mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-04-21 18:23:35 +00:00
178 lines
5.1 KiB
Python
178 lines
5.1 KiB
Python
"""
|
|
Magic functions for rendering vega/vega-lite specifications
|
|
"""
|
|
__all__ = ["vega", "vegalite"]
|
|
|
|
import json
|
|
import warnings
|
|
|
|
import IPython
|
|
from IPython.core import magic_arguments
|
|
import pandas as pd
|
|
from toolz import curried
|
|
|
|
from altair.vegalite import v3 as vegalite_v3
|
|
from altair.vegalite import v4 as vegalite_v4
|
|
from altair.vega import v5 as vega_v5
|
|
|
|
try:
|
|
import yaml
|
|
|
|
YAML_AVAILABLE = True
|
|
except ImportError:
|
|
YAML_AVAILABLE = False
|
|
|
|
|
|
RENDERERS = {
|
|
"vega": {"5": vega_v5.Vega},
|
|
"vega-lite": {"3": vegalite_v3.VegaLite, "4": vegalite_v4.VegaLite},
|
|
}
|
|
|
|
|
|
TRANSFORMERS = {
|
|
"vega": {
|
|
# Vega doesn't yet have specific data transformers; use vegalite
|
|
"5": vegalite_v4.data_transformers,
|
|
},
|
|
"vega-lite": {
|
|
"3": vegalite_v3.data_transformers,
|
|
"4": vegalite_v4.data_transformers,
|
|
},
|
|
}
|
|
|
|
|
|
def _prepare_data(data, data_transformers):
|
|
"""Convert input data to data for use within schema"""
|
|
if data is None or isinstance(data, dict):
|
|
return data
|
|
elif isinstance(data, pd.DataFrame):
|
|
return curried.pipe(data, data_transformers.get())
|
|
elif isinstance(data, str):
|
|
return {"url": data}
|
|
else:
|
|
warnings.warn("data of type {} not recognized".format(type(data)))
|
|
return data
|
|
|
|
|
|
def _get_variable(name):
|
|
"""Get a variable from the notebook namespace."""
|
|
ip = IPython.get_ipython()
|
|
if ip is None:
|
|
raise ValueError(
|
|
"Magic command must be run within an IPython "
|
|
"environemnt, in which get_ipython() is defined."
|
|
)
|
|
if name not in ip.user_ns:
|
|
raise NameError(
|
|
"argument '{}' does not match the "
|
|
"name of any defined variable".format(name)
|
|
)
|
|
return ip.user_ns[name]
|
|
|
|
|
|
@magic_arguments.magic_arguments()
|
|
@magic_arguments.argument(
|
|
"data",
|
|
nargs="*",
|
|
help="local variable name of a pandas DataFrame to be used as the dataset",
|
|
)
|
|
@magic_arguments.argument("-v", "--version", dest="version", default="5")
|
|
@magic_arguments.argument("-j", "--json", dest="json", action="store_true")
|
|
def vega(line, cell):
|
|
"""Cell magic for displaying Vega visualizations in CoLab.
|
|
|
|
%%vega [name1:variable1 name2:variable2 ...] [--json] [--version='5']
|
|
|
|
Visualize the contents of the cell using Vega, optionally specifying
|
|
one or more pandas DataFrame objects to be used as the datasets.
|
|
|
|
If --json is passed, then input is parsed as json rather than yaml.
|
|
"""
|
|
args = magic_arguments.parse_argstring(vega, line)
|
|
|
|
version = args.version
|
|
assert version in RENDERERS["vega"]
|
|
Vega = RENDERERS["vega"][version]
|
|
data_transformers = TRANSFORMERS["vega"][version]
|
|
|
|
def namevar(s):
|
|
s = s.split(":")
|
|
if len(s) == 1:
|
|
return s[0], s[0]
|
|
elif len(s) == 2:
|
|
return s[0], s[1]
|
|
else:
|
|
raise ValueError("invalid identifier: '{}'".format(s))
|
|
|
|
try:
|
|
data = list(map(namevar, args.data))
|
|
except ValueError:
|
|
raise ValueError("Could not parse arguments: '{}'".format(line))
|
|
|
|
if args.json:
|
|
spec = json.loads(cell)
|
|
elif not YAML_AVAILABLE:
|
|
try:
|
|
spec = json.loads(cell)
|
|
except json.JSONDecodeError:
|
|
raise ValueError(
|
|
"%%vega: spec is not valid JSON. "
|
|
"Install pyyaml to parse spec as yaml"
|
|
)
|
|
else:
|
|
spec = yaml.load(cell, Loader=yaml.FullLoader)
|
|
|
|
if data:
|
|
spec["data"] = []
|
|
for name, val in data:
|
|
val = _get_variable(val)
|
|
prepped = _prepare_data(val, data_transformers)
|
|
prepped["name"] = name
|
|
spec["data"].append(prepped)
|
|
|
|
return Vega(spec)
|
|
|
|
|
|
@magic_arguments.magic_arguments()
|
|
@magic_arguments.argument(
|
|
"data",
|
|
nargs="?",
|
|
help="local variablename of a pandas DataFrame to be used as the dataset",
|
|
)
|
|
@magic_arguments.argument("-v", "--version", dest="version", default="4")
|
|
@magic_arguments.argument("-j", "--json", dest="json", action="store_true")
|
|
def vegalite(line, cell):
|
|
"""Cell magic for displaying vega-lite visualizations in CoLab.
|
|
|
|
%%vegalite [dataframe] [--json] [--version=3]
|
|
|
|
Visualize the contents of the cell using Vega-Lite, optionally
|
|
specifying a pandas DataFrame object to be used as the dataset.
|
|
|
|
if --json is passed, then input is parsed as json rather than yaml.
|
|
"""
|
|
args = magic_arguments.parse_argstring(vegalite, line)
|
|
version = args.version
|
|
assert version in RENDERERS["vega-lite"]
|
|
VegaLite = RENDERERS["vega-lite"][version]
|
|
data_transformers = TRANSFORMERS["vega-lite"][version]
|
|
|
|
if args.json:
|
|
spec = json.loads(cell)
|
|
elif not YAML_AVAILABLE:
|
|
try:
|
|
spec = json.loads(cell)
|
|
except json.JSONDecodeError:
|
|
raise ValueError(
|
|
"%%vegalite: spec is not valid JSON. "
|
|
"Install pyyaml to parse spec as yaml"
|
|
)
|
|
else:
|
|
spec = yaml.load(cell, Loader=yaml.FullLoader)
|
|
|
|
if args.data is not None:
|
|
data = _get_variable(args.data)
|
|
spec["data"] = _prepare_data(data, data_transformers)
|
|
|
|
return VegaLite(spec)
|