result value is /// rounded up (+1 for positive, -1 for negative) based on the value of the /// dropped digits (>= 10^reduce_by / 2). /// - If 'round' is false, the right-most digits are simply dropped. BasicDecimal256 ReduceScaleBy(int32_t reduce_by, bool round = true) const; /// \brief Whether this number fits in the given precision /// /// Return true if the number of significant digits is less or equal to `precision`. bool FitsInPrecision(int32_t precision) const; /// \brief Multiply this number by another number. The result is truncated to 256 bits. BasicDecimal256& operator*=(const BasicDecimal256& right); /// Divide this number by right and return the result. /// /// This operation is not destructive. /// The answer rounds to zero. Signs work like: /// 21 / 5 -> 4, 1 /// -21 / 5 -> -4, -1 /// 21 / -5 -> -4, 1 /// -21 / -5 -> 4, -1 /// \param[in] divisor the number to divide by /// \param[out] result the quotient /// \param[out] remainder the remainder after the division DecimalStatus Divide(const BasicDecimal256& divisor, BasicDecimal256* result, BasicDecimal256* remainder) const; /// \brief Shift left by the given number of bits. BasicDecimal256& operator<<=(uint32_t bits); BasicDecimal256 operator<<(uint32_t bits) const { auto res = *this; res <<= bits; return res; } /// \brief In-place division. BasicDecimal256& operator/=(const BasicDecimal256& right); /// \brief Get the maximum valid unscaled decimal value for the given precision. static BasicDecimal256 GetMaxValue(int32_t precision); /// \brief Get the maximum decimal value (is not a valid value). static constexpr BasicDecimal256 GetMaxSentinel() { #if ARROW_LITTLE_ENDIAN return BasicDecimal256({std::numeric_limits::max(), std::numeric_limits::max(), std::numeric_limits::max(), static_cast(std::numeric_limits::max())}); #else return BasicDecimal256({static_cast(std::numeric_limits::max()), std::numeric_limits::max(), std::numeric_limits::max(), std::numeric_limits::max()}); #endif } /// \brief Get the minimum decimal value (is not a valid value). static constexpr BasicDecimal256 GetMinSentinel() { #if ARROW_LITTLE_ENDIAN return BasicDecimal256( {0, 0, 0, static_cast(std::numeric_limits::min())}); #else return BasicDecimal256( {static_cast(std::numeric_limits::min()), 0, 0, 0}); #endif } }; ARROW_EXPORT inline bool operator==(const BasicDecimal256& left, const BasicDecimal256& right) { return left.native_endian_array() == right.native_endian_array(); } ARROW_EXPORT inline bool operator!=(const BasicDecimal256& left, const BasicDecimal256& right) { return left.native_endian_array() != right.native_endian_array(); } ARROW_EXPORT bool operator<(const BasicDecimal256& left, const BasicDecimal256& right); ARROW_EXPORT inline bool operator<=(const BasicDecimal256& left, const BasicDecimal256& right) { return !operator<(right, left); } ARROW_EXPORT inline bool operator>(const BasicDecimal256& left, const BasicDecimal256& right) { return operator<(right, left); } ARROW_EXPORT inline bool operator>=(const BasicDecimal256& left, const BasicDecimal256& right) { return !operator<(left, right); } ARROW_EXPORT BasicDecimal256 operator-(const BasicDecimal256& operand); ARROW_EXPORT BasicDecimal256 operator~(const BasicDecimal256& operand); ARROW_EXPORT BasicDecimal256 operator+(const BasicDecimal256& left, const BasicDecimal256& right); ARROW_EXPORT BasicDecimal256 operator*(const BasicDecimal256& left, const BasicDecimal256& right); ARROW_EXPORT BasicDecimal256 operator/(const BasicDecimal256& left, const BasicDecimal256& right); } // namespace arrow