mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-04-21 18:23:35 +00:00
732 lines
25 KiB
Python
732 lines
25 KiB
Python
import os
|
|
from threading import Lock
|
|
import time
|
|
import types
|
|
from typing import (
|
|
Any, Callable, Dict, Iterable, List, Optional, Sequence, Type, TypeVar,
|
|
Union,
|
|
)
|
|
|
|
from . import values # retain this import style for testability
|
|
from .context_managers import ExceptionCounter, InprogressTracker, Timer
|
|
from .metrics_core import (
|
|
Metric, METRIC_LABEL_NAME_RE, METRIC_NAME_RE,
|
|
RESERVED_METRIC_LABEL_NAME_RE,
|
|
)
|
|
from .registry import Collector, CollectorRegistry, REGISTRY
|
|
from .samples import Exemplar, Sample
|
|
from .utils import floatToGoString, INF
|
|
|
|
T = TypeVar('T', bound='MetricWrapperBase')
|
|
F = TypeVar("F", bound=Callable[..., Any])
|
|
|
|
|
|
def _build_full_name(metric_type, name, namespace, subsystem, unit):
|
|
full_name = ''
|
|
if namespace:
|
|
full_name += namespace + '_'
|
|
if subsystem:
|
|
full_name += subsystem + '_'
|
|
full_name += name
|
|
if metric_type == 'counter' and full_name.endswith('_total'):
|
|
full_name = full_name[:-6] # Munge to OpenMetrics.
|
|
if unit and not full_name.endswith("_" + unit):
|
|
full_name += "_" + unit
|
|
if unit and metric_type in ('info', 'stateset'):
|
|
raise ValueError('Metric name is of a type that cannot have a unit: ' + full_name)
|
|
return full_name
|
|
|
|
|
|
def _validate_labelname(l):
|
|
if not METRIC_LABEL_NAME_RE.match(l):
|
|
raise ValueError('Invalid label metric name: ' + l)
|
|
if RESERVED_METRIC_LABEL_NAME_RE.match(l):
|
|
raise ValueError('Reserved label metric name: ' + l)
|
|
|
|
|
|
def _validate_labelnames(cls, labelnames):
|
|
labelnames = tuple(labelnames)
|
|
for l in labelnames:
|
|
_validate_labelname(l)
|
|
if l in cls._reserved_labelnames:
|
|
raise ValueError('Reserved label metric name: ' + l)
|
|
return labelnames
|
|
|
|
|
|
def _validate_exemplar(exemplar):
|
|
runes = 0
|
|
for k, v in exemplar.items():
|
|
_validate_labelname(k)
|
|
runes += len(k)
|
|
runes += len(v)
|
|
if runes > 128:
|
|
raise ValueError('Exemplar labels have %d UTF-8 characters, exceeding the limit of 128')
|
|
|
|
|
|
def _get_use_created() -> bool:
|
|
return os.environ.get("PROMETHEUS_DISABLE_CREATED_SERIES", 'False').lower() not in ('true', '1', 't')
|
|
|
|
|
|
_use_created = _get_use_created()
|
|
|
|
|
|
class MetricWrapperBase(Collector):
|
|
_type: Optional[str] = None
|
|
_reserved_labelnames: Sequence[str] = ()
|
|
|
|
def _is_observable(self):
|
|
# Whether this metric is observable, i.e.
|
|
# * a metric without label names and values, or
|
|
# * the child of a labelled metric.
|
|
return not self._labelnames or (self._labelnames and self._labelvalues)
|
|
|
|
def _raise_if_not_observable(self):
|
|
# Functions that mutate the state of the metric, for example incrementing
|
|
# a counter, will fail if the metric is not observable, because only if a
|
|
# metric is observable will the value be initialized.
|
|
if not self._is_observable():
|
|
raise ValueError('%s metric is missing label values' % str(self._type))
|
|
|
|
def _is_parent(self):
|
|
return self._labelnames and not self._labelvalues
|
|
|
|
def _get_metric(self):
|
|
return Metric(self._name, self._documentation, self._type, self._unit)
|
|
|
|
def describe(self) -> Iterable[Metric]:
|
|
return [self._get_metric()]
|
|
|
|
def collect(self) -> Iterable[Metric]:
|
|
metric = self._get_metric()
|
|
for suffix, labels, value, timestamp, exemplar in self._samples():
|
|
metric.add_sample(self._name + suffix, labels, value, timestamp, exemplar)
|
|
return [metric]
|
|
|
|
def __str__(self) -> str:
|
|
return f"{self._type}:{self._name}"
|
|
|
|
def __repr__(self) -> str:
|
|
metric_type = type(self)
|
|
return f"{metric_type.__module__}.{metric_type.__name__}({self._name})"
|
|
|
|
def __init__(self: T,
|
|
name: str,
|
|
documentation: str,
|
|
labelnames: Iterable[str] = (),
|
|
namespace: str = '',
|
|
subsystem: str = '',
|
|
unit: str = '',
|
|
registry: Optional[CollectorRegistry] = REGISTRY,
|
|
_labelvalues: Optional[Sequence[str]] = None,
|
|
) -> None:
|
|
self._name = _build_full_name(self._type, name, namespace, subsystem, unit)
|
|
self._labelnames = _validate_labelnames(self, labelnames)
|
|
self._labelvalues = tuple(_labelvalues or ())
|
|
self._kwargs: Dict[str, Any] = {}
|
|
self._documentation = documentation
|
|
self._unit = unit
|
|
|
|
if not METRIC_NAME_RE.match(self._name):
|
|
raise ValueError('Invalid metric name: ' + self._name)
|
|
|
|
if self._is_parent():
|
|
# Prepare the fields needed for child metrics.
|
|
self._lock = Lock()
|
|
self._metrics: Dict[Sequence[str], T] = {}
|
|
|
|
if self._is_observable():
|
|
self._metric_init()
|
|
|
|
if not self._labelvalues:
|
|
# Register the multi-wrapper parent metric, or if a label-less metric, the whole shebang.
|
|
if registry:
|
|
registry.register(self)
|
|
|
|
def labels(self: T, *labelvalues: Any, **labelkwargs: Any) -> T:
|
|
"""Return the child for the given labelset.
|
|
|
|
All metrics can have labels, allowing grouping of related time series.
|
|
Taking a counter as an example:
|
|
|
|
from prometheus_client import Counter
|
|
|
|
c = Counter('my_requests_total', 'HTTP Failures', ['method', 'endpoint'])
|
|
c.labels('get', '/').inc()
|
|
c.labels('post', '/submit').inc()
|
|
|
|
Labels can also be provided as keyword arguments:
|
|
|
|
from prometheus_client import Counter
|
|
|
|
c = Counter('my_requests_total', 'HTTP Failures', ['method', 'endpoint'])
|
|
c.labels(method='get', endpoint='/').inc()
|
|
c.labels(method='post', endpoint='/submit').inc()
|
|
|
|
See the best practices on [naming](http://prometheus.io/docs/practices/naming/)
|
|
and [labels](http://prometheus.io/docs/practices/instrumentation/#use-labels).
|
|
"""
|
|
if not self._labelnames:
|
|
raise ValueError('No label names were set when constructing %s' % self)
|
|
|
|
if self._labelvalues:
|
|
raise ValueError('{} already has labels set ({}); can not chain calls to .labels()'.format(
|
|
self,
|
|
dict(zip(self._labelnames, self._labelvalues))
|
|
))
|
|
|
|
if labelvalues and labelkwargs:
|
|
raise ValueError("Can't pass both *args and **kwargs")
|
|
|
|
if labelkwargs:
|
|
if sorted(labelkwargs) != sorted(self._labelnames):
|
|
raise ValueError('Incorrect label names')
|
|
labelvalues = tuple(str(labelkwargs[l]) for l in self._labelnames)
|
|
else:
|
|
if len(labelvalues) != len(self._labelnames):
|
|
raise ValueError('Incorrect label count')
|
|
labelvalues = tuple(str(l) for l in labelvalues)
|
|
with self._lock:
|
|
if labelvalues not in self._metrics:
|
|
self._metrics[labelvalues] = self.__class__(
|
|
self._name,
|
|
documentation=self._documentation,
|
|
labelnames=self._labelnames,
|
|
unit=self._unit,
|
|
_labelvalues=labelvalues,
|
|
**self._kwargs
|
|
)
|
|
return self._metrics[labelvalues]
|
|
|
|
def remove(self, *labelvalues: Any) -> None:
|
|
if not self._labelnames:
|
|
raise ValueError('No label names were set when constructing %s' % self)
|
|
|
|
"""Remove the given labelset from the metric."""
|
|
if len(labelvalues) != len(self._labelnames):
|
|
raise ValueError('Incorrect label count (expected %d, got %s)' % (len(self._labelnames), labelvalues))
|
|
labelvalues = tuple(str(l) for l in labelvalues)
|
|
with self._lock:
|
|
del self._metrics[labelvalues]
|
|
|
|
def clear(self) -> None:
|
|
"""Remove all labelsets from the metric"""
|
|
with self._lock:
|
|
self._metrics = {}
|
|
|
|
def _samples(self) -> Iterable[Sample]:
|
|
if self._is_parent():
|
|
return self._multi_samples()
|
|
else:
|
|
return self._child_samples()
|
|
|
|
def _multi_samples(self) -> Iterable[Sample]:
|
|
with self._lock:
|
|
metrics = self._metrics.copy()
|
|
for labels, metric in metrics.items():
|
|
series_labels = list(zip(self._labelnames, labels))
|
|
for suffix, sample_labels, value, timestamp, exemplar in metric._samples():
|
|
yield Sample(suffix, dict(series_labels + list(sample_labels.items())), value, timestamp, exemplar)
|
|
|
|
def _child_samples(self) -> Iterable[Sample]: # pragma: no cover
|
|
raise NotImplementedError('_child_samples() must be implemented by %r' % self)
|
|
|
|
def _metric_init(self): # pragma: no cover
|
|
"""
|
|
Initialize the metric object as a child, i.e. when it has labels (if any) set.
|
|
|
|
This is factored as a separate function to allow for deferred initialization.
|
|
"""
|
|
raise NotImplementedError('_metric_init() must be implemented by %r' % self)
|
|
|
|
|
|
class Counter(MetricWrapperBase):
|
|
"""A Counter tracks counts of events or running totals.
|
|
|
|
Example use cases for Counters:
|
|
- Number of requests processed
|
|
- Number of items that were inserted into a queue
|
|
- Total amount of data that a system has processed
|
|
|
|
Counters can only go up (and be reset when the process restarts). If your use case can go down,
|
|
you should use a Gauge instead.
|
|
|
|
An example for a Counter:
|
|
|
|
from prometheus_client import Counter
|
|
|
|
c = Counter('my_failures_total', 'Description of counter')
|
|
c.inc() # Increment by 1
|
|
c.inc(1.6) # Increment by given value
|
|
|
|
There are utilities to count exceptions raised:
|
|
|
|
@c.count_exceptions()
|
|
def f():
|
|
pass
|
|
|
|
with c.count_exceptions():
|
|
pass
|
|
|
|
# Count only one type of exception
|
|
with c.count_exceptions(ValueError):
|
|
pass
|
|
"""
|
|
_type = 'counter'
|
|
|
|
def _metric_init(self) -> None:
|
|
self._value = values.ValueClass(self._type, self._name, self._name + '_total', self._labelnames,
|
|
self._labelvalues)
|
|
self._created = time.time()
|
|
|
|
def inc(self, amount: float = 1, exemplar: Optional[Dict[str, str]] = None) -> None:
|
|
"""Increment counter by the given amount."""
|
|
self._raise_if_not_observable()
|
|
if amount < 0:
|
|
raise ValueError('Counters can only be incremented by non-negative amounts.')
|
|
self._value.inc(amount)
|
|
if exemplar:
|
|
_validate_exemplar(exemplar)
|
|
self._value.set_exemplar(Exemplar(exemplar, amount, time.time()))
|
|
|
|
def count_exceptions(self, exception: Type[BaseException] = Exception) -> ExceptionCounter:
|
|
"""Count exceptions in a block of code or function.
|
|
|
|
Can be used as a function decorator or context manager.
|
|
Increments the counter when an exception of the given
|
|
type is raised up out of the code.
|
|
"""
|
|
self._raise_if_not_observable()
|
|
return ExceptionCounter(self, exception)
|
|
|
|
def _child_samples(self) -> Iterable[Sample]:
|
|
sample = Sample('_total', {}, self._value.get(), None, self._value.get_exemplar())
|
|
if _use_created:
|
|
return (
|
|
sample,
|
|
Sample('_created', {}, self._created, None, None)
|
|
)
|
|
return (sample,)
|
|
|
|
|
|
class Gauge(MetricWrapperBase):
|
|
"""Gauge metric, to report instantaneous values.
|
|
|
|
Examples of Gauges include:
|
|
- Inprogress requests
|
|
- Number of items in a queue
|
|
- Free memory
|
|
- Total memory
|
|
- Temperature
|
|
|
|
Gauges can go both up and down.
|
|
|
|
from prometheus_client import Gauge
|
|
|
|
g = Gauge('my_inprogress_requests', 'Description of gauge')
|
|
g.inc() # Increment by 1
|
|
g.dec(10) # Decrement by given value
|
|
g.set(4.2) # Set to a given value
|
|
|
|
There are utilities for common use cases:
|
|
|
|
g.set_to_current_time() # Set to current unixtime
|
|
|
|
# Increment when entered, decrement when exited.
|
|
@g.track_inprogress()
|
|
def f():
|
|
pass
|
|
|
|
with g.track_inprogress():
|
|
pass
|
|
|
|
A Gauge can also take its value from a callback:
|
|
|
|
d = Gauge('data_objects', 'Number of objects')
|
|
my_dict = {}
|
|
d.set_function(lambda: len(my_dict))
|
|
"""
|
|
_type = 'gauge'
|
|
_MULTIPROC_MODES = frozenset(('min', 'max', 'livesum', 'liveall', 'all'))
|
|
|
|
def __init__(self,
|
|
name: str,
|
|
documentation: str,
|
|
labelnames: Iterable[str] = (),
|
|
namespace: str = '',
|
|
subsystem: str = '',
|
|
unit: str = '',
|
|
registry: Optional[CollectorRegistry] = REGISTRY,
|
|
_labelvalues: Optional[Sequence[str]] = None,
|
|
multiprocess_mode: str = 'all',
|
|
):
|
|
self._multiprocess_mode = multiprocess_mode
|
|
if multiprocess_mode not in self._MULTIPROC_MODES:
|
|
raise ValueError('Invalid multiprocess mode: ' + multiprocess_mode)
|
|
super().__init__(
|
|
name=name,
|
|
documentation=documentation,
|
|
labelnames=labelnames,
|
|
namespace=namespace,
|
|
subsystem=subsystem,
|
|
unit=unit,
|
|
registry=registry,
|
|
_labelvalues=_labelvalues,
|
|
)
|
|
self._kwargs['multiprocess_mode'] = self._multiprocess_mode
|
|
|
|
def _metric_init(self) -> None:
|
|
self._value = values.ValueClass(
|
|
self._type, self._name, self._name, self._labelnames, self._labelvalues,
|
|
multiprocess_mode=self._multiprocess_mode
|
|
)
|
|
|
|
def inc(self, amount: float = 1) -> None:
|
|
"""Increment gauge by the given amount."""
|
|
self._raise_if_not_observable()
|
|
self._value.inc(amount)
|
|
|
|
def dec(self, amount: float = 1) -> None:
|
|
"""Decrement gauge by the given amount."""
|
|
self._raise_if_not_observable()
|
|
self._value.inc(-amount)
|
|
|
|
def set(self, value: float) -> None:
|
|
"""Set gauge to the given value."""
|
|
self._raise_if_not_observable()
|
|
self._value.set(float(value))
|
|
|
|
def set_to_current_time(self) -> None:
|
|
"""Set gauge to the current unixtime."""
|
|
self.set(time.time())
|
|
|
|
def track_inprogress(self) -> InprogressTracker:
|
|
"""Track inprogress blocks of code or functions.
|
|
|
|
Can be used as a function decorator or context manager.
|
|
Increments the gauge when the code is entered,
|
|
and decrements when it is exited.
|
|
"""
|
|
self._raise_if_not_observable()
|
|
return InprogressTracker(self)
|
|
|
|
def time(self) -> Timer:
|
|
"""Time a block of code or function, and set the duration in seconds.
|
|
|
|
Can be used as a function decorator or context manager.
|
|
"""
|
|
return Timer(self, 'set')
|
|
|
|
def set_function(self, f: Callable[[], float]) -> None:
|
|
"""Call the provided function to return the Gauge value.
|
|
|
|
The function must return a float, and may be called from
|
|
multiple threads. All other methods of the Gauge become NOOPs.
|
|
"""
|
|
|
|
self._raise_if_not_observable()
|
|
|
|
def samples(_: Gauge) -> Iterable[Sample]:
|
|
return (Sample('', {}, float(f()), None, None),)
|
|
|
|
self._child_samples = types.MethodType(samples, self) # type: ignore
|
|
|
|
def _child_samples(self) -> Iterable[Sample]:
|
|
return (Sample('', {}, self._value.get(), None, None),)
|
|
|
|
|
|
class Summary(MetricWrapperBase):
|
|
"""A Summary tracks the size and number of events.
|
|
|
|
Example use cases for Summaries:
|
|
- Response latency
|
|
- Request size
|
|
|
|
Example for a Summary:
|
|
|
|
from prometheus_client import Summary
|
|
|
|
s = Summary('request_size_bytes', 'Request size (bytes)')
|
|
s.observe(512) # Observe 512 (bytes)
|
|
|
|
Example for a Summary using time:
|
|
|
|
from prometheus_client import Summary
|
|
|
|
REQUEST_TIME = Summary('response_latency_seconds', 'Response latency (seconds)')
|
|
|
|
@REQUEST_TIME.time()
|
|
def create_response(request):
|
|
'''A dummy function'''
|
|
time.sleep(1)
|
|
|
|
Example for using the same Summary object as a context manager:
|
|
|
|
with REQUEST_TIME.time():
|
|
pass # Logic to be timed
|
|
"""
|
|
_type = 'summary'
|
|
_reserved_labelnames = ['quantile']
|
|
|
|
def _metric_init(self) -> None:
|
|
self._count = values.ValueClass(self._type, self._name, self._name + '_count', self._labelnames,
|
|
self._labelvalues)
|
|
self._sum = values.ValueClass(self._type, self._name, self._name + '_sum', self._labelnames, self._labelvalues)
|
|
self._created = time.time()
|
|
|
|
def observe(self, amount: float) -> None:
|
|
"""Observe the given amount.
|
|
|
|
The amount is usually positive or zero. Negative values are
|
|
accepted but prevent current versions of Prometheus from
|
|
properly detecting counter resets in the sum of
|
|
observations. See
|
|
https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations
|
|
for details.
|
|
"""
|
|
self._raise_if_not_observable()
|
|
self._count.inc(1)
|
|
self._sum.inc(amount)
|
|
|
|
def time(self) -> Timer:
|
|
"""Time a block of code or function, and observe the duration in seconds.
|
|
|
|
Can be used as a function decorator or context manager.
|
|
"""
|
|
return Timer(self, 'observe')
|
|
|
|
def _child_samples(self) -> Iterable[Sample]:
|
|
samples = [
|
|
Sample('_count', {}, self._count.get(), None, None),
|
|
Sample('_sum', {}, self._sum.get(), None, None),
|
|
]
|
|
if _use_created:
|
|
samples.append(Sample('_created', {}, self._created, None, None))
|
|
return tuple(samples)
|
|
|
|
|
|
class Histogram(MetricWrapperBase):
|
|
"""A Histogram tracks the size and number of events in buckets.
|
|
|
|
You can use Histograms for aggregatable calculation of quantiles.
|
|
|
|
Example use cases:
|
|
- Response latency
|
|
- Request size
|
|
|
|
Example for a Histogram:
|
|
|
|
from prometheus_client import Histogram
|
|
|
|
h = Histogram('request_size_bytes', 'Request size (bytes)')
|
|
h.observe(512) # Observe 512 (bytes)
|
|
|
|
Example for a Histogram using time:
|
|
|
|
from prometheus_client import Histogram
|
|
|
|
REQUEST_TIME = Histogram('response_latency_seconds', 'Response latency (seconds)')
|
|
|
|
@REQUEST_TIME.time()
|
|
def create_response(request):
|
|
'''A dummy function'''
|
|
time.sleep(1)
|
|
|
|
Example of using the same Histogram object as a context manager:
|
|
|
|
with REQUEST_TIME.time():
|
|
pass # Logic to be timed
|
|
|
|
The default buckets are intended to cover a typical web/rpc request from milliseconds to seconds.
|
|
They can be overridden by passing `buckets` keyword argument to `Histogram`.
|
|
"""
|
|
_type = 'histogram'
|
|
_reserved_labelnames = ['le']
|
|
DEFAULT_BUCKETS = (.005, .01, .025, .05, .075, .1, .25, .5, .75, 1.0, 2.5, 5.0, 7.5, 10.0, INF)
|
|
|
|
def __init__(self,
|
|
name: str,
|
|
documentation: str,
|
|
labelnames: Iterable[str] = (),
|
|
namespace: str = '',
|
|
subsystem: str = '',
|
|
unit: str = '',
|
|
registry: Optional[CollectorRegistry] = REGISTRY,
|
|
_labelvalues: Optional[Sequence[str]] = None,
|
|
buckets: Sequence[Union[float, str]] = DEFAULT_BUCKETS,
|
|
):
|
|
self._prepare_buckets(buckets)
|
|
super().__init__(
|
|
name=name,
|
|
documentation=documentation,
|
|
labelnames=labelnames,
|
|
namespace=namespace,
|
|
subsystem=subsystem,
|
|
unit=unit,
|
|
registry=registry,
|
|
_labelvalues=_labelvalues,
|
|
)
|
|
self._kwargs['buckets'] = buckets
|
|
|
|
def _prepare_buckets(self, source_buckets: Sequence[Union[float, str]]) -> None:
|
|
buckets = [float(b) for b in source_buckets]
|
|
if buckets != sorted(buckets):
|
|
# This is probably an error on the part of the user,
|
|
# so raise rather than sorting for them.
|
|
raise ValueError('Buckets not in sorted order')
|
|
if buckets and buckets[-1] != INF:
|
|
buckets.append(INF)
|
|
if len(buckets) < 2:
|
|
raise ValueError('Must have at least two buckets')
|
|
self._upper_bounds = buckets
|
|
|
|
def _metric_init(self) -> None:
|
|
self._buckets: List[values.ValueClass] = []
|
|
self._created = time.time()
|
|
bucket_labelnames = self._labelnames + ('le',)
|
|
self._sum = values.ValueClass(self._type, self._name, self._name + '_sum', self._labelnames, self._labelvalues)
|
|
for b in self._upper_bounds:
|
|
self._buckets.append(values.ValueClass(
|
|
self._type,
|
|
self._name,
|
|
self._name + '_bucket',
|
|
bucket_labelnames,
|
|
self._labelvalues + (floatToGoString(b),))
|
|
)
|
|
|
|
def observe(self, amount: float, exemplar: Optional[Dict[str, str]] = None) -> None:
|
|
"""Observe the given amount.
|
|
|
|
The amount is usually positive or zero. Negative values are
|
|
accepted but prevent current versions of Prometheus from
|
|
properly detecting counter resets in the sum of
|
|
observations. See
|
|
https://prometheus.io/docs/practices/histograms/#count-and-sum-of-observations
|
|
for details.
|
|
"""
|
|
self._raise_if_not_observable()
|
|
self._sum.inc(amount)
|
|
for i, bound in enumerate(self._upper_bounds):
|
|
if amount <= bound:
|
|
self._buckets[i].inc(1)
|
|
if exemplar:
|
|
_validate_exemplar(exemplar)
|
|
self._buckets[i].set_exemplar(Exemplar(exemplar, amount, time.time()))
|
|
break
|
|
|
|
def time(self) -> Timer:
|
|
"""Time a block of code or function, and observe the duration in seconds.
|
|
|
|
Can be used as a function decorator or context manager.
|
|
"""
|
|
return Timer(self, 'observe')
|
|
|
|
def _child_samples(self) -> Iterable[Sample]:
|
|
samples = []
|
|
acc = 0.0
|
|
for i, bound in enumerate(self._upper_bounds):
|
|
acc += self._buckets[i].get()
|
|
samples.append(Sample('_bucket', {'le': floatToGoString(bound)}, acc, None, self._buckets[i].get_exemplar()))
|
|
samples.append(Sample('_count', {}, acc, None, None))
|
|
if self._upper_bounds[0] >= 0:
|
|
samples.append(Sample('_sum', {}, self._sum.get(), None, None))
|
|
if _use_created:
|
|
samples.append(Sample('_created', {}, self._created, None, None))
|
|
return tuple(samples)
|
|
|
|
|
|
class Info(MetricWrapperBase):
|
|
"""Info metric, key-value pairs.
|
|
|
|
Examples of Info include:
|
|
- Build information
|
|
- Version information
|
|
- Potential target metadata
|
|
|
|
Example usage:
|
|
from prometheus_client import Info
|
|
|
|
i = Info('my_build', 'Description of info')
|
|
i.info({'version': '1.2.3', 'buildhost': 'foo@bar'})
|
|
|
|
Info metrics do not work in multiprocess mode.
|
|
"""
|
|
_type = 'info'
|
|
|
|
def _metric_init(self):
|
|
self._labelname_set = set(self._labelnames)
|
|
self._lock = Lock()
|
|
self._value = {}
|
|
|
|
def info(self, val: Dict[str, str]) -> None:
|
|
"""Set info metric."""
|
|
if self._labelname_set.intersection(val.keys()):
|
|
raise ValueError('Overlapping labels for Info metric, metric: {} child: {}'.format(
|
|
self._labelnames, val))
|
|
with self._lock:
|
|
self._value = dict(val)
|
|
|
|
def _child_samples(self) -> Iterable[Sample]:
|
|
with self._lock:
|
|
return (Sample('_info', self._value, 1.0, None, None),)
|
|
|
|
|
|
class Enum(MetricWrapperBase):
|
|
"""Enum metric, which of a set of states is true.
|
|
|
|
Example usage:
|
|
from prometheus_client import Enum
|
|
|
|
e = Enum('task_state', 'Description of enum',
|
|
states=['starting', 'running', 'stopped'])
|
|
e.state('running')
|
|
|
|
The first listed state will be the default.
|
|
Enum metrics do not work in multiprocess mode.
|
|
"""
|
|
_type = 'stateset'
|
|
|
|
def __init__(self,
|
|
name: str,
|
|
documentation: str,
|
|
labelnames: Sequence[str] = (),
|
|
namespace: str = '',
|
|
subsystem: str = '',
|
|
unit: str = '',
|
|
registry: Optional[CollectorRegistry] = REGISTRY,
|
|
_labelvalues: Optional[Sequence[str]] = None,
|
|
states: Optional[Sequence[str]] = None,
|
|
):
|
|
super().__init__(
|
|
name=name,
|
|
documentation=documentation,
|
|
labelnames=labelnames,
|
|
namespace=namespace,
|
|
subsystem=subsystem,
|
|
unit=unit,
|
|
registry=registry,
|
|
_labelvalues=_labelvalues,
|
|
)
|
|
if name in labelnames:
|
|
raise ValueError(f'Overlapping labels for Enum metric: {name}')
|
|
if not states:
|
|
raise ValueError(f'No states provided for Enum metric: {name}')
|
|
self._kwargs['states'] = self._states = states
|
|
|
|
def _metric_init(self) -> None:
|
|
self._value = 0
|
|
self._lock = Lock()
|
|
|
|
def state(self, state: str) -> None:
|
|
"""Set enum metric state."""
|
|
self._raise_if_not_observable()
|
|
with self._lock:
|
|
self._value = self._states.index(state)
|
|
|
|
def _child_samples(self) -> Iterable[Sample]:
|
|
with self._lock:
|
|
return [
|
|
Sample('', {self._name: s}, 1 if i == self._value else 0, None, None)
|
|
for i, s
|
|
in enumerate(self._states)
|
|
]
|