2022-05-23 00:16:32 +04:00

268 lines
9.8 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <cstdint>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "arrow/chunk_resolver.h"
#include "arrow/compare.h"
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/type_fwd.h"
#include "arrow/util/macros.h"
#include "arrow/util/visibility.h"
namespace arrow {
class Array;
class DataType;
class MemoryPool;
/// \class ChunkedArray
/// \brief A data structure managing a list of primitive Arrow arrays logically
/// as one large array
///
/// Data chunking is treated throughout this project largely as an
/// implementation detail for performance and memory use optimization.
/// ChunkedArray allows Array objects to be collected and interpreted
/// as a single logical array without requiring an expensive concatenation
/// step.
///
/// In some cases, data produced by a function may exceed the capacity of an
/// Array (like BinaryArray or StringArray) and so returning multiple Arrays is
/// the only possibility. In these cases, we recommend returning a ChunkedArray
/// instead of vector of Arrays or some alternative.
///
/// When data is processed in parallel, it may not be practical or possible to
/// create large contiguous memory allocations and write output into them. With
/// some data types, like binary and string types, it is not possible at all to
/// produce non-chunked array outputs without requiring a concatenation step at
/// the end of processing.
///
/// Application developers may tune chunk sizes based on analysis of
/// performance profiles but many developer-users will not need to be
/// especially concerned with the chunking details.
///
/// Preserving the chunk layout/sizes in processing steps is generally not
/// considered to be a contract in APIs. A function may decide to alter the
/// chunking of its result. Similarly, APIs accepting multiple ChunkedArray
/// inputs should not expect the chunk layout to be the same in each input.
class ARROW_EXPORT ChunkedArray {
public:
ChunkedArray(ChunkedArray&&) = default;
ChunkedArray& operator=(ChunkedArray&&) = default;
/// \brief Construct a chunked array from a single Array
explicit ChunkedArray(std::shared_ptr<Array> chunk)
: ChunkedArray(ArrayVector{std::move(chunk)}) {}
/// \brief Construct a chunked array from a vector of arrays and an optional data type
///
/// The vector elements must have the same data type.
/// If the data type is passed explicitly, the vector may be empty.
/// If the data type is omitted, the vector must be non-empty.
explicit ChunkedArray(ArrayVector chunks, std::shared_ptr<DataType> type = NULLPTR);
// \brief Constructor with basic input validation.
static Result<std::shared_ptr<ChunkedArray>> Make(
ArrayVector chunks, std::shared_ptr<DataType> type = NULLPTR);
/// \brief Create an empty ChunkedArray of a given type
///
/// The output ChunkedArray will have one chunk with an empty
/// array of the given type.
///
/// \param[in] type the data type of the empty ChunkedArray
/// \param[in] pool the memory pool to allocate memory from
/// \return the resulting ChunkedArray
static Result<std::shared_ptr<ChunkedArray>> MakeEmpty(
std::shared_ptr<DataType> type, MemoryPool* pool = default_memory_pool());
/// \return the total length of the chunked array; computed on construction
int64_t length() const { return length_; }
/// \return the total number of nulls among all chunks
int64_t null_count() const { return null_count_; }
/// \return the total number of chunks in the chunked array
int num_chunks() const { return static_cast<int>(chunks_.size()); }
/// \return chunk a particular chunk from the chunked array
std::shared_ptr<Array> chunk(int i) const { return chunks_[i]; }
/// \return an ArrayVector of chunks
const ArrayVector& chunks() const { return chunks_; }
/// \brief Construct a zero-copy slice of the chunked array with the
/// indicated offset and length
///
/// \param[in] offset the position of the first element in the constructed
/// slice
/// \param[in] length the length of the slice. If there are not enough
/// elements in the chunked array, the length will be adjusted accordingly
///
/// \return a new object wrapped in std::shared_ptr<ChunkedArray>
std::shared_ptr<ChunkedArray> Slice(int64_t offset, int64_t length) const;
/// \brief Slice from offset until end of the chunked array
std::shared_ptr<ChunkedArray> Slice(int64_t offset) const;
/// \brief Flatten this chunked array as a vector of chunked arrays, one
/// for each struct field
///
/// \param[in] pool The pool for buffer allocations, if any
Result<std::vector<std::shared_ptr<ChunkedArray>>> Flatten(
MemoryPool* pool = default_memory_pool()) const;
/// Construct a zero-copy view of this chunked array with the given
/// type. Calls Array::View on each constituent chunk. Always succeeds if
/// there are zero chunks
Result<std::shared_ptr<ChunkedArray>> View(const std::shared_ptr<DataType>& type) const;
/// \brief Return the type of the chunked array
const std::shared_ptr<DataType>& type() const { return type_; }
/// \brief Return a Scalar containing the value of this array at index
Result<std::shared_ptr<Scalar>> GetScalar(int64_t index) const;
/// \brief Determine if two chunked arrays are equal.
///
/// Two chunked arrays can be equal only if they have equal datatypes.
/// However, they may be equal even if they have different chunkings.
bool Equals(const ChunkedArray& other) const;
/// \brief Determine if two chunked arrays are equal.
bool Equals(const std::shared_ptr<ChunkedArray>& other) const;
/// \brief Determine if two chunked arrays approximately equal
bool ApproxEquals(const ChunkedArray& other,
const EqualOptions& = EqualOptions::Defaults()) const;
/// \return PrettyPrint representation suitable for debugging
std::string ToString() const;
/// \brief Perform cheap validation checks to determine obvious inconsistencies
/// within the chunk array's internal data.
///
/// This is O(k*m) where k is the number of array descendents,
/// and m is the number of chunks.
///
/// \return Status
Status Validate() const;
/// \brief Perform extensive validation checks to determine inconsistencies
/// within the chunk array's internal data.
///
/// This is O(k*n) where k is the number of array descendents,
/// and n is the length in elements.
///
/// \return Status
Status ValidateFull() const;
protected:
ArrayVector chunks_;
std::shared_ptr<DataType> type_;
int64_t length_;
int64_t null_count_;
private:
internal::ChunkResolver chunk_resolver_;
ARROW_DISALLOW_COPY_AND_ASSIGN(ChunkedArray);
};
namespace internal {
/// \brief EXPERIMENTAL: Utility for incremental iteration over contiguous
/// pieces of potentially differently-chunked ChunkedArray objects
class ARROW_EXPORT MultipleChunkIterator {
public:
MultipleChunkIterator(const ChunkedArray& left, const ChunkedArray& right)
: left_(left),
right_(right),
pos_(0),
length_(left.length()),
chunk_idx_left_(0),
chunk_idx_right_(0),
chunk_pos_left_(0),
chunk_pos_right_(0) {}
bool Next(std::shared_ptr<Array>* next_left, std::shared_ptr<Array>* next_right);
int64_t position() const { return pos_; }
private:
const ChunkedArray& left_;
const ChunkedArray& right_;
// The amount of the entire ChunkedArray consumed
int64_t pos_;
// Length of the chunked array(s)
int64_t length_;
// Current left chunk
int chunk_idx_left_;
// Current right chunk
int chunk_idx_right_;
// Offset into the current left chunk
int64_t chunk_pos_left_;
// Offset into the current right chunk
int64_t chunk_pos_right_;
};
/// \brief Evaluate binary function on two ChunkedArray objects having possibly
/// different chunk layouts. The passed binary function / functor should have
/// the following signature.
///
/// Status(const Array&, const Array&, int64_t)
///
/// The third argument is the absolute position relative to the start of each
/// ChunkedArray. The function is executed against each contiguous pair of
/// array segments, slicing if necessary.
///
/// For example, if two arrays have chunk sizes
///
/// left: [10, 10, 20]
/// right: [15, 10, 15]
///
/// Then the following invocations take place (pseudocode)
///
/// func(left.chunk[0][0:10], right.chunk[0][0:10], 0)
/// func(left.chunk[1][0:5], right.chunk[0][10:15], 10)
/// func(left.chunk[1][5:10], right.chunk[1][0:5], 15)
/// func(left.chunk[2][0:5], right.chunk[1][5:10], 20)
/// func(left.chunk[2][5:20], right.chunk[2][:], 25)
template <typename Action>
Status ApplyBinaryChunked(const ChunkedArray& left, const ChunkedArray& right,
Action&& action) {
MultipleChunkIterator iterator(left, right);
std::shared_ptr<Array> left_piece, right_piece;
while (iterator.Next(&left_piece, &right_piece)) {
ARROW_RETURN_NOT_OK(action(*left_piece, *right_piece, iterator.position()));
}
return Status::OK();
}
} // namespace internal
} // namespace arrow