mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-04-22 02:23:48 +00:00
447 lines
15 KiB
Python
447 lines
15 KiB
Python
# Licensed to the Apache Software Foundation (ASF) under one
|
|
# or more contributor license agreements. See the NOTICE file
|
|
# distributed with this work for additional information
|
|
# regarding copyright ownership. The ASF licenses this file
|
|
# to you under the Apache License, Version 2.0 (the
|
|
# "License"); you may not use this file except in compliance
|
|
# with the License. You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing,
|
|
# software distributed under the License is distributed on an
|
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
# KIND, either express or implied. See the License for the
|
|
# specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
import datetime
|
|
import io
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pyarrow as pa
|
|
from pyarrow.tests.parquet.common import (
|
|
_check_roundtrip, parametrize_legacy_dataset)
|
|
|
|
try:
|
|
import pyarrow.parquet as pq
|
|
from pyarrow.tests.parquet.common import _read_table, _write_table
|
|
except ImportError:
|
|
pq = None
|
|
|
|
|
|
try:
|
|
import pandas as pd
|
|
import pandas.testing as tm
|
|
|
|
from pyarrow.tests.parquet.common import _roundtrip_pandas_dataframe
|
|
except ImportError:
|
|
pd = tm = None
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_pandas_parquet_datetime_tz(use_legacy_dataset):
|
|
s = pd.Series([datetime.datetime(2017, 9, 6)])
|
|
s = s.dt.tz_localize('utc')
|
|
|
|
s.index = s
|
|
|
|
# Both a column and an index to hit both use cases
|
|
df = pd.DataFrame({'tz_aware': s,
|
|
'tz_eastern': s.dt.tz_convert('US/Eastern')},
|
|
index=s)
|
|
|
|
f = io.BytesIO()
|
|
|
|
arrow_table = pa.Table.from_pandas(df)
|
|
|
|
_write_table(arrow_table, f, coerce_timestamps='ms')
|
|
f.seek(0)
|
|
|
|
table_read = pq.read_pandas(f, use_legacy_dataset=use_legacy_dataset)
|
|
|
|
df_read = table_read.to_pandas()
|
|
tm.assert_frame_equal(df, df_read)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_datetime_timezone_tzinfo(use_legacy_dataset):
|
|
value = datetime.datetime(2018, 1, 1, 1, 23, 45,
|
|
tzinfo=datetime.timezone.utc)
|
|
df = pd.DataFrame({'foo': [value]})
|
|
|
|
_roundtrip_pandas_dataframe(
|
|
df, write_kwargs={}, use_legacy_dataset=use_legacy_dataset)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
def test_coerce_timestamps(tempdir):
|
|
from collections import OrderedDict
|
|
|
|
# ARROW-622
|
|
arrays = OrderedDict()
|
|
fields = [pa.field('datetime64',
|
|
pa.list_(pa.timestamp('ms')))]
|
|
arrays['datetime64'] = [
|
|
np.array(['2007-07-13T01:23:34.123456789',
|
|
None,
|
|
'2010-08-13T05:46:57.437699912'],
|
|
dtype='datetime64[ms]'),
|
|
None,
|
|
None,
|
|
np.array(['2007-07-13T02',
|
|
None,
|
|
'2010-08-13T05:46:57.437699912'],
|
|
dtype='datetime64[ms]'),
|
|
]
|
|
|
|
df = pd.DataFrame(arrays)
|
|
schema = pa.schema(fields)
|
|
|
|
filename = tempdir / 'pandas_roundtrip.parquet'
|
|
arrow_table = pa.Table.from_pandas(df, schema=schema)
|
|
|
|
_write_table(arrow_table, filename, version='2.6', coerce_timestamps='us')
|
|
table_read = _read_table(filename)
|
|
df_read = table_read.to_pandas()
|
|
|
|
df_expected = df.copy()
|
|
for i, x in enumerate(df_expected['datetime64']):
|
|
if isinstance(x, np.ndarray):
|
|
df_expected['datetime64'][i] = x.astype('M8[us]')
|
|
|
|
tm.assert_frame_equal(df_expected, df_read)
|
|
|
|
with pytest.raises(ValueError):
|
|
_write_table(arrow_table, filename, version='2.6',
|
|
coerce_timestamps='unknown')
|
|
|
|
|
|
@pytest.mark.pandas
|
|
def test_coerce_timestamps_truncated(tempdir):
|
|
"""
|
|
ARROW-2555: Test that we can truncate timestamps when coercing if
|
|
explicitly allowed.
|
|
"""
|
|
dt_us = datetime.datetime(year=2017, month=1, day=1, hour=1, minute=1,
|
|
second=1, microsecond=1)
|
|
dt_ms = datetime.datetime(year=2017, month=1, day=1, hour=1, minute=1,
|
|
second=1)
|
|
|
|
fields_us = [pa.field('datetime64', pa.timestamp('us'))]
|
|
arrays_us = {'datetime64': [dt_us, dt_ms]}
|
|
|
|
df_us = pd.DataFrame(arrays_us)
|
|
schema_us = pa.schema(fields_us)
|
|
|
|
filename = tempdir / 'pandas_truncated.parquet'
|
|
table_us = pa.Table.from_pandas(df_us, schema=schema_us)
|
|
|
|
_write_table(table_us, filename, version='2.6', coerce_timestamps='ms',
|
|
allow_truncated_timestamps=True)
|
|
table_ms = _read_table(filename)
|
|
df_ms = table_ms.to_pandas()
|
|
|
|
arrays_expected = {'datetime64': [dt_ms, dt_ms]}
|
|
df_expected = pd.DataFrame(arrays_expected)
|
|
tm.assert_frame_equal(df_expected, df_ms)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
def test_date_time_types(tempdir):
|
|
t1 = pa.date32()
|
|
data1 = np.array([17259, 17260, 17261], dtype='int32')
|
|
a1 = pa.array(data1, type=t1)
|
|
|
|
t2 = pa.date64()
|
|
data2 = data1.astype('int64') * 86400000
|
|
a2 = pa.array(data2, type=t2)
|
|
|
|
t3 = pa.timestamp('us')
|
|
start = pd.Timestamp('2001-01-01').value / 1000
|
|
data3 = np.array([start, start + 1, start + 2], dtype='int64')
|
|
a3 = pa.array(data3, type=t3)
|
|
|
|
t4 = pa.time32('ms')
|
|
data4 = np.arange(3, dtype='i4')
|
|
a4 = pa.array(data4, type=t4)
|
|
|
|
t5 = pa.time64('us')
|
|
a5 = pa.array(data4.astype('int64'), type=t5)
|
|
|
|
t6 = pa.time32('s')
|
|
a6 = pa.array(data4, type=t6)
|
|
|
|
ex_t6 = pa.time32('ms')
|
|
ex_a6 = pa.array(data4 * 1000, type=ex_t6)
|
|
|
|
t7 = pa.timestamp('ns')
|
|
start = pd.Timestamp('2001-01-01').value
|
|
data7 = np.array([start, start + 1000, start + 2000],
|
|
dtype='int64')
|
|
a7 = pa.array(data7, type=t7)
|
|
|
|
table = pa.Table.from_arrays([a1, a2, a3, a4, a5, a6, a7],
|
|
['date32', 'date64', 'timestamp[us]',
|
|
'time32[s]', 'time64[us]',
|
|
'time32_from64[s]',
|
|
'timestamp[ns]'])
|
|
|
|
# date64 as date32
|
|
# time32[s] to time32[ms]
|
|
expected = pa.Table.from_arrays([a1, a1, a3, a4, a5, ex_a6, a7],
|
|
['date32', 'date64', 'timestamp[us]',
|
|
'time32[s]', 'time64[us]',
|
|
'time32_from64[s]',
|
|
'timestamp[ns]'])
|
|
|
|
_check_roundtrip(table, expected=expected, version='2.6')
|
|
|
|
t0 = pa.timestamp('ms')
|
|
data0 = np.arange(4, dtype='int64')
|
|
a0 = pa.array(data0, type=t0)
|
|
|
|
t1 = pa.timestamp('us')
|
|
data1 = np.arange(4, dtype='int64')
|
|
a1 = pa.array(data1, type=t1)
|
|
|
|
t2 = pa.timestamp('ns')
|
|
data2 = np.arange(4, dtype='int64')
|
|
a2 = pa.array(data2, type=t2)
|
|
|
|
table = pa.Table.from_arrays([a0, a1, a2],
|
|
['ts[ms]', 'ts[us]', 'ts[ns]'])
|
|
expected = pa.Table.from_arrays([a0, a1, a2],
|
|
['ts[ms]', 'ts[us]', 'ts[ns]'])
|
|
|
|
# int64 for all timestamps supported by default
|
|
filename = tempdir / 'int64_timestamps.parquet'
|
|
_write_table(table, filename, version='2.6')
|
|
parquet_schema = pq.ParquetFile(filename).schema
|
|
for i in range(3):
|
|
assert parquet_schema.column(i).physical_type == 'INT64'
|
|
read_table = _read_table(filename)
|
|
assert read_table.equals(expected)
|
|
|
|
t0_ns = pa.timestamp('ns')
|
|
data0_ns = np.array(data0 * 1000000, dtype='int64')
|
|
a0_ns = pa.array(data0_ns, type=t0_ns)
|
|
|
|
t1_ns = pa.timestamp('ns')
|
|
data1_ns = np.array(data1 * 1000, dtype='int64')
|
|
a1_ns = pa.array(data1_ns, type=t1_ns)
|
|
|
|
expected = pa.Table.from_arrays([a0_ns, a1_ns, a2],
|
|
['ts[ms]', 'ts[us]', 'ts[ns]'])
|
|
|
|
# int96 nanosecond timestamps produced upon request
|
|
filename = tempdir / 'explicit_int96_timestamps.parquet'
|
|
_write_table(table, filename, version='2.6',
|
|
use_deprecated_int96_timestamps=True)
|
|
parquet_schema = pq.ParquetFile(filename).schema
|
|
for i in range(3):
|
|
assert parquet_schema.column(i).physical_type == 'INT96'
|
|
read_table = _read_table(filename)
|
|
assert read_table.equals(expected)
|
|
|
|
# int96 nanosecond timestamps implied by flavor 'spark'
|
|
filename = tempdir / 'spark_int96_timestamps.parquet'
|
|
_write_table(table, filename, version='2.6',
|
|
flavor='spark')
|
|
parquet_schema = pq.ParquetFile(filename).schema
|
|
for i in range(3):
|
|
assert parquet_schema.column(i).physical_type == 'INT96'
|
|
read_table = _read_table(filename)
|
|
assert read_table.equals(expected)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@pytest.mark.parametrize('unit', ['s', 'ms', 'us', 'ns'])
|
|
def test_coerce_int96_timestamp_unit(unit):
|
|
i_s = pd.Timestamp('2010-01-01').value / 1000000000 # := 1262304000
|
|
|
|
d_s = np.arange(i_s, i_s + 10, 1, dtype='int64')
|
|
d_ms = d_s * 1000
|
|
d_us = d_ms * 1000
|
|
d_ns = d_us * 1000
|
|
|
|
a_s = pa.array(d_s, type=pa.timestamp('s'))
|
|
a_ms = pa.array(d_ms, type=pa.timestamp('ms'))
|
|
a_us = pa.array(d_us, type=pa.timestamp('us'))
|
|
a_ns = pa.array(d_ns, type=pa.timestamp('ns'))
|
|
|
|
arrays = {"s": a_s, "ms": a_ms, "us": a_us, "ns": a_ns}
|
|
names = ['ts_s', 'ts_ms', 'ts_us', 'ts_ns']
|
|
table = pa.Table.from_arrays([a_s, a_ms, a_us, a_ns], names)
|
|
|
|
# For either Parquet version, coercing to nanoseconds is allowed
|
|
# if Int96 storage is used
|
|
expected = pa.Table.from_arrays([arrays.get(unit)]*4, names)
|
|
read_table_kwargs = {"coerce_int96_timestamp_unit": unit}
|
|
_check_roundtrip(table, expected,
|
|
read_table_kwargs=read_table_kwargs,
|
|
use_deprecated_int96_timestamps=True)
|
|
_check_roundtrip(table, expected, version='2.6',
|
|
read_table_kwargs=read_table_kwargs,
|
|
use_deprecated_int96_timestamps=True)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@pytest.mark.parametrize('pq_reader_method', ['ParquetFile', 'read_table'])
|
|
def test_coerce_int96_timestamp_overflow(pq_reader_method, tempdir):
|
|
|
|
def get_table(pq_reader_method, filename, **kwargs):
|
|
if pq_reader_method == "ParquetFile":
|
|
return pq.ParquetFile(filename, **kwargs).read()
|
|
elif pq_reader_method == "read_table":
|
|
return pq.read_table(filename, **kwargs)
|
|
|
|
# Recreating the initial JIRA issue referenced in ARROW-12096
|
|
oob_dts = [
|
|
datetime.datetime(1000, 1, 1),
|
|
datetime.datetime(2000, 1, 1),
|
|
datetime.datetime(3000, 1, 1)
|
|
]
|
|
df = pd.DataFrame({"a": oob_dts})
|
|
table = pa.table(df)
|
|
|
|
filename = tempdir / "test_round_trip_overflow.parquet"
|
|
pq.write_table(table, filename, use_deprecated_int96_timestamps=True,
|
|
version="1.0")
|
|
|
|
# with the default resolution of ns, we get wrong values for INT96
|
|
# that are out of bounds for nanosecond range
|
|
tab_error = get_table(pq_reader_method, filename)
|
|
assert tab_error["a"].to_pylist() != oob_dts
|
|
|
|
# avoid this overflow by specifying the resolution to use for INT96 values
|
|
tab_correct = get_table(
|
|
pq_reader_method, filename, coerce_int96_timestamp_unit="s"
|
|
)
|
|
df_correct = tab_correct.to_pandas(timestamp_as_object=True)
|
|
tm.assert_frame_equal(df, df_correct)
|
|
|
|
|
|
def test_timestamp_restore_timezone():
|
|
# ARROW-5888, restore timezone from serialized metadata
|
|
ty = pa.timestamp('ms', tz='America/New_York')
|
|
arr = pa.array([1, 2, 3], type=ty)
|
|
t = pa.table([arr], names=['f0'])
|
|
_check_roundtrip(t)
|
|
|
|
|
|
def test_timestamp_restore_timezone_nanosecond():
|
|
# ARROW-9634, also restore timezone for nanosecond data that get stored
|
|
# as microseconds in the parquet file
|
|
ty = pa.timestamp('ns', tz='America/New_York')
|
|
arr = pa.array([1000, 2000, 3000], type=ty)
|
|
table = pa.table([arr], names=['f0'])
|
|
ty_us = pa.timestamp('us', tz='America/New_York')
|
|
expected = pa.table([arr.cast(ty_us)], names=['f0'])
|
|
_check_roundtrip(table, expected=expected)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
def test_list_of_datetime_time_roundtrip():
|
|
# ARROW-4135
|
|
times = pd.to_datetime(['09:00', '09:30', '10:00', '10:30', '11:00',
|
|
'11:30', '12:00'])
|
|
df = pd.DataFrame({'time': [times.time]})
|
|
_roundtrip_pandas_dataframe(df, write_kwargs={})
|
|
|
|
|
|
@pytest.mark.pandas
|
|
def test_parquet_version_timestamp_differences():
|
|
i_s = pd.Timestamp('2010-01-01').value / 1000000000 # := 1262304000
|
|
|
|
d_s = np.arange(i_s, i_s + 10, 1, dtype='int64')
|
|
d_ms = d_s * 1000
|
|
d_us = d_ms * 1000
|
|
d_ns = d_us * 1000
|
|
|
|
a_s = pa.array(d_s, type=pa.timestamp('s'))
|
|
a_ms = pa.array(d_ms, type=pa.timestamp('ms'))
|
|
a_us = pa.array(d_us, type=pa.timestamp('us'))
|
|
a_ns = pa.array(d_ns, type=pa.timestamp('ns'))
|
|
|
|
names = ['ts:s', 'ts:ms', 'ts:us', 'ts:ns']
|
|
table = pa.Table.from_arrays([a_s, a_ms, a_us, a_ns], names)
|
|
|
|
# Using Parquet version 1.0, seconds should be coerced to milliseconds
|
|
# and nanoseconds should be coerced to microseconds by default
|
|
expected = pa.Table.from_arrays([a_ms, a_ms, a_us, a_us], names)
|
|
_check_roundtrip(table, expected)
|
|
|
|
# Using Parquet version 2.0, seconds should be coerced to milliseconds
|
|
# and nanoseconds should be retained by default
|
|
expected = pa.Table.from_arrays([a_ms, a_ms, a_us, a_ns], names)
|
|
_check_roundtrip(table, expected, version='2.6')
|
|
|
|
# Using Parquet version 1.0, coercing to milliseconds or microseconds
|
|
# is allowed
|
|
expected = pa.Table.from_arrays([a_ms, a_ms, a_ms, a_ms], names)
|
|
_check_roundtrip(table, expected, coerce_timestamps='ms')
|
|
|
|
# Using Parquet version 2.0, coercing to milliseconds or microseconds
|
|
# is allowed
|
|
expected = pa.Table.from_arrays([a_us, a_us, a_us, a_us], names)
|
|
_check_roundtrip(table, expected, version='2.6', coerce_timestamps='us')
|
|
|
|
# TODO: after pyarrow allows coerce_timestamps='ns', tests like the
|
|
# following should pass ...
|
|
|
|
# Using Parquet version 1.0, coercing to nanoseconds is not allowed
|
|
# expected = None
|
|
# with pytest.raises(NotImplementedError):
|
|
# _roundtrip_table(table, coerce_timestamps='ns')
|
|
|
|
# Using Parquet version 2.0, coercing to nanoseconds is allowed
|
|
# expected = pa.Table.from_arrays([a_ns, a_ns, a_ns, a_ns], names)
|
|
# _check_roundtrip(table, expected, version='2.6', coerce_timestamps='ns')
|
|
|
|
# For either Parquet version, coercing to nanoseconds is allowed
|
|
# if Int96 storage is used
|
|
expected = pa.Table.from_arrays([a_ns, a_ns, a_ns, a_ns], names)
|
|
_check_roundtrip(table, expected,
|
|
use_deprecated_int96_timestamps=True)
|
|
_check_roundtrip(table, expected, version='2.6',
|
|
use_deprecated_int96_timestamps=True)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
def test_noncoerced_nanoseconds_written_without_exception(tempdir):
|
|
# ARROW-1957: the Parquet version 2.0 writer preserves Arrow
|
|
# nanosecond timestamps by default
|
|
n = 9
|
|
df = pd.DataFrame({'x': range(n)},
|
|
index=pd.date_range('2017-01-01', freq='1n', periods=n))
|
|
tb = pa.Table.from_pandas(df)
|
|
|
|
filename = tempdir / 'written.parquet'
|
|
try:
|
|
pq.write_table(tb, filename, version='2.6')
|
|
except Exception:
|
|
pass
|
|
assert filename.exists()
|
|
|
|
recovered_table = pq.read_table(filename)
|
|
assert tb.equals(recovered_table)
|
|
|
|
# Loss of data through coercion (without explicit override) still an error
|
|
filename = tempdir / 'not_written.parquet'
|
|
with pytest.raises(ValueError):
|
|
pq.write_table(tb, filename, coerce_timestamps='ms', version='2.6')
|
|
|
|
|
|
def test_duration_type():
|
|
# ARROW-6780
|
|
arrays = [pa.array([0, 1, 2, 3], type=pa.duration(unit))
|
|
for unit in ["s", "ms", "us", "ns"]]
|
|
table = pa.Table.from_arrays(arrays, ["d[s]", "d[ms]", "d[us]", "d[ns]"])
|
|
|
|
_check_roundtrip(table)
|