mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-04-22 18:32:15 +00:00
495 lines
17 KiB
C++
495 lines
17 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
// Eager evaluation convenience APIs for invoking common functions, including
|
|
// necessary memory allocations
|
|
|
|
#pragma once
|
|
|
|
#include "arrow/compute/function.h"
|
|
#include "arrow/datum.h"
|
|
#include "arrow/result.h"
|
|
#include "arrow/util/macros.h"
|
|
#include "arrow/util/visibility.h"
|
|
|
|
namespace arrow {
|
|
|
|
class Array;
|
|
|
|
namespace compute {
|
|
|
|
class ExecContext;
|
|
|
|
// ----------------------------------------------------------------------
|
|
// Aggregate functions
|
|
|
|
/// \addtogroup compute-concrete-options
|
|
/// @{
|
|
|
|
/// \brief Control general scalar aggregate kernel behavior
|
|
///
|
|
/// By default, null values are ignored (skip_nulls = true).
|
|
class ARROW_EXPORT ScalarAggregateOptions : public FunctionOptions {
|
|
public:
|
|
explicit ScalarAggregateOptions(bool skip_nulls = true, uint32_t min_count = 1);
|
|
static constexpr char const kTypeName[] = "ScalarAggregateOptions";
|
|
static ScalarAggregateOptions Defaults() { return ScalarAggregateOptions{}; }
|
|
|
|
/// If true (the default), null values are ignored. Otherwise, if any value is null,
|
|
/// emit null.
|
|
bool skip_nulls;
|
|
/// If less than this many non-null values are observed, emit null.
|
|
uint32_t min_count;
|
|
};
|
|
|
|
/// \brief Control count aggregate kernel behavior.
|
|
///
|
|
/// By default, only non-null values are counted.
|
|
class ARROW_EXPORT CountOptions : public FunctionOptions {
|
|
public:
|
|
enum CountMode {
|
|
/// Count only non-null values.
|
|
ONLY_VALID = 0,
|
|
/// Count only null values.
|
|
ONLY_NULL,
|
|
/// Count both non-null and null values.
|
|
ALL,
|
|
};
|
|
explicit CountOptions(CountMode mode = CountMode::ONLY_VALID);
|
|
static constexpr char const kTypeName[] = "CountOptions";
|
|
static CountOptions Defaults() { return CountOptions{}; }
|
|
|
|
CountMode mode;
|
|
};
|
|
|
|
/// \brief Control Mode kernel behavior
|
|
///
|
|
/// Returns top-n common values and counts.
|
|
/// By default, returns the most common value and count.
|
|
class ARROW_EXPORT ModeOptions : public FunctionOptions {
|
|
public:
|
|
explicit ModeOptions(int64_t n = 1, bool skip_nulls = true, uint32_t min_count = 0);
|
|
static constexpr char const kTypeName[] = "ModeOptions";
|
|
static ModeOptions Defaults() { return ModeOptions{}; }
|
|
|
|
int64_t n = 1;
|
|
/// If true (the default), null values are ignored. Otherwise, if any value is null,
|
|
/// emit null.
|
|
bool skip_nulls;
|
|
/// If less than this many non-null values are observed, emit null.
|
|
uint32_t min_count;
|
|
};
|
|
|
|
/// \brief Control Delta Degrees of Freedom (ddof) of Variance and Stddev kernel
|
|
///
|
|
/// The divisor used in calculations is N - ddof, where N is the number of elements.
|
|
/// By default, ddof is zero, and population variance or stddev is returned.
|
|
class ARROW_EXPORT VarianceOptions : public FunctionOptions {
|
|
public:
|
|
explicit VarianceOptions(int ddof = 0, bool skip_nulls = true, uint32_t min_count = 0);
|
|
static constexpr char const kTypeName[] = "VarianceOptions";
|
|
static VarianceOptions Defaults() { return VarianceOptions{}; }
|
|
|
|
int ddof = 0;
|
|
/// If true (the default), null values are ignored. Otherwise, if any value is null,
|
|
/// emit null.
|
|
bool skip_nulls;
|
|
/// If less than this many non-null values are observed, emit null.
|
|
uint32_t min_count;
|
|
};
|
|
|
|
/// \brief Control Quantile kernel behavior
|
|
///
|
|
/// By default, returns the median value.
|
|
class ARROW_EXPORT QuantileOptions : public FunctionOptions {
|
|
public:
|
|
/// Interpolation method to use when quantile lies between two data points
|
|
enum Interpolation {
|
|
LINEAR = 0,
|
|
LOWER,
|
|
HIGHER,
|
|
NEAREST,
|
|
MIDPOINT,
|
|
};
|
|
|
|
explicit QuantileOptions(double q = 0.5, enum Interpolation interpolation = LINEAR,
|
|
bool skip_nulls = true, uint32_t min_count = 0);
|
|
|
|
explicit QuantileOptions(std::vector<double> q,
|
|
enum Interpolation interpolation = LINEAR,
|
|
bool skip_nulls = true, uint32_t min_count = 0);
|
|
|
|
static constexpr char const kTypeName[] = "QuantileOptions";
|
|
static QuantileOptions Defaults() { return QuantileOptions{}; }
|
|
|
|
/// quantile must be between 0 and 1 inclusive
|
|
std::vector<double> q;
|
|
enum Interpolation interpolation;
|
|
/// If true (the default), null values are ignored. Otherwise, if any value is null,
|
|
/// emit null.
|
|
bool skip_nulls;
|
|
/// If less than this many non-null values are observed, emit null.
|
|
uint32_t min_count;
|
|
};
|
|
|
|
/// \brief Control TDigest approximate quantile kernel behavior
|
|
///
|
|
/// By default, returns the median value.
|
|
class ARROW_EXPORT TDigestOptions : public FunctionOptions {
|
|
public:
|
|
explicit TDigestOptions(double q = 0.5, uint32_t delta = 100,
|
|
uint32_t buffer_size = 500, bool skip_nulls = true,
|
|
uint32_t min_count = 0);
|
|
explicit TDigestOptions(std::vector<double> q, uint32_t delta = 100,
|
|
uint32_t buffer_size = 500, bool skip_nulls = true,
|
|
uint32_t min_count = 0);
|
|
static constexpr char const kTypeName[] = "TDigestOptions";
|
|
static TDigestOptions Defaults() { return TDigestOptions{}; }
|
|
|
|
/// quantile must be between 0 and 1 inclusive
|
|
std::vector<double> q;
|
|
/// compression parameter, default 100
|
|
uint32_t delta;
|
|
/// input buffer size, default 500
|
|
uint32_t buffer_size;
|
|
/// If true (the default), null values are ignored. Otherwise, if any value is null,
|
|
/// emit null.
|
|
bool skip_nulls;
|
|
/// If less than this many non-null values are observed, emit null.
|
|
uint32_t min_count;
|
|
};
|
|
|
|
/// \brief Control Index kernel behavior
|
|
class ARROW_EXPORT IndexOptions : public FunctionOptions {
|
|
public:
|
|
explicit IndexOptions(std::shared_ptr<Scalar> value);
|
|
// Default constructor for serialization
|
|
IndexOptions();
|
|
static constexpr char const kTypeName[] = "IndexOptions";
|
|
|
|
std::shared_ptr<Scalar> value;
|
|
};
|
|
|
|
/// @}
|
|
|
|
/// \brief Count values in an array.
|
|
///
|
|
/// \param[in] options counting options, see CountOptions for more information
|
|
/// \param[in] datum to count
|
|
/// \param[in] ctx the function execution context, optional
|
|
/// \return out resulting datum
|
|
///
|
|
/// \since 1.0.0
|
|
/// \note API not yet finalized
|
|
ARROW_EXPORT
|
|
Result<Datum> Count(const Datum& datum,
|
|
const CountOptions& options = CountOptions::Defaults(),
|
|
ExecContext* ctx = NULLPTR);
|
|
|
|
/// \brief Compute the mean of a numeric array.
|
|
///
|
|
/// \param[in] value datum to compute the mean, expecting Array
|
|
/// \param[in] options see ScalarAggregateOptions for more information
|
|
/// \param[in] ctx the function execution context, optional
|
|
/// \return datum of the computed mean as a DoubleScalar
|
|
///
|
|
/// \since 1.0.0
|
|
/// \note API not yet finalized
|
|
ARROW_EXPORT
|
|
Result<Datum> Mean(
|
|
const Datum& value,
|
|
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
|
|
ExecContext* ctx = NULLPTR);
|
|
|
|
/// \brief Compute the product of values of a numeric array.
|
|
///
|
|
/// \param[in] value datum to compute product of, expecting Array or ChunkedArray
|
|
/// \param[in] options see ScalarAggregateOptions for more information
|
|
/// \param[in] ctx the function execution context, optional
|
|
/// \return datum of the computed sum as a Scalar
|
|
///
|
|
/// \since 6.0.0
|
|
/// \note API not yet finalized
|
|
ARROW_EXPORT
|
|
Result<Datum> Product(
|
|
const Datum& value,
|
|
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
|
|
ExecContext* ctx = NULLPTR);
|
|
|
|
/// \brief Sum values of a numeric array.
|
|
///
|
|
/// \param[in] value datum to sum, expecting Array or ChunkedArray
|
|
/// \param[in] options see ScalarAggregateOptions for more information
|
|
/// \param[in] ctx the function execution context, optional
|
|
/// \return datum of the computed sum as a Scalar
|
|
///
|
|
/// \since 1.0.0
|
|
/// \note API not yet finalized
|
|
ARROW_EXPORT
|
|
Result<Datum> Sum(
|
|
const Datum& value,
|
|
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
|
|
ExecContext* ctx = NULLPTR);
|
|
|
|
/// \brief Calculate the min / max of a numeric array
|
|
///
|
|
/// This function returns both the min and max as a struct scalar, with type
|
|
/// struct<min: T, max: T>, where T is the input type
|
|
///
|
|
/// \param[in] value input datum, expecting Array or ChunkedArray
|
|
/// \param[in] options see ScalarAggregateOptions for more information
|
|
/// \param[in] ctx the function execution context, optional
|
|
/// \return resulting datum as a struct<min: T, max: T> scalar
|
|
///
|
|
/// \since 1.0.0
|
|
/// \note API not yet finalized
|
|
ARROW_EXPORT
|
|
Result<Datum> MinMax(
|
|
const Datum& value,
|
|
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
|
|
ExecContext* ctx = NULLPTR);
|
|
|
|
/// \brief Test whether any element in a boolean array evaluates to true.
|
|
///
|
|
/// This function returns true if any of the elements in the array evaluates
|
|
/// to true and false otherwise. Null values are ignored by default.
|
|
/// If null values are taken into account by setting ScalarAggregateOptions
|
|
/// parameter skip_nulls = false then Kleene logic is used.
|
|
/// See KleeneOr for more details on Kleene logic.
|
|
///
|
|
/// \param[in] value input datum, expecting a boolean array
|
|
/// \param[in] options see ScalarAggregateOptions for more information
|
|
/// \param[in] ctx the function execution context, optional
|
|
/// \return resulting datum as a BooleanScalar
|
|
///
|
|
/// \since 3.0.0
|
|
/// \note API not yet finalized
|
|
ARROW_EXPORT
|
|
Result<Datum> Any(
|
|
const Datum& value,
|
|
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
|
|
ExecContext* ctx = NULLPTR);
|
|
|
|
/// \brief Test whether all elements in a boolean array evaluate to true.
|
|
///
|
|
/// This function returns true if all of the elements in the array evaluate
|
|
/// to true and false otherwise. Null values are ignored by default.
|
|
/// If null values are taken into account by setting ScalarAggregateOptions
|
|
/// parameter skip_nulls = false then Kleene logic is used.
|
|
/// See KleeneAnd for more details on Kleene logic.
|
|
///
|
|
/// \param[in] value input datum, expecting a boolean array
|
|
/// \param[in] options see ScalarAggregateOptions for more information
|
|
/// \param[in] ctx the function execution context, optional
|
|
/// \return resulting datum as a BooleanScalar
|
|
|
|
/// \since 3.0.0
|
|
/// \note API not yet finalized
|
|
ARROW_EXPORT
|
|
Result<Datum> All(
|
|
const Datum& value,
|
|
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
|
|
ExecContext* ctx = NULLPTR);
|
|
|
|
/// \brief Calculate the modal (most common) value of a numeric array
|
|
///
|
|
/// This function returns top-n most common values and number of times they occur as
|
|
/// an array of `struct<mode: T, count: int64>`, where T is the input type.
|
|
/// Values with larger counts are returned before smaller ones.
|
|
/// If there are more than one values with same count, smaller value is returned first.
|
|
///
|
|
/// \param[in] value input datum, expecting Array or ChunkedArray
|
|
/// \param[in] options see ModeOptions for more information
|
|
/// \param[in] ctx the function execution context, optional
|
|
/// \return resulting datum as an array of struct<mode: T, count: int64>
|
|
///
|
|
/// \since 2.0.0
|
|
/// \note API not yet finalized
|
|
ARROW_EXPORT
|
|
Result<Datum> Mode(const Datum& value,
|
|
const ModeOptions& options = ModeOptions::Defaults(),
|
|
ExecContext* ctx = NULLPTR);
|
|
|
|
/// \brief Calculate the standard deviation of a numeric array
|
|
///
|
|
/// \param[in] value input datum, expecting Array or ChunkedArray
|
|
/// \param[in] options see VarianceOptions for more information
|
|
/// \param[in] ctx the function execution context, optional
|
|
/// \return datum of the computed standard deviation as a DoubleScalar
|
|
///
|
|
/// \since 2.0.0
|
|
/// \note API not yet finalized
|
|
ARROW_EXPORT
|
|
Result<Datum> Stddev(const Datum& value,
|
|
const VarianceOptions& options = VarianceOptions::Defaults(),
|
|
ExecContext* ctx = NULLPTR);
|
|
|
|
/// \brief Calculate the variance of a numeric array
|
|
///
|
|
/// \param[in] value input datum, expecting Array or ChunkedArray
|
|
/// \param[in] options see VarianceOptions for more information
|
|
/// \param[in] ctx the function execution context, optional
|
|
/// \return datum of the computed variance as a DoubleScalar
|
|
///
|
|
/// \since 2.0.0
|
|
/// \note API not yet finalized
|
|
ARROW_EXPORT
|
|
Result<Datum> Variance(const Datum& value,
|
|
const VarianceOptions& options = VarianceOptions::Defaults(),
|
|
ExecContext* ctx = NULLPTR);
|
|
|
|
/// \brief Calculate the quantiles of a numeric array
|
|
///
|
|
/// \param[in] value input datum, expecting Array or ChunkedArray
|
|
/// \param[in] options see QuantileOptions for more information
|
|
/// \param[in] ctx the function execution context, optional
|
|
/// \return resulting datum as an array
|
|
///
|
|
/// \since 4.0.0
|
|
/// \note API not yet finalized
|
|
ARROW_EXPORT
|
|
Result<Datum> Quantile(const Datum& value,
|
|
const QuantileOptions& options = QuantileOptions::Defaults(),
|
|
ExecContext* ctx = NULLPTR);
|
|
|
|
/// \brief Calculate the approximate quantiles of a numeric array with T-Digest algorithm
|
|
///
|
|
/// \param[in] value input datum, expecting Array or ChunkedArray
|
|
/// \param[in] options see TDigestOptions for more information
|
|
/// \param[in] ctx the function execution context, optional
|
|
/// \return resulting datum as an array
|
|
///
|
|
/// \since 4.0.0
|
|
/// \note API not yet finalized
|
|
ARROW_EXPORT
|
|
Result<Datum> TDigest(const Datum& value,
|
|
const TDigestOptions& options = TDigestOptions::Defaults(),
|
|
ExecContext* ctx = NULLPTR);
|
|
|
|
/// \brief Find the first index of a value in an array.
|
|
///
|
|
/// \param[in] value The array to search.
|
|
/// \param[in] options The array to search for. See IndexOoptions.
|
|
/// \param[in] ctx the function execution context, optional
|
|
/// \return out a Scalar containing the index (or -1 if not found).
|
|
///
|
|
/// \since 5.0.0
|
|
/// \note API not yet finalized
|
|
ARROW_EXPORT
|
|
Result<Datum> Index(const Datum& value, const IndexOptions& options,
|
|
ExecContext* ctx = NULLPTR);
|
|
|
|
namespace internal {
|
|
|
|
/// Internal use only: streaming group identifier.
|
|
/// Consumes batches of keys and yields batches of the group ids.
|
|
class ARROW_EXPORT Grouper {
|
|
public:
|
|
virtual ~Grouper() = default;
|
|
|
|
/// Construct a Grouper which receives the specified key types
|
|
static Result<std::unique_ptr<Grouper>> Make(const std::vector<ValueDescr>& descrs,
|
|
ExecContext* ctx = default_exec_context());
|
|
|
|
/// Consume a batch of keys, producing the corresponding group ids as an integer array.
|
|
/// Currently only uint32 indices will be produced, eventually the bit width will only
|
|
/// be as wide as necessary.
|
|
virtual Result<Datum> Consume(const ExecBatch& batch) = 0;
|
|
|
|
/// Get current unique keys. May be called multiple times.
|
|
virtual Result<ExecBatch> GetUniques() = 0;
|
|
|
|
/// Get the current number of groups.
|
|
virtual uint32_t num_groups() const = 0;
|
|
|
|
/// \brief Assemble lists of indices of identical elements.
|
|
///
|
|
/// \param[in] ids An unsigned, all-valid integral array which will be
|
|
/// used as grouping criteria.
|
|
/// \param[in] num_groups An upper bound for the elements of ids
|
|
/// \return A num_groups-long ListArray where the slot at i contains a
|
|
/// list of indices where i appears in ids.
|
|
///
|
|
/// MakeGroupings([
|
|
/// 2,
|
|
/// 2,
|
|
/// 5,
|
|
/// 5,
|
|
/// 2,
|
|
/// 3
|
|
/// ], 8) == [
|
|
/// [],
|
|
/// [],
|
|
/// [0, 1, 4],
|
|
/// [5],
|
|
/// [],
|
|
/// [2, 3],
|
|
/// [],
|
|
/// []
|
|
/// ]
|
|
static Result<std::shared_ptr<ListArray>> MakeGroupings(
|
|
const UInt32Array& ids, uint32_t num_groups,
|
|
ExecContext* ctx = default_exec_context());
|
|
|
|
/// \brief Produce a ListArray whose slots are selections of `array` which correspond to
|
|
/// the provided groupings.
|
|
///
|
|
/// For example,
|
|
/// ApplyGroupings([
|
|
/// [],
|
|
/// [],
|
|
/// [0, 1, 4],
|
|
/// [5],
|
|
/// [],
|
|
/// [2, 3],
|
|
/// [],
|
|
/// []
|
|
/// ], [2, 2, 5, 5, 2, 3]) == [
|
|
/// [],
|
|
/// [],
|
|
/// [2, 2, 2],
|
|
/// [3],
|
|
/// [],
|
|
/// [5, 5],
|
|
/// [],
|
|
/// []
|
|
/// ]
|
|
static Result<std::shared_ptr<ListArray>> ApplyGroupings(
|
|
const ListArray& groupings, const Array& array,
|
|
ExecContext* ctx = default_exec_context());
|
|
};
|
|
|
|
/// \brief Configure a grouped aggregation
|
|
struct ARROW_EXPORT Aggregate {
|
|
/// the name of the aggregation function
|
|
std::string function;
|
|
|
|
/// options for the aggregation function
|
|
const FunctionOptions* options;
|
|
};
|
|
|
|
/// Internal use only: helper function for testing HashAggregateKernels.
|
|
/// This will be replaced by streaming execution operators.
|
|
ARROW_EXPORT
|
|
Result<Datum> GroupBy(const std::vector<Datum>& arguments, const std::vector<Datum>& keys,
|
|
const std::vector<Aggregate>& aggregates, bool use_threads = false,
|
|
ExecContext* ctx = default_exec_context());
|
|
|
|
} // namespace internal
|
|
} // namespace compute
|
|
} // namespace arrow
|