"""Unit tests for altair API""" import io import json import operator import os import tempfile import jsonschema import pytest import pandas as pd import altair.vegalite.v3 as alt from altair.utils import AltairDeprecationWarning try: import altair_saver # noqa: F401 except ImportError: altair_saver = None def getargs(*args, **kwargs): return args, kwargs OP_DICT = { "layer": operator.add, "hconcat": operator.or_, "vconcat": operator.and_, } def _make_chart_type(chart_type): data = pd.DataFrame( { "x": [28, 55, 43, 91, 81, 53, 19, 87], "y": [43, 91, 81, 53, 19, 87, 52, 28], "color": list("AAAABBBB"), } ) base = ( alt.Chart(data) .mark_point() .encode( x="x", y="y", color="color", ) ) if chart_type in ["layer", "hconcat", "vconcat", "concat"]: func = getattr(alt, chart_type) return func(base.mark_square(), base.mark_circle()) elif chart_type == "facet": return base.facet("color") elif chart_type == "facet_encoding": return base.encode(facet="color") elif chart_type == "repeat": return base.encode(alt.X(alt.repeat(), type="quantitative")).repeat(["x", "y"]) elif chart_type == "chart": return base else: raise ValueError("chart_type='{}' is not recognized".format(chart_type)) @pytest.fixture def basic_chart(): data = pd.DataFrame( { "a": ["A", "B", "C", "D", "E", "F", "G", "H", "I"], "b": [28, 55, 43, 91, 81, 53, 19, 87, 52], } ) return alt.Chart(data).mark_bar().encode(x="a", y="b") def test_chart_data_types(): def Chart(data): return alt.Chart(data).mark_point().encode(x="x:Q", y="y:Q") # Url Data data = "/path/to/my/data.csv" dct = Chart(data).to_dict() assert dct["data"] == {"url": data} # Dict Data data = {"values": [{"x": 1, "y": 2}, {"x": 2, "y": 3}]} with alt.data_transformers.enable(consolidate_datasets=False): dct = Chart(data).to_dict() assert dct["data"] == data with alt.data_transformers.enable(consolidate_datasets=True): dct = Chart(data).to_dict() name = dct["data"]["name"] assert dct["datasets"][name] == data["values"] # DataFrame data data = pd.DataFrame({"x": range(5), "y": range(5)}) with alt.data_transformers.enable(consolidate_datasets=False): dct = Chart(data).to_dict() assert dct["data"]["values"] == data.to_dict(orient="records") with alt.data_transformers.enable(consolidate_datasets=True): dct = Chart(data).to_dict() name = dct["data"]["name"] assert dct["datasets"][name] == data.to_dict(orient="records") # Named data object data = alt.NamedData(name="Foo") dct = Chart(data).to_dict() assert dct["data"] == {"name": "Foo"} def test_chart_infer_types(): data = pd.DataFrame( { "x": pd.date_range("2012", periods=10, freq="Y"), "y": range(10), "c": list("abcabcabca"), } ) def _check_encodings(chart): dct = chart.to_dict() assert dct["encoding"]["x"]["type"] == "temporal" assert dct["encoding"]["x"]["field"] == "x" assert dct["encoding"]["y"]["type"] == "quantitative" assert dct["encoding"]["y"]["field"] == "y" assert dct["encoding"]["color"]["type"] == "nominal" assert dct["encoding"]["color"]["field"] == "c" # Pass field names by keyword chart = alt.Chart(data).mark_point().encode(x="x", y="y", color="c") _check_encodings(chart) # pass Channel objects by keyword chart = ( alt.Chart(data) .mark_point() .encode(x=alt.X("x"), y=alt.Y("y"), color=alt.Color("c")) ) _check_encodings(chart) # pass Channel objects by value chart = alt.Chart(data).mark_point().encode(alt.X("x"), alt.Y("y"), alt.Color("c")) _check_encodings(chart) # override default types chart = ( alt.Chart(data) .mark_point() .encode(alt.X("x", type="nominal"), alt.Y("y", type="ordinal")) ) dct = chart.to_dict() assert dct["encoding"]["x"]["type"] == "nominal" assert dct["encoding"]["y"]["type"] == "ordinal" @pytest.mark.parametrize( "args, kwargs", [ getargs(detail=["value:Q", "name:N"], tooltip=["value:Q", "name:N"]), getargs(detail=["value", "name"], tooltip=["value", "name"]), getargs(alt.Detail(["value:Q", "name:N"]), alt.Tooltip(["value:Q", "name:N"])), getargs(alt.Detail(["value", "name"]), alt.Tooltip(["value", "name"])), getargs( [alt.Detail("value:Q"), alt.Detail("name:N")], [alt.Tooltip("value:Q"), alt.Tooltip("name:N")], ), getargs( [alt.Detail("value"), alt.Detail("name")], [alt.Tooltip("value"), alt.Tooltip("name")], ), ], ) def test_multiple_encodings(args, kwargs): df = pd.DataFrame({"value": [1, 2, 3], "name": ["A", "B", "C"]}) encoding_dct = [ {"field": "value", "type": "quantitative"}, {"field": "name", "type": "nominal"}, ] chart = alt.Chart(df).mark_point().encode(*args, **kwargs) dct = chart.to_dict() assert dct["encoding"]["detail"] == encoding_dct assert dct["encoding"]["tooltip"] == encoding_dct def test_chart_operations(): data = pd.DataFrame( { "x": pd.date_range("2012", periods=10, freq="Y"), "y": range(10), "c": list("abcabcabca"), } ) chart1 = alt.Chart(data).mark_line().encode(x="x", y="y", color="c") chart2 = chart1.mark_point() chart3 = chart1.mark_circle() chart4 = chart1.mark_square() chart = chart1 + chart2 + chart3 assert isinstance(chart, alt.LayerChart) assert len(chart.layer) == 3 chart += chart4 assert len(chart.layer) == 4 chart = chart1 | chart2 | chart3 assert isinstance(chart, alt.HConcatChart) assert len(chart.hconcat) == 3 chart |= chart4 assert len(chart.hconcat) == 4 chart = chart1 & chart2 & chart3 assert isinstance(chart, alt.VConcatChart) assert len(chart.vconcat) == 3 chart &= chart4 assert len(chart.vconcat) == 4 def test_selection_to_dict(): brush = alt.selection(type="interval") # test some value selections # Note: X and Y cannot have conditions alt.Chart("path/to/data.json").mark_point().encode( color=alt.condition(brush, alt.ColorValue("red"), alt.ColorValue("blue")), opacity=alt.condition(brush, alt.value(0.5), alt.value(1.0)), text=alt.condition(brush, alt.TextValue("foo"), alt.value("bar")), ).to_dict() # test some field selections # Note: X and Y cannot have conditions # Conditions cannot both be fields alt.Chart("path/to/data.json").mark_point().encode( color=alt.condition(brush, alt.Color("col1:N"), alt.value("blue")), opacity=alt.condition(brush, "col1:N", alt.value(0.5)), text=alt.condition(brush, alt.value("abc"), alt.Text("col2:N")), size=alt.condition(brush, alt.value(20), "col2:N"), ).to_dict() def test_selection_expression(): selection = alt.selection_single(fields=["value"]) assert isinstance(selection.value, alt.expr.Expression) assert selection.value.to_dict() == "{0}.value".format(selection.name) assert isinstance(selection["value"], alt.expr.Expression) assert selection["value"].to_dict() == "{0}['value']".format(selection.name) with pytest.raises(AttributeError): selection.__magic__ @pytest.mark.parametrize("format", ["html", "json", "png", "svg", "pdf"]) def test_save(format, basic_chart): if format in ["pdf", "png"]: out = io.BytesIO() mode = "rb" else: out = io.StringIO() mode = "r" if format in ["svg", "png", "pdf"]: if not altair_saver: with pytest.raises(ValueError) as err: basic_chart.save(out, format=format) assert "github.com/altair-viz/altair_saver" in str(err.value) return elif format not in altair_saver.available_formats(): with pytest.raises(ValueError) as err: basic_chart.save(out, format=format) assert f"No enabled saver found that supports format='{format}'" in str( err.value ) return basic_chart.save(out, format=format) out.seek(0) content = out.read() if format == "json": assert "$schema" in json.loads(content) if format == "html": assert content.startswith("") fid, filename = tempfile.mkstemp(suffix="." + format) os.close(fid) try: basic_chart.save(filename) with open(filename, mode) as f: assert f.read()[:1000] == content[:1000] finally: os.remove(filename) def test_facet_basic(): # wrapped facet chart1 = ( alt.Chart("data.csv") .mark_point() .encode( x="x:Q", y="y:Q", ) .facet("category:N", columns=2) ) dct1 = chart1.to_dict() assert dct1["facet"] == alt.Facet("category:N").to_dict() assert dct1["columns"] == 2 assert dct1["data"] == alt.UrlData("data.csv").to_dict() # explicit row/col facet chart2 = ( alt.Chart("data.csv") .mark_point() .encode( x="x:Q", y="y:Q", ) .facet(row="category1:Q", column="category2:Q") ) dct2 = chart2.to_dict() assert dct2["facet"]["row"] == alt.Facet("category1:Q").to_dict() assert dct2["facet"]["column"] == alt.Facet("category2:Q").to_dict() assert "columns" not in dct2 assert dct2["data"] == alt.UrlData("data.csv").to_dict() def test_facet_parse(): chart = ( alt.Chart("data.csv") .mark_point() .encode(x="x:Q", y="y:Q") .facet(row="row:N", column="column:O") ) dct = chart.to_dict() assert dct["data"] == {"url": "data.csv"} assert "data" not in dct["spec"] assert dct["facet"] == { "column": {"field": "column", "type": "ordinal"}, "row": {"field": "row", "type": "nominal"}, } def test_facet_parse_data(): data = pd.DataFrame({"x": range(5), "y": range(5), "row": list("abcab")}) chart = ( alt.Chart(data) .mark_point() .encode(x="x", y="y:O") .facet(row="row", column="column:O") ) with alt.data_transformers.enable(consolidate_datasets=False): dct = chart.to_dict() assert "values" in dct["data"] assert "data" not in dct["spec"] assert dct["facet"] == { "column": {"field": "column", "type": "ordinal"}, "row": {"field": "row", "type": "nominal"}, } with alt.data_transformers.enable(consolidate_datasets=True): dct = chart.to_dict() assert "datasets" in dct assert "name" in dct["data"] assert "data" not in dct["spec"] assert dct["facet"] == { "column": {"field": "column", "type": "ordinal"}, "row": {"field": "row", "type": "nominal"}, } def test_selection(): # test instantiation of selections interval = alt.selection_interval(name="selec_1") assert interval.selection.type == "interval" assert interval.name == "selec_1" single = alt.selection_single(name="selec_2") assert single.selection.type == "single" assert single.name == "selec_2" multi = alt.selection_multi(name="selec_3") assert multi.selection.type == "multi" assert multi.name == "selec_3" # test adding to chart chart = alt.Chart().add_selection(single) chart = chart.add_selection(multi, interval) assert set(chart.selection.keys()) == {"selec_1", "selec_2", "selec_3"} # test logical operations assert isinstance(single & multi, alt.Selection) assert isinstance(single | multi, alt.Selection) assert isinstance(~single, alt.Selection) assert isinstance((single & multi)[0].group, alt.SelectionAnd) assert isinstance((single | multi)[0].group, alt.SelectionOr) assert isinstance((~single)[0].group, alt.SelectionNot) # test that default names increment (regression for #1454) sel1 = alt.selection_single() sel2 = alt.selection_multi() sel3 = alt.selection_interval() names = {s.name for s in (sel1, sel2, sel3)} assert len(names) == 3 def test_transforms(): # aggregate transform agg1 = alt.AggregatedFieldDef(**{"as": "x1", "op": "mean", "field": "y"}) agg2 = alt.AggregatedFieldDef(**{"as": "x2", "op": "median", "field": "z"}) chart = alt.Chart().transform_aggregate([agg1], ["foo"], x2="median(z)") kwds = dict(aggregate=[agg1, agg2], groupby=["foo"]) assert chart.transform == [alt.AggregateTransform(**kwds)] # bin transform chart = alt.Chart().transform_bin("binned", field="field", bin=True) kwds = {"as": "binned", "field": "field", "bin": True} assert chart.transform == [alt.BinTransform(**kwds)] # calcualte transform chart = alt.Chart().transform_calculate("calc", "datum.a * 4") kwds = {"as": "calc", "calculate": "datum.a * 4"} assert chart.transform == [alt.CalculateTransform(**kwds)] # impute transform chart = alt.Chart().transform_impute("field", "key", groupby=["x"]) kwds = {"impute": "field", "key": "key", "groupby": ["x"]} assert chart.transform == [alt.ImputeTransform(**kwds)] # joinaggregate transform chart = alt.Chart().transform_joinaggregate(min="min(x)", groupby=["key"]) kwds = { "joinaggregate": [ alt.JoinAggregateFieldDef(field="x", op="min", **{"as": "min"}) ], "groupby": ["key"], } assert chart.transform == [alt.JoinAggregateTransform(**kwds)] # filter transform chart = alt.Chart().transform_filter("datum.a < 4") assert chart.transform == [alt.FilterTransform(filter="datum.a < 4")] # flatten transform chart = alt.Chart().transform_flatten(["A", "B"], ["X", "Y"]) kwds = {"as": ["X", "Y"], "flatten": ["A", "B"]} assert chart.transform == [alt.FlattenTransform(**kwds)] # fold transform chart = alt.Chart().transform_fold(["A", "B", "C"], as_=["key", "val"]) kwds = {"as": ["key", "val"], "fold": ["A", "B", "C"]} assert chart.transform == [alt.FoldTransform(**kwds)] # lookup transform lookup_data = alt.LookupData(alt.UrlData("foo.csv"), "id", ["rate"]) chart = alt.Chart().transform_lookup( from_=lookup_data, as_="a", lookup="a", default="b" ) kwds = {"from": lookup_data, "as": "a", "lookup": "a", "default": "b"} assert chart.transform == [alt.LookupTransform(**kwds)] # sample transform chart = alt.Chart().transform_sample() assert chart.transform == [alt.SampleTransform(1000)] # stack transform chart = alt.Chart().transform_stack("stacked", "x", groupby=["y"]) assert chart.transform == [ alt.StackTransform(stack="x", groupby=["y"], **{"as": "stacked"}) ] # timeUnit transform chart = alt.Chart().transform_timeunit("foo", field="x", timeUnit="date") kwds = {"as": "foo", "field": "x", "timeUnit": "date"} assert chart.transform == [alt.TimeUnitTransform(**kwds)] # window transform chart = alt.Chart().transform_window(xsum="sum(x)", ymin="min(y)", frame=[None, 0]) window = [ alt.WindowFieldDef(**{"as": "xsum", "field": "x", "op": "sum"}), alt.WindowFieldDef(**{"as": "ymin", "field": "y", "op": "min"}), ] # kwargs don't maintain order in Python < 3.6, so window list can # be reversed assert chart.transform == [ alt.WindowTransform(frame=[None, 0], window=window) ] or chart.transform == [alt.WindowTransform(frame=[None, 0], window=window[::-1])] def test_filter_transform_selection_predicates(): selector1 = alt.selection_interval(name="s1") selector2 = alt.selection_interval(name="s2") base = alt.Chart("data.txt").mark_point() chart = base.transform_filter(selector1) assert chart.to_dict()["transform"] == [{"filter": {"selection": "s1"}}] chart = base.transform_filter(~selector1) assert chart.to_dict()["transform"] == [{"filter": {"selection": {"not": "s1"}}}] chart = base.transform_filter(selector1 & selector2) assert chart.to_dict()["transform"] == [ {"filter": {"selection": {"and": ["s1", "s2"]}}} ] chart = base.transform_filter(selector1 | selector2) assert chart.to_dict()["transform"] == [ {"filter": {"selection": {"or": ["s1", "s2"]}}} ] chart = base.transform_filter(selector1 | ~selector2) assert chart.to_dict()["transform"] == [ {"filter": {"selection": {"or": ["s1", {"not": "s2"}]}}} ] chart = base.transform_filter(~selector1 | ~selector2) assert chart.to_dict()["transform"] == [ {"filter": {"selection": {"or": [{"not": "s1"}, {"not": "s2"}]}}} ] chart = base.transform_filter(~(selector1 & selector2)) assert chart.to_dict()["transform"] == [ {"filter": {"selection": {"not": {"and": ["s1", "s2"]}}}} ] def test_resolve_methods(): chart = alt.LayerChart().resolve_axis(x="shared", y="independent") assert chart.resolve == alt.Resolve( axis=alt.AxisResolveMap(x="shared", y="independent") ) chart = alt.LayerChart().resolve_legend(color="shared", fill="independent") assert chart.resolve == alt.Resolve( legend=alt.LegendResolveMap(color="shared", fill="independent") ) chart = alt.LayerChart().resolve_scale(x="shared", y="independent") assert chart.resolve == alt.Resolve( scale=alt.ScaleResolveMap(x="shared", y="independent") ) def test_layer_encodings(): chart = alt.LayerChart().encode(x="column:Q") assert chart.encoding.x == alt.X(shorthand="column:Q") def test_add_selection(): selections = [ alt.selection_interval(), alt.selection_single(), alt.selection_multi(), ] chart = ( alt.Chart() .mark_point() .add_selection(selections[0]) .add_selection(selections[1], selections[2]) ) expected = {s.name: s.selection for s in selections} assert chart.selection == expected def test_repeat_add_selections(): base = alt.Chart("data.csv").mark_point() selection = alt.selection_single() chart1 = base.add_selection(selection).repeat(list("ABC")) chart2 = base.repeat(list("ABC")).add_selection(selection) assert chart1.to_dict() == chart2.to_dict() def test_facet_add_selections(): base = alt.Chart("data.csv").mark_point() selection = alt.selection_single() chart1 = base.add_selection(selection).facet("val:Q") chart2 = base.facet("val:Q").add_selection(selection) assert chart1.to_dict() == chart2.to_dict() def test_layer_add_selection(): base = alt.Chart("data.csv").mark_point() selection = alt.selection_single() chart1 = alt.layer(base.add_selection(selection), base) chart2 = alt.layer(base, base).add_selection(selection) assert chart1.to_dict() == chart2.to_dict() @pytest.mark.parametrize("charttype", [alt.concat, alt.hconcat, alt.vconcat]) def test_compound_add_selections(charttype): base = alt.Chart("data.csv").mark_point() selection = alt.selection_single() chart1 = charttype(base.add_selection(selection), base.add_selection(selection)) chart2 = charttype(base, base).add_selection(selection) assert chart1.to_dict() == chart2.to_dict() def test_selection_property(): sel = alt.selection_interval() chart = alt.Chart("data.csv").mark_point().properties(selection=sel) assert list(chart["selection"].keys()) == [sel.name] def test_LookupData(): df = pd.DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) lookup = alt.LookupData(data=df, key="x") dct = lookup.to_dict() assert dct["key"] == "x" assert dct["data"] == { "values": [{"x": 1, "y": 4}, {"x": 2, "y": 5}, {"x": 3, "y": 6}] } def test_themes(): chart = alt.Chart("foo.txt").mark_point() active = alt.themes.active try: alt.themes.enable("default") assert chart.to_dict()["config"] == { "mark": {"tooltip": None}, "view": {"width": 400, "height": 300}, } alt.themes.enable("opaque") assert chart.to_dict()["config"] == { "background": "white", "mark": {"tooltip": None}, "view": {"width": 400, "height": 300}, } alt.themes.enable("none") assert "config" not in chart.to_dict() finally: # re-enable the original active theme alt.themes.enable(active) def test_chart_from_dict(): base = alt.Chart("data.csv").mark_point().encode(x="x:Q", y="y:Q") charts = [ base, base + base, base | base, base & base, base.facet("c:N"), (base + base).facet(row="c:N", data="data.csv"), base.repeat(["c", "d"]), (base + base).repeat(row=["c", "d"]), ] for chart in charts: print(chart) chart_out = alt.Chart.from_dict(chart.to_dict()) assert type(chart_out) is type(chart) # test that an invalid spec leads to a schema validation error with pytest.raises(jsonschema.ValidationError): alt.Chart.from_dict({"invalid": "spec"}) def test_consolidate_datasets(basic_chart): subchart1 = basic_chart subchart2 = basic_chart.copy() subchart2.data = basic_chart.data.copy() chart = subchart1 | subchart2 with alt.data_transformers.enable(consolidate_datasets=True): dct_consolidated = chart.to_dict() with alt.data_transformers.enable(consolidate_datasets=False): dct_standard = chart.to_dict() assert "datasets" in dct_consolidated assert "datasets" not in dct_standard datasets = dct_consolidated["datasets"] # two dataset copies should be recognized as duplicates assert len(datasets) == 1 # make sure data matches original & names are correct name, data = datasets.popitem() for spec in dct_standard["hconcat"]: assert spec["data"]["values"] == data for spec in dct_consolidated["hconcat"]: assert spec["data"] == {"name": name} def test_consolidate_InlineData(): data = alt.InlineData( values=[{"a": 1, "b": 1}, {"a": 2, "b": 2}], format={"type": "csv"} ) chart = alt.Chart(data).mark_point() with alt.data_transformers.enable(consolidate_datasets=False): dct = chart.to_dict() assert dct["data"]["format"] == data.format assert dct["data"]["values"] == data.values with alt.data_transformers.enable(consolidate_datasets=True): dct = chart.to_dict() assert dct["data"]["format"] == data.format assert list(dct["datasets"].values())[0] == data.values data = alt.InlineData(values=[], name="runtime_data") chart = alt.Chart(data).mark_point() with alt.data_transformers.enable(consolidate_datasets=False): dct = chart.to_dict() assert dct["data"] == data.to_dict() with alt.data_transformers.enable(consolidate_datasets=True): dct = chart.to_dict() assert dct["data"] == data.to_dict() def test_deprecated_encodings(): base = alt.Chart("data.txt").mark_point() with pytest.warns(AltairDeprecationWarning) as record: chart1 = base.encode(strokeOpacity=alt.Strokeopacity("x:Q")).to_dict() assert "alt.StrokeOpacity" in record[0].message.args[0] chart2 = base.encode(strokeOpacity=alt.StrokeOpacity("x:Q")).to_dict() assert chart1 == chart2 def test_repeat(): # wrapped repeat chart1 = ( alt.Chart("data.csv") .mark_point() .encode( x=alt.X(alt.repeat(), type="quantitative"), y="y:Q", ) .repeat(["A", "B", "C", "D"], columns=2) ) dct1 = chart1.to_dict() assert dct1["repeat"] == ["A", "B", "C", "D"] assert dct1["columns"] == 2 assert dct1["spec"]["encoding"]["x"]["field"] == {"repeat": "repeat"} # explicit row/col repeat chart2 = ( alt.Chart("data.csv") .mark_point() .encode( x=alt.X(alt.repeat("row"), type="quantitative"), y=alt.Y(alt.repeat("column"), type="quantitative"), ) .repeat(row=["A", "B", "C"], column=["C", "B", "A"]) ) dct2 = chart2.to_dict() assert dct2["repeat"] == {"row": ["A", "B", "C"], "column": ["C", "B", "A"]} assert "columns" not in dct2 assert dct2["spec"]["encoding"]["x"]["field"] == {"repeat": "row"} assert dct2["spec"]["encoding"]["y"]["field"] == {"repeat": "column"} def test_data_property(): data = pd.DataFrame({"x": [1, 2, 3], "y": list("ABC")}) chart1 = alt.Chart(data).mark_point() chart2 = alt.Chart().mark_point().properties(data=data) assert chart1.to_dict() == chart2.to_dict() @pytest.mark.parametrize("method", ["layer", "hconcat", "vconcat", "concat"]) @pytest.mark.parametrize( "data", ["data.json", pd.DataFrame({"x": range(3), "y": list("abc")})] ) def test_subcharts_with_same_data(method, data): func = getattr(alt, method) point = alt.Chart(data).mark_point().encode(x="x:Q", y="y:Q") line = point.mark_line() text = point.mark_text() chart1 = func(point, line, text) assert chart1.data is not alt.Undefined assert all(c.data is alt.Undefined for c in getattr(chart1, method)) if method != "concat": op = OP_DICT[method] chart2 = op(op(point, line), text) assert chart2.data is not alt.Undefined assert all(c.data is alt.Undefined for c in getattr(chart2, method)) @pytest.mark.parametrize("method", ["layer", "hconcat", "vconcat", "concat"]) @pytest.mark.parametrize( "data", ["data.json", pd.DataFrame({"x": range(3), "y": list("abc")})] ) def test_subcharts_different_data(method, data): func = getattr(alt, method) point = alt.Chart(data).mark_point().encode(x="x:Q", y="y:Q") otherdata = alt.Chart("data.csv").mark_point().encode(x="x:Q", y="y:Q") nodata = alt.Chart().mark_point().encode(x="x:Q", y="y:Q") chart1 = func(point, otherdata) assert chart1.data is alt.Undefined assert getattr(chart1, method)[0].data is data chart2 = func(point, nodata) assert chart2.data is alt.Undefined assert getattr(chart2, method)[0].data is data def test_layer_facet(basic_chart): chart = (basic_chart + basic_chart).facet(row="row:Q") assert chart.data is not alt.Undefined assert chart.spec.data is alt.Undefined for layer in chart.spec.layer: assert layer.data is alt.Undefined dct = chart.to_dict() assert "data" in dct def test_layer_errors(): toplevel_chart = alt.Chart("data.txt").mark_point().configure_legend(columns=2) facet_chart1 = alt.Chart("data.txt").mark_point().encode(facet="row:Q") facet_chart2 = alt.Chart("data.txt").mark_point().facet("row:Q") repeat_chart = alt.Chart("data.txt").mark_point().repeat(["A", "B", "C"]) simple_chart = alt.Chart("data.txt").mark_point() with pytest.raises(ValueError) as err: toplevel_chart + simple_chart assert str(err.value).startswith( 'Objects with "config" attribute cannot be used within LayerChart.' ) with pytest.raises(ValueError) as err: repeat_chart + simple_chart assert str(err.value) == "Repeat charts cannot be layered." with pytest.raises(ValueError) as err: facet_chart1 + simple_chart assert str(err.value) == "Faceted charts cannot be layered." with pytest.raises(ValueError) as err: alt.layer(simple_chart) + facet_chart2 assert str(err.value) == "Faceted charts cannot be layered." @pytest.mark.parametrize( "chart_type", ["layer", "hconcat", "vconcat", "concat", "facet", "facet_encoding", "repeat"], ) def test_resolve(chart_type): chart = _make_chart_type(chart_type) chart = ( chart.resolve_scale( x="independent", ) .resolve_legend(color="independent") .resolve_axis(y="independent") ) dct = chart.to_dict() assert dct["resolve"] == { "scale": {"x": "independent"}, "legend": {"color": "independent"}, "axis": {"y": "independent"}, } # TODO: test vconcat, hconcat, concat when schema allows them. # This is blocked by https://github.com/vega/vega-lite/issues/5261 @pytest.mark.parametrize("chart_type", ["chart", "layer", "facet_encoding"]) @pytest.mark.parametrize("facet_arg", [None, "facet", "row", "column"]) def test_facet(chart_type, facet_arg): chart = _make_chart_type(chart_type) if facet_arg is None: chart = chart.facet("color:N", columns=2) else: chart = chart.facet(**{facet_arg: "color:N", "columns": 2}) dct = chart.to_dict() assert "spec" in dct assert dct["columns"] == 2 expected = {"field": "color", "type": "nominal"} if facet_arg is None or facet_arg == "facet": assert dct["facet"] == expected else: assert dct["facet"][facet_arg] == expected def test_sequence(): data = alt.sequence(100) assert data.to_dict() == {"sequence": {"start": 0, "stop": 100}} data = alt.sequence(5, 10) assert data.to_dict() == {"sequence": {"start": 5, "stop": 10}} data = alt.sequence(0, 1, 0.1, as_="x") assert data.to_dict() == { "sequence": {"start": 0, "stop": 1, "step": 0.1, "as": "x"} } def test_graticule(): data = alt.graticule() assert data.to_dict() == {"graticule": True} data = alt.graticule(step=[15, 15]) assert data.to_dict() == {"graticule": {"step": [15, 15]}} def test_sphere(): data = alt.sphere() assert data.to_dict() == {"sphere": True}