mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-04-22 10:28:02 +00:00
576 lines
19 KiB
C++
576 lines
19 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
#if defined(ARROW_HAVE_NEON) || defined(ARROW_HAVE_SSE4_2)
|
|
#include <xsimd/xsimd.hpp>
|
|
#endif
|
|
|
|
#include "arrow/type_fwd.h"
|
|
#include "arrow/util/macros.h"
|
|
#include "arrow/util/simd.h"
|
|
#include "arrow/util/string_view.h"
|
|
#include "arrow/util/ubsan.h"
|
|
#include "arrow/util/visibility.h"
|
|
|
|
namespace arrow {
|
|
namespace util {
|
|
|
|
// Convert a UTF8 string to a wstring (either UTF16 or UTF32, depending
|
|
// on the wchar_t width).
|
|
ARROW_EXPORT Result<std::wstring> UTF8ToWideString(const std::string& source);
|
|
|
|
// Similarly, convert a wstring to a UTF8 string.
|
|
ARROW_EXPORT Result<std::string> WideStringToUTF8(const std::wstring& source);
|
|
|
|
namespace internal {
|
|
|
|
// Copyright (c) 2008-2010 Bjoern Hoehrmann <bjoern@hoehrmann.de>
|
|
// See http://bjoern.hoehrmann.de/utf-8/decoder/dfa/ for details.
|
|
|
|
// A compact state table allowing UTF8 decoding using two dependent
|
|
// lookups per byte. The first lookup determines the character class
|
|
// and the second lookup reads the next state.
|
|
// In this table states are multiples of 12.
|
|
ARROW_EXPORT extern const uint8_t utf8_small_table[256 + 9 * 12];
|
|
|
|
// Success / reject states when looked up in the small table
|
|
static constexpr uint8_t kUTF8DecodeAccept = 0;
|
|
static constexpr uint8_t kUTF8DecodeReject = 12;
|
|
|
|
// An expanded state table allowing transitions using a single lookup
|
|
// at the expense of a larger memory footprint (but on non-random data,
|
|
// not all the table will end up accessed and cached).
|
|
// In this table states are multiples of 256.
|
|
ARROW_EXPORT extern uint16_t utf8_large_table[9 * 256];
|
|
|
|
ARROW_EXPORT extern const uint8_t utf8_byte_size_table[16];
|
|
|
|
// Success / reject states when looked up in the large table
|
|
static constexpr uint16_t kUTF8ValidateAccept = 0;
|
|
static constexpr uint16_t kUTF8ValidateReject = 256;
|
|
|
|
static inline uint8_t DecodeOneUTF8Byte(uint8_t byte, uint8_t state, uint32_t* codep) {
|
|
uint8_t type = utf8_small_table[byte];
|
|
|
|
*codep = (state != kUTF8DecodeAccept) ? (byte & 0x3fu) | (*codep << 6)
|
|
: (0xff >> type) & (byte);
|
|
|
|
state = utf8_small_table[256 + state + type];
|
|
return state;
|
|
}
|
|
|
|
static inline uint16_t ValidateOneUTF8Byte(uint8_t byte, uint16_t state) {
|
|
return utf8_large_table[state + byte];
|
|
}
|
|
|
|
ARROW_EXPORT void CheckUTF8Initialized();
|
|
|
|
} // namespace internal
|
|
|
|
// This function needs to be called before doing UTF8 validation.
|
|
ARROW_EXPORT void InitializeUTF8();
|
|
|
|
static inline bool ValidateUTF8(const uint8_t* data, int64_t size) {
|
|
static constexpr uint64_t high_bits_64 = 0x8080808080808080ULL;
|
|
static constexpr uint32_t high_bits_32 = 0x80808080UL;
|
|
static constexpr uint16_t high_bits_16 = 0x8080U;
|
|
static constexpr uint8_t high_bits_8 = 0x80U;
|
|
|
|
#ifndef NDEBUG
|
|
internal::CheckUTF8Initialized();
|
|
#endif
|
|
|
|
while (size >= 8) {
|
|
// XXX This is doing an unaligned access. Contemporary architectures
|
|
// (x86-64, AArch64, PPC64) support it natively and often have good
|
|
// performance nevertheless.
|
|
uint64_t mask64 = SafeLoadAs<uint64_t>(data);
|
|
if (ARROW_PREDICT_TRUE((mask64 & high_bits_64) == 0)) {
|
|
// 8 bytes of pure ASCII, move forward
|
|
size -= 8;
|
|
data += 8;
|
|
continue;
|
|
}
|
|
// Non-ASCII run detected.
|
|
// We process at least 4 bytes, to avoid too many spurious 64-bit reads
|
|
// in case the non-ASCII bytes are at the end of the tested 64-bit word.
|
|
// We also only check for rejection at the end since that state is stable
|
|
// (once in reject state, we always remain in reject state).
|
|
// It is guaranteed that size >= 8 when arriving here, which allows
|
|
// us to avoid size checks.
|
|
uint16_t state = internal::kUTF8ValidateAccept;
|
|
// Byte 0
|
|
state = internal::ValidateOneUTF8Byte(*data++, state);
|
|
--size;
|
|
// Byte 1
|
|
state = internal::ValidateOneUTF8Byte(*data++, state);
|
|
--size;
|
|
// Byte 2
|
|
state = internal::ValidateOneUTF8Byte(*data++, state);
|
|
--size;
|
|
// Byte 3
|
|
state = internal::ValidateOneUTF8Byte(*data++, state);
|
|
--size;
|
|
// Byte 4
|
|
state = internal::ValidateOneUTF8Byte(*data++, state);
|
|
--size;
|
|
if (state == internal::kUTF8ValidateAccept) {
|
|
continue; // Got full char, switch back to ASCII detection
|
|
}
|
|
// Byte 5
|
|
state = internal::ValidateOneUTF8Byte(*data++, state);
|
|
--size;
|
|
if (state == internal::kUTF8ValidateAccept) {
|
|
continue; // Got full char, switch back to ASCII detection
|
|
}
|
|
// Byte 6
|
|
state = internal::ValidateOneUTF8Byte(*data++, state);
|
|
--size;
|
|
if (state == internal::kUTF8ValidateAccept) {
|
|
continue; // Got full char, switch back to ASCII detection
|
|
}
|
|
// Byte 7
|
|
state = internal::ValidateOneUTF8Byte(*data++, state);
|
|
--size;
|
|
if (state == internal::kUTF8ValidateAccept) {
|
|
continue; // Got full char, switch back to ASCII detection
|
|
}
|
|
// kUTF8ValidateAccept not reached along 4 transitions has to mean a rejection
|
|
assert(state == internal::kUTF8ValidateReject);
|
|
return false;
|
|
}
|
|
|
|
// Check if string tail is full ASCII (common case, fast)
|
|
if (size >= 4) {
|
|
uint32_t tail_mask = SafeLoadAs<uint32_t>(data + size - 4);
|
|
uint32_t head_mask = SafeLoadAs<uint32_t>(data);
|
|
if (ARROW_PREDICT_TRUE(((head_mask | tail_mask) & high_bits_32) == 0)) {
|
|
return true;
|
|
}
|
|
} else if (size >= 2) {
|
|
uint16_t tail_mask = SafeLoadAs<uint16_t>(data + size - 2);
|
|
uint16_t head_mask = SafeLoadAs<uint16_t>(data);
|
|
if (ARROW_PREDICT_TRUE(((head_mask | tail_mask) & high_bits_16) == 0)) {
|
|
return true;
|
|
}
|
|
} else if (size == 1) {
|
|
if (ARROW_PREDICT_TRUE((*data & high_bits_8) == 0)) {
|
|
return true;
|
|
}
|
|
} else {
|
|
/* size == 0 */
|
|
return true;
|
|
}
|
|
|
|
// Fall back to UTF8 validation of tail string.
|
|
// Note the state table is designed so that, once in the reject state,
|
|
// we remain in that state until the end. So we needn't check for
|
|
// rejection at each char (we don't gain much by short-circuiting here).
|
|
uint16_t state = internal::kUTF8ValidateAccept;
|
|
switch (size) {
|
|
case 7:
|
|
state = internal::ValidateOneUTF8Byte(data[size - 7], state);
|
|
case 6:
|
|
state = internal::ValidateOneUTF8Byte(data[size - 6], state);
|
|
case 5:
|
|
state = internal::ValidateOneUTF8Byte(data[size - 5], state);
|
|
case 4:
|
|
state = internal::ValidateOneUTF8Byte(data[size - 4], state);
|
|
case 3:
|
|
state = internal::ValidateOneUTF8Byte(data[size - 3], state);
|
|
case 2:
|
|
state = internal::ValidateOneUTF8Byte(data[size - 2], state);
|
|
case 1:
|
|
state = internal::ValidateOneUTF8Byte(data[size - 1], state);
|
|
default:
|
|
break;
|
|
}
|
|
return ARROW_PREDICT_TRUE(state == internal::kUTF8ValidateAccept);
|
|
}
|
|
|
|
static inline bool ValidateUTF8(const util::string_view& str) {
|
|
const uint8_t* data = reinterpret_cast<const uint8_t*>(str.data());
|
|
const size_t length = str.size();
|
|
|
|
return ValidateUTF8(data, length);
|
|
}
|
|
|
|
static inline bool ValidateAsciiSw(const uint8_t* data, int64_t len) {
|
|
uint8_t orall = 0;
|
|
|
|
if (len >= 8) {
|
|
uint64_t or8 = 0;
|
|
|
|
do {
|
|
or8 |= SafeLoadAs<uint64_t>(data);
|
|
data += 8;
|
|
len -= 8;
|
|
} while (len >= 8);
|
|
|
|
orall = !(or8 & 0x8080808080808080ULL) - 1;
|
|
}
|
|
|
|
while (len--) {
|
|
orall |= *data++;
|
|
}
|
|
|
|
return orall < 0x80U;
|
|
}
|
|
|
|
#if defined(ARROW_HAVE_NEON) || defined(ARROW_HAVE_SSE4_2)
|
|
static inline bool ValidateAsciiSimd(const uint8_t* data, int64_t len) {
|
|
using simd_batch = xsimd::make_sized_batch_t<int8_t, 16>;
|
|
|
|
if (len >= 32) {
|
|
const simd_batch zero(static_cast<int8_t>(0));
|
|
const uint8_t* data2 = data + 16;
|
|
simd_batch or1 = zero, or2 = zero;
|
|
|
|
while (len >= 32) {
|
|
or1 |= simd_batch::load_unaligned(reinterpret_cast<const int8_t*>(data));
|
|
or2 |= simd_batch::load_unaligned(reinterpret_cast<const int8_t*>(data2));
|
|
data += 32;
|
|
data2 += 32;
|
|
len -= 32;
|
|
}
|
|
|
|
// To test for upper bit in all bytes, test whether any of them is negative
|
|
or1 |= or2;
|
|
if (xsimd::any(or1 < zero)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return ValidateAsciiSw(data, len);
|
|
}
|
|
#endif // ARROW_HAVE_NEON || ARROW_HAVE_SSE4_2
|
|
|
|
static inline bool ValidateAscii(const uint8_t* data, int64_t len) {
|
|
#if defined(ARROW_HAVE_NEON) || defined(ARROW_HAVE_SSE4_2)
|
|
return ValidateAsciiSimd(data, len);
|
|
#else
|
|
return ValidateAsciiSw(data, len);
|
|
#endif
|
|
}
|
|
|
|
static inline bool ValidateAscii(const util::string_view& str) {
|
|
const uint8_t* data = reinterpret_cast<const uint8_t*>(str.data());
|
|
const size_t length = str.size();
|
|
|
|
return ValidateAscii(data, length);
|
|
}
|
|
|
|
// Skip UTF8 byte order mark, if any.
|
|
ARROW_EXPORT
|
|
Result<const uint8_t*> SkipUTF8BOM(const uint8_t* data, int64_t size);
|
|
|
|
static constexpr uint32_t kMaxUnicodeCodepoint = 0x110000;
|
|
|
|
// size of a valid UTF8 can be determined by looking at leading 4 bits of BYTE1
|
|
// utf8_byte_size_table[0..7] --> pure ascii chars --> 1B length
|
|
// utf8_byte_size_table[8..11] --> internal bytes --> 1B length
|
|
// utf8_byte_size_table[12,13] --> 2B long UTF8 chars
|
|
// utf8_byte_size_table[14] --> 3B long UTF8 chars
|
|
// utf8_byte_size_table[15] --> 4B long UTF8 chars
|
|
// NOTE: Results for invalid/ malformed utf-8 sequences are undefined.
|
|
// ex: \xFF... returns 4B
|
|
static inline uint8_t ValidUtf8CodepointByteSize(const uint8_t* codeunit) {
|
|
return internal::utf8_byte_size_table[*codeunit >> 4];
|
|
}
|
|
|
|
static inline bool Utf8IsContinuation(const uint8_t codeunit) {
|
|
return (codeunit & 0xC0) == 0x80; // upper two bits should be 10
|
|
}
|
|
|
|
static inline bool Utf8Is2ByteStart(const uint8_t codeunit) {
|
|
return (codeunit & 0xE0) == 0xC0; // upper three bits should be 110
|
|
}
|
|
|
|
static inline bool Utf8Is3ByteStart(const uint8_t codeunit) {
|
|
return (codeunit & 0xF0) == 0xE0; // upper four bits should be 1110
|
|
}
|
|
|
|
static inline bool Utf8Is4ByteStart(const uint8_t codeunit) {
|
|
return (codeunit & 0xF8) == 0xF0; // upper five bits should be 11110
|
|
}
|
|
|
|
/// Return the number of bytes required to UTF8-encode the given codepoint
|
|
static inline int32_t UTF8EncodedLength(uint32_t codepoint) {
|
|
if (codepoint < 0x80) {
|
|
return 1;
|
|
} else if (codepoint < 0x800) {
|
|
return 2;
|
|
} else if (codepoint < 0x10000) {
|
|
return 3;
|
|
} else {
|
|
return 4;
|
|
}
|
|
}
|
|
|
|
static inline uint8_t* UTF8Encode(uint8_t* str, uint32_t codepoint) {
|
|
if (codepoint < 0x80) {
|
|
*str++ = codepoint;
|
|
} else if (codepoint < 0x800) {
|
|
*str++ = 0xC0 + (codepoint >> 6);
|
|
*str++ = 0x80 + (codepoint & 0x3F);
|
|
} else if (codepoint < 0x10000) {
|
|
*str++ = 0xE0 + (codepoint >> 12);
|
|
*str++ = 0x80 + ((codepoint >> 6) & 0x3F);
|
|
*str++ = 0x80 + (codepoint & 0x3F);
|
|
} else {
|
|
// Assume proper codepoints are always passed
|
|
assert(codepoint < kMaxUnicodeCodepoint);
|
|
*str++ = 0xF0 + (codepoint >> 18);
|
|
*str++ = 0x80 + ((codepoint >> 12) & 0x3F);
|
|
*str++ = 0x80 + ((codepoint >> 6) & 0x3F);
|
|
*str++ = 0x80 + (codepoint & 0x3F);
|
|
}
|
|
return str;
|
|
}
|
|
|
|
static inline bool UTF8Decode(const uint8_t** data, uint32_t* codepoint) {
|
|
const uint8_t* str = *data;
|
|
if (*str < 0x80) { // ascii
|
|
*codepoint = *str++;
|
|
} else if (ARROW_PREDICT_FALSE(*str < 0xC0)) { // invalid non-ascii char
|
|
return false;
|
|
} else if (*str < 0xE0) {
|
|
uint8_t code_unit_1 = (*str++) & 0x1F; // take last 5 bits
|
|
if (ARROW_PREDICT_FALSE(!Utf8IsContinuation(*str))) {
|
|
return false;
|
|
}
|
|
uint8_t code_unit_2 = (*str++) & 0x3F; // take last 6 bits
|
|
*codepoint = (code_unit_1 << 6) + code_unit_2;
|
|
} else if (*str < 0xF0) {
|
|
uint8_t code_unit_1 = (*str++) & 0x0F; // take last 4 bits
|
|
if (ARROW_PREDICT_FALSE(!Utf8IsContinuation(*str))) {
|
|
return false;
|
|
}
|
|
uint8_t code_unit_2 = (*str++) & 0x3F; // take last 6 bits
|
|
if (ARROW_PREDICT_FALSE(!Utf8IsContinuation(*str))) {
|
|
return false;
|
|
}
|
|
uint8_t code_unit_3 = (*str++) & 0x3F; // take last 6 bits
|
|
*codepoint = (code_unit_1 << 12) + (code_unit_2 << 6) + code_unit_3;
|
|
} else if (*str < 0xF8) {
|
|
uint8_t code_unit_1 = (*str++) & 0x07; // take last 3 bits
|
|
if (ARROW_PREDICT_FALSE(!Utf8IsContinuation(*str))) {
|
|
return false;
|
|
}
|
|
uint8_t code_unit_2 = (*str++) & 0x3F; // take last 6 bits
|
|
if (ARROW_PREDICT_FALSE(!Utf8IsContinuation(*str))) {
|
|
return false;
|
|
}
|
|
uint8_t code_unit_3 = (*str++) & 0x3F; // take last 6 bits
|
|
if (ARROW_PREDICT_FALSE(!Utf8IsContinuation(*str))) {
|
|
return false;
|
|
}
|
|
uint8_t code_unit_4 = (*str++) & 0x3F; // take last 6 bits
|
|
*codepoint =
|
|
(code_unit_1 << 18) + (code_unit_2 << 12) + (code_unit_3 << 6) + code_unit_4;
|
|
} else { // invalid non-ascii char
|
|
return false;
|
|
}
|
|
*data = str;
|
|
return true;
|
|
}
|
|
|
|
static inline bool UTF8DecodeReverse(const uint8_t** data, uint32_t* codepoint) {
|
|
const uint8_t* str = *data;
|
|
if (*str < 0x80) { // ascii
|
|
*codepoint = *str--;
|
|
} else {
|
|
if (ARROW_PREDICT_FALSE(!Utf8IsContinuation(*str))) {
|
|
return false;
|
|
}
|
|
uint8_t code_unit_N = (*str--) & 0x3F; // take last 6 bits
|
|
if (Utf8Is2ByteStart(*str)) {
|
|
uint8_t code_unit_1 = (*str--) & 0x1F; // take last 5 bits
|
|
*codepoint = (code_unit_1 << 6) + code_unit_N;
|
|
} else {
|
|
if (ARROW_PREDICT_FALSE(!Utf8IsContinuation(*str))) {
|
|
return false;
|
|
}
|
|
uint8_t code_unit_Nmin1 = (*str--) & 0x3F; // take last 6 bits
|
|
if (Utf8Is3ByteStart(*str)) {
|
|
uint8_t code_unit_1 = (*str--) & 0x0F; // take last 4 bits
|
|
*codepoint = (code_unit_1 << 12) + (code_unit_Nmin1 << 6) + code_unit_N;
|
|
} else {
|
|
if (ARROW_PREDICT_FALSE(!Utf8IsContinuation(*str))) {
|
|
return false;
|
|
}
|
|
uint8_t code_unit_Nmin2 = (*str--) & 0x3F; // take last 6 bits
|
|
if (ARROW_PREDICT_TRUE(Utf8Is4ByteStart(*str))) {
|
|
uint8_t code_unit_1 = (*str--) & 0x07; // take last 3 bits
|
|
*codepoint = (code_unit_1 << 18) + (code_unit_Nmin2 << 12) +
|
|
(code_unit_Nmin1 << 6) + code_unit_N;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
*data = str;
|
|
return true;
|
|
}
|
|
|
|
template <class UnaryOperation>
|
|
static inline bool UTF8Transform(const uint8_t* first, const uint8_t* last,
|
|
uint8_t** destination, UnaryOperation&& unary_op) {
|
|
const uint8_t* i = first;
|
|
uint8_t* out = *destination;
|
|
while (i < last) {
|
|
uint32_t codepoint = 0;
|
|
if (ARROW_PREDICT_FALSE(!UTF8Decode(&i, &codepoint))) {
|
|
return false;
|
|
}
|
|
out = UTF8Encode(out, unary_op(codepoint));
|
|
}
|
|
*destination = out;
|
|
return true;
|
|
}
|
|
|
|
template <class Predicate>
|
|
static inline bool UTF8FindIf(const uint8_t* first, const uint8_t* last,
|
|
Predicate&& predicate, const uint8_t** position) {
|
|
const uint8_t* i = first;
|
|
while (i < last) {
|
|
uint32_t codepoint = 0;
|
|
const uint8_t* current = i;
|
|
if (ARROW_PREDICT_FALSE(!UTF8Decode(&i, &codepoint))) {
|
|
return false;
|
|
}
|
|
if (predicate(codepoint)) {
|
|
*position = current;
|
|
return true;
|
|
}
|
|
}
|
|
*position = last;
|
|
return true;
|
|
}
|
|
|
|
// Same semantics as std::find_if using reverse iterators with the return value
|
|
// having the same semantics as std::reverse_iterator<..>.base()
|
|
// A reverse iterator physically points to the next address, e.g.:
|
|
// &*reverse_iterator(i) == &*(i + 1)
|
|
template <class Predicate>
|
|
static inline bool UTF8FindIfReverse(const uint8_t* first, const uint8_t* last,
|
|
Predicate&& predicate, const uint8_t** position) {
|
|
// converts to a normal point
|
|
const uint8_t* i = last - 1;
|
|
while (i >= first) {
|
|
uint32_t codepoint = 0;
|
|
const uint8_t* current = i;
|
|
if (ARROW_PREDICT_FALSE(!UTF8DecodeReverse(&i, &codepoint))) {
|
|
return false;
|
|
}
|
|
if (predicate(codepoint)) {
|
|
// converts normal pointer to 'reverse iterator semantics'.
|
|
*position = current + 1;
|
|
return true;
|
|
}
|
|
}
|
|
// similar to how an end pointer point to 1 beyond the last, reverse iterators point
|
|
// to the 'first' pointer to indicate out of range.
|
|
*position = first;
|
|
return true;
|
|
}
|
|
|
|
static inline bool UTF8AdvanceCodepoints(const uint8_t* first, const uint8_t* last,
|
|
const uint8_t** destination, int64_t n) {
|
|
return UTF8FindIf(
|
|
first, last,
|
|
[&](uint32_t codepoint) {
|
|
bool done = n == 0;
|
|
n--;
|
|
return done;
|
|
},
|
|
destination);
|
|
}
|
|
|
|
static inline bool UTF8AdvanceCodepointsReverse(const uint8_t* first, const uint8_t* last,
|
|
const uint8_t** destination, int64_t n) {
|
|
return UTF8FindIfReverse(
|
|
first, last,
|
|
[&](uint32_t codepoint) {
|
|
bool done = n == 0;
|
|
n--;
|
|
return done;
|
|
},
|
|
destination);
|
|
}
|
|
|
|
template <class UnaryFunction>
|
|
static inline bool UTF8ForEach(const uint8_t* first, const uint8_t* last,
|
|
UnaryFunction&& f) {
|
|
const uint8_t* i = first;
|
|
while (i < last) {
|
|
uint32_t codepoint = 0;
|
|
if (ARROW_PREDICT_FALSE(!UTF8Decode(&i, &codepoint))) {
|
|
return false;
|
|
}
|
|
f(codepoint);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class UnaryFunction>
|
|
static inline bool UTF8ForEach(const std::string& s, UnaryFunction&& f) {
|
|
return UTF8ForEach(reinterpret_cast<const uint8_t*>(s.data()),
|
|
reinterpret_cast<const uint8_t*>(s.data() + s.length()),
|
|
std::forward<UnaryFunction>(f));
|
|
}
|
|
|
|
template <class UnaryPredicate>
|
|
static inline bool UTF8AllOf(const uint8_t* first, const uint8_t* last, bool* result,
|
|
UnaryPredicate&& predicate) {
|
|
const uint8_t* i = first;
|
|
while (i < last) {
|
|
uint32_t codepoint = 0;
|
|
if (ARROW_PREDICT_FALSE(!UTF8Decode(&i, &codepoint))) {
|
|
return false;
|
|
}
|
|
|
|
if (!predicate(codepoint)) {
|
|
*result = false;
|
|
return true;
|
|
}
|
|
}
|
|
*result = true;
|
|
return true;
|
|
}
|
|
|
|
/// Count the number of codepoints in the given string (assuming it is valid UTF8).
|
|
static inline int64_t UTF8Length(const uint8_t* first, const uint8_t* last) {
|
|
int64_t length = 0;
|
|
while (first != last) {
|
|
length += ((*first++ & 0xc0) != 0x80);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
} // namespace util
|
|
} // namespace arrow
|