mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-04-22 10:28:02 +00:00
716 lines
25 KiB
C++
716 lines
25 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
// This module defines an abstract interface for iterating through pages in a
|
|
// Parquet column chunk within a row group. It could be extended in the future
|
|
// to iterate through all data pages in all chunks in a file.
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <random>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "arrow/io/memory.h"
|
|
#include "arrow/testing/util.h"
|
|
|
|
#include "parquet/column_page.h"
|
|
#include "parquet/column_reader.h"
|
|
#include "parquet/column_writer.h"
|
|
#include "parquet/encoding.h"
|
|
#include "parquet/platform.h"
|
|
|
|
namespace parquet {
|
|
|
|
static constexpr int FLBA_LENGTH = 12;
|
|
|
|
inline bool operator==(const FixedLenByteArray& a, const FixedLenByteArray& b) {
|
|
return 0 == memcmp(a.ptr, b.ptr, FLBA_LENGTH);
|
|
}
|
|
|
|
namespace test {
|
|
|
|
typedef ::testing::Types<BooleanType, Int32Type, Int64Type, Int96Type, FloatType,
|
|
DoubleType, ByteArrayType, FLBAType>
|
|
ParquetTypes;
|
|
|
|
class ParquetTestException : public parquet::ParquetException {
|
|
using ParquetException::ParquetException;
|
|
};
|
|
|
|
const char* get_data_dir();
|
|
std::string get_bad_data_dir();
|
|
|
|
std::string get_data_file(const std::string& filename, bool is_good = true);
|
|
|
|
template <typename T>
|
|
static inline void assert_vector_equal(const std::vector<T>& left,
|
|
const std::vector<T>& right) {
|
|
ASSERT_EQ(left.size(), right.size());
|
|
|
|
for (size_t i = 0; i < left.size(); ++i) {
|
|
ASSERT_EQ(left[i], right[i]) << i;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static inline bool vector_equal(const std::vector<T>& left, const std::vector<T>& right) {
|
|
if (left.size() != right.size()) {
|
|
return false;
|
|
}
|
|
|
|
for (size_t i = 0; i < left.size(); ++i) {
|
|
if (left[i] != right[i]) {
|
|
std::cerr << "index " << i << " left was " << left[i] << " right was " << right[i]
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
static std::vector<T> slice(const std::vector<T>& values, int start, int end) {
|
|
if (end < start) {
|
|
return std::vector<T>(0);
|
|
}
|
|
|
|
std::vector<T> out(end - start);
|
|
for (int i = start; i < end; ++i) {
|
|
out[i - start] = values[i];
|
|
}
|
|
return out;
|
|
}
|
|
|
|
void random_bytes(int n, uint32_t seed, std::vector<uint8_t>* out);
|
|
void random_bools(int n, double p, uint32_t seed, bool* out);
|
|
|
|
template <typename T>
|
|
inline void random_numbers(int n, uint32_t seed, T min_value, T max_value, T* out) {
|
|
std::default_random_engine gen(seed);
|
|
std::uniform_int_distribution<T> d(min_value, max_value);
|
|
for (int i = 0; i < n; ++i) {
|
|
out[i] = d(gen);
|
|
}
|
|
}
|
|
|
|
template <>
|
|
inline void random_numbers(int n, uint32_t seed, float min_value, float max_value,
|
|
float* out) {
|
|
std::default_random_engine gen(seed);
|
|
std::uniform_real_distribution<float> d(min_value, max_value);
|
|
for (int i = 0; i < n; ++i) {
|
|
out[i] = d(gen);
|
|
}
|
|
}
|
|
|
|
template <>
|
|
inline void random_numbers(int n, uint32_t seed, double min_value, double max_value,
|
|
double* out) {
|
|
std::default_random_engine gen(seed);
|
|
std::uniform_real_distribution<double> d(min_value, max_value);
|
|
for (int i = 0; i < n; ++i) {
|
|
out[i] = d(gen);
|
|
}
|
|
}
|
|
|
|
void random_Int96_numbers(int n, uint32_t seed, int32_t min_value, int32_t max_value,
|
|
Int96* out);
|
|
|
|
void random_fixed_byte_array(int n, uint32_t seed, uint8_t* buf, int len, FLBA* out);
|
|
|
|
void random_byte_array(int n, uint32_t seed, uint8_t* buf, ByteArray* out, int min_size,
|
|
int max_size);
|
|
|
|
void random_byte_array(int n, uint32_t seed, uint8_t* buf, ByteArray* out, int max_size);
|
|
|
|
template <typename Type, typename Sequence>
|
|
std::shared_ptr<Buffer> EncodeValues(Encoding::type encoding, bool use_dictionary,
|
|
const Sequence& values, int length,
|
|
const ColumnDescriptor* descr) {
|
|
auto encoder = MakeTypedEncoder<Type>(encoding, use_dictionary, descr);
|
|
encoder->Put(values, length);
|
|
return encoder->FlushValues();
|
|
}
|
|
|
|
template <typename T>
|
|
static void InitValues(int num_values, std::vector<T>& values,
|
|
std::vector<uint8_t>& buffer) {
|
|
random_numbers(num_values, 0, std::numeric_limits<T>::min(),
|
|
std::numeric_limits<T>::max(), values.data());
|
|
}
|
|
|
|
template <typename T>
|
|
static void InitDictValues(int num_values, int num_dicts, std::vector<T>& values,
|
|
std::vector<uint8_t>& buffer) {
|
|
int repeat_factor = num_values / num_dicts;
|
|
InitValues<T>(num_dicts, values, buffer);
|
|
// add some repeated values
|
|
for (int j = 1; j < repeat_factor; ++j) {
|
|
for (int i = 0; i < num_dicts; ++i) {
|
|
std::memcpy(&values[num_dicts * j + i], &values[i], sizeof(T));
|
|
}
|
|
}
|
|
// computed only dict_per_page * repeat_factor - 1 values < num_values
|
|
// compute remaining
|
|
for (int i = num_dicts * repeat_factor; i < num_values; ++i) {
|
|
std::memcpy(&values[i], &values[i - num_dicts * repeat_factor], sizeof(T));
|
|
}
|
|
}
|
|
|
|
template <>
|
|
inline void InitDictValues<bool>(int num_values, int num_dicts, std::vector<bool>& values,
|
|
std::vector<uint8_t>& buffer) {
|
|
// No op for bool
|
|
}
|
|
|
|
class MockPageReader : public PageReader {
|
|
public:
|
|
explicit MockPageReader(const std::vector<std::shared_ptr<Page>>& pages)
|
|
: pages_(pages), page_index_(0) {}
|
|
|
|
std::shared_ptr<Page> NextPage() override {
|
|
if (page_index_ == static_cast<int>(pages_.size())) {
|
|
// EOS to consumer
|
|
return std::shared_ptr<Page>(nullptr);
|
|
}
|
|
return pages_[page_index_++];
|
|
}
|
|
|
|
// No-op
|
|
void set_max_page_header_size(uint32_t size) override {}
|
|
|
|
private:
|
|
std::vector<std::shared_ptr<Page>> pages_;
|
|
int page_index_;
|
|
};
|
|
|
|
// TODO(wesm): this is only used for testing for now. Refactor to form part of
|
|
// primary file write path
|
|
template <typename Type>
|
|
class DataPageBuilder {
|
|
public:
|
|
using c_type = typename Type::c_type;
|
|
|
|
// This class writes data and metadata to the passed inputs
|
|
explicit DataPageBuilder(ArrowOutputStream* sink)
|
|
: sink_(sink),
|
|
num_values_(0),
|
|
encoding_(Encoding::PLAIN),
|
|
definition_level_encoding_(Encoding::RLE),
|
|
repetition_level_encoding_(Encoding::RLE),
|
|
have_def_levels_(false),
|
|
have_rep_levels_(false),
|
|
have_values_(false) {}
|
|
|
|
void AppendDefLevels(const std::vector<int16_t>& levels, int16_t max_level,
|
|
Encoding::type encoding = Encoding::RLE) {
|
|
AppendLevels(levels, max_level, encoding);
|
|
|
|
num_values_ = std::max(static_cast<int32_t>(levels.size()), num_values_);
|
|
definition_level_encoding_ = encoding;
|
|
have_def_levels_ = true;
|
|
}
|
|
|
|
void AppendRepLevels(const std::vector<int16_t>& levels, int16_t max_level,
|
|
Encoding::type encoding = Encoding::RLE) {
|
|
AppendLevels(levels, max_level, encoding);
|
|
|
|
num_values_ = std::max(static_cast<int32_t>(levels.size()), num_values_);
|
|
repetition_level_encoding_ = encoding;
|
|
have_rep_levels_ = true;
|
|
}
|
|
|
|
void AppendValues(const ColumnDescriptor* d, const std::vector<c_type>& values,
|
|
Encoding::type encoding = Encoding::PLAIN) {
|
|
std::shared_ptr<Buffer> values_sink = EncodeValues<Type>(
|
|
encoding, false, values.data(), static_cast<int>(values.size()), d);
|
|
PARQUET_THROW_NOT_OK(sink_->Write(values_sink->data(), values_sink->size()));
|
|
|
|
num_values_ = std::max(static_cast<int32_t>(values.size()), num_values_);
|
|
encoding_ = encoding;
|
|
have_values_ = true;
|
|
}
|
|
|
|
int32_t num_values() const { return num_values_; }
|
|
|
|
Encoding::type encoding() const { return encoding_; }
|
|
|
|
Encoding::type rep_level_encoding() const { return repetition_level_encoding_; }
|
|
|
|
Encoding::type def_level_encoding() const { return definition_level_encoding_; }
|
|
|
|
private:
|
|
ArrowOutputStream* sink_;
|
|
|
|
int32_t num_values_;
|
|
Encoding::type encoding_;
|
|
Encoding::type definition_level_encoding_;
|
|
Encoding::type repetition_level_encoding_;
|
|
|
|
bool have_def_levels_;
|
|
bool have_rep_levels_;
|
|
bool have_values_;
|
|
|
|
// Used internally for both repetition and definition levels
|
|
void AppendLevels(const std::vector<int16_t>& levels, int16_t max_level,
|
|
Encoding::type encoding) {
|
|
if (encoding != Encoding::RLE) {
|
|
ParquetException::NYI("only rle encoding currently implemented");
|
|
}
|
|
|
|
std::vector<uint8_t> encode_buffer(LevelEncoder::MaxBufferSize(
|
|
Encoding::RLE, max_level, static_cast<int>(levels.size())));
|
|
|
|
// We encode into separate memory from the output stream because the
|
|
// RLE-encoded bytes have to be preceded in the stream by their absolute
|
|
// size.
|
|
LevelEncoder encoder;
|
|
encoder.Init(encoding, max_level, static_cast<int>(levels.size()),
|
|
encode_buffer.data(), static_cast<int>(encode_buffer.size()));
|
|
|
|
encoder.Encode(static_cast<int>(levels.size()), levels.data());
|
|
|
|
int32_t rle_bytes = encoder.len();
|
|
PARQUET_THROW_NOT_OK(
|
|
sink_->Write(reinterpret_cast<const uint8_t*>(&rle_bytes), sizeof(int32_t)));
|
|
PARQUET_THROW_NOT_OK(sink_->Write(encode_buffer.data(), rle_bytes));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
inline void DataPageBuilder<BooleanType>::AppendValues(const ColumnDescriptor* d,
|
|
const std::vector<bool>& values,
|
|
Encoding::type encoding) {
|
|
if (encoding != Encoding::PLAIN) {
|
|
ParquetException::NYI("only plain encoding currently implemented");
|
|
}
|
|
|
|
auto encoder = MakeTypedEncoder<BooleanType>(Encoding::PLAIN, false, d);
|
|
dynamic_cast<BooleanEncoder*>(encoder.get())
|
|
->Put(values, static_cast<int>(values.size()));
|
|
std::shared_ptr<Buffer> buffer = encoder->FlushValues();
|
|
PARQUET_THROW_NOT_OK(sink_->Write(buffer->data(), buffer->size()));
|
|
|
|
num_values_ = std::max(static_cast<int32_t>(values.size()), num_values_);
|
|
encoding_ = encoding;
|
|
have_values_ = true;
|
|
}
|
|
|
|
template <typename Type>
|
|
static std::shared_ptr<DataPageV1> MakeDataPage(
|
|
const ColumnDescriptor* d, const std::vector<typename Type::c_type>& values,
|
|
int num_vals, Encoding::type encoding, const uint8_t* indices, int indices_size,
|
|
const std::vector<int16_t>& def_levels, int16_t max_def_level,
|
|
const std::vector<int16_t>& rep_levels, int16_t max_rep_level) {
|
|
int num_values = 0;
|
|
|
|
auto page_stream = CreateOutputStream();
|
|
test::DataPageBuilder<Type> page_builder(page_stream.get());
|
|
|
|
if (!rep_levels.empty()) {
|
|
page_builder.AppendRepLevels(rep_levels, max_rep_level);
|
|
}
|
|
if (!def_levels.empty()) {
|
|
page_builder.AppendDefLevels(def_levels, max_def_level);
|
|
}
|
|
|
|
if (encoding == Encoding::PLAIN) {
|
|
page_builder.AppendValues(d, values, encoding);
|
|
num_values = std::max(page_builder.num_values(), num_vals);
|
|
} else { // DICTIONARY PAGES
|
|
PARQUET_THROW_NOT_OK(page_stream->Write(indices, indices_size));
|
|
num_values = std::max(page_builder.num_values(), num_vals);
|
|
}
|
|
|
|
PARQUET_ASSIGN_OR_THROW(auto buffer, page_stream->Finish());
|
|
|
|
return std::make_shared<DataPageV1>(buffer, num_values, encoding,
|
|
page_builder.def_level_encoding(),
|
|
page_builder.rep_level_encoding(), buffer->size());
|
|
}
|
|
|
|
template <typename TYPE>
|
|
class DictionaryPageBuilder {
|
|
public:
|
|
typedef typename TYPE::c_type TC;
|
|
static constexpr int TN = TYPE::type_num;
|
|
using SpecializedEncoder = typename EncodingTraits<TYPE>::Encoder;
|
|
|
|
// This class writes data and metadata to the passed inputs
|
|
explicit DictionaryPageBuilder(const ColumnDescriptor* d)
|
|
: num_dict_values_(0), have_values_(false) {
|
|
auto encoder = MakeTypedEncoder<TYPE>(Encoding::PLAIN, true, d);
|
|
dict_traits_ = dynamic_cast<DictEncoder<TYPE>*>(encoder.get());
|
|
encoder_.reset(dynamic_cast<SpecializedEncoder*>(encoder.release()));
|
|
}
|
|
|
|
~DictionaryPageBuilder() {}
|
|
|
|
std::shared_ptr<Buffer> AppendValues(const std::vector<TC>& values) {
|
|
int num_values = static_cast<int>(values.size());
|
|
// Dictionary encoding
|
|
encoder_->Put(values.data(), num_values);
|
|
num_dict_values_ = dict_traits_->num_entries();
|
|
have_values_ = true;
|
|
return encoder_->FlushValues();
|
|
}
|
|
|
|
std::shared_ptr<Buffer> WriteDict() {
|
|
std::shared_ptr<Buffer> dict_buffer =
|
|
AllocateBuffer(::arrow::default_memory_pool(), dict_traits_->dict_encoded_size());
|
|
dict_traits_->WriteDict(dict_buffer->mutable_data());
|
|
return dict_buffer;
|
|
}
|
|
|
|
int32_t num_values() const { return num_dict_values_; }
|
|
|
|
private:
|
|
DictEncoder<TYPE>* dict_traits_;
|
|
std::unique_ptr<SpecializedEncoder> encoder_;
|
|
int32_t num_dict_values_;
|
|
bool have_values_;
|
|
};
|
|
|
|
template <>
|
|
inline DictionaryPageBuilder<BooleanType>::DictionaryPageBuilder(
|
|
const ColumnDescriptor* d) {
|
|
ParquetException::NYI("only plain encoding currently implemented for boolean");
|
|
}
|
|
|
|
template <>
|
|
inline std::shared_ptr<Buffer> DictionaryPageBuilder<BooleanType>::WriteDict() {
|
|
ParquetException::NYI("only plain encoding currently implemented for boolean");
|
|
return nullptr;
|
|
}
|
|
|
|
template <>
|
|
inline std::shared_ptr<Buffer> DictionaryPageBuilder<BooleanType>::AppendValues(
|
|
const std::vector<TC>& values) {
|
|
ParquetException::NYI("only plain encoding currently implemented for boolean");
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename Type>
|
|
inline static std::shared_ptr<DictionaryPage> MakeDictPage(
|
|
const ColumnDescriptor* d, const std::vector<typename Type::c_type>& values,
|
|
const std::vector<int>& values_per_page, Encoding::type encoding,
|
|
std::vector<std::shared_ptr<Buffer>>& rle_indices) {
|
|
test::DictionaryPageBuilder<Type> page_builder(d);
|
|
int num_pages = static_cast<int>(values_per_page.size());
|
|
int value_start = 0;
|
|
|
|
for (int i = 0; i < num_pages; i++) {
|
|
rle_indices.push_back(page_builder.AppendValues(
|
|
slice(values, value_start, value_start + values_per_page[i])));
|
|
value_start += values_per_page[i];
|
|
}
|
|
|
|
auto buffer = page_builder.WriteDict();
|
|
|
|
return std::make_shared<DictionaryPage>(buffer, page_builder.num_values(),
|
|
Encoding::PLAIN);
|
|
}
|
|
|
|
// Given def/rep levels and values create multiple dict pages
|
|
template <typename Type>
|
|
inline static void PaginateDict(const ColumnDescriptor* d,
|
|
const std::vector<typename Type::c_type>& values,
|
|
const std::vector<int16_t>& def_levels,
|
|
int16_t max_def_level,
|
|
const std::vector<int16_t>& rep_levels,
|
|
int16_t max_rep_level, int num_levels_per_page,
|
|
const std::vector<int>& values_per_page,
|
|
std::vector<std::shared_ptr<Page>>& pages,
|
|
Encoding::type encoding = Encoding::RLE_DICTIONARY) {
|
|
int num_pages = static_cast<int>(values_per_page.size());
|
|
std::vector<std::shared_ptr<Buffer>> rle_indices;
|
|
std::shared_ptr<DictionaryPage> dict_page =
|
|
MakeDictPage<Type>(d, values, values_per_page, encoding, rle_indices);
|
|
pages.push_back(dict_page);
|
|
int def_level_start = 0;
|
|
int def_level_end = 0;
|
|
int rep_level_start = 0;
|
|
int rep_level_end = 0;
|
|
for (int i = 0; i < num_pages; i++) {
|
|
if (max_def_level > 0) {
|
|
def_level_start = i * num_levels_per_page;
|
|
def_level_end = (i + 1) * num_levels_per_page;
|
|
}
|
|
if (max_rep_level > 0) {
|
|
rep_level_start = i * num_levels_per_page;
|
|
rep_level_end = (i + 1) * num_levels_per_page;
|
|
}
|
|
std::shared_ptr<DataPageV1> data_page = MakeDataPage<Int32Type>(
|
|
d, {}, values_per_page[i], encoding, rle_indices[i]->data(),
|
|
static_cast<int>(rle_indices[i]->size()),
|
|
slice(def_levels, def_level_start, def_level_end), max_def_level,
|
|
slice(rep_levels, rep_level_start, rep_level_end), max_rep_level);
|
|
pages.push_back(data_page);
|
|
}
|
|
}
|
|
|
|
// Given def/rep levels and values create multiple plain pages
|
|
template <typename Type>
|
|
static inline void PaginatePlain(const ColumnDescriptor* d,
|
|
const std::vector<typename Type::c_type>& values,
|
|
const std::vector<int16_t>& def_levels,
|
|
int16_t max_def_level,
|
|
const std::vector<int16_t>& rep_levels,
|
|
int16_t max_rep_level, int num_levels_per_page,
|
|
const std::vector<int>& values_per_page,
|
|
std::vector<std::shared_ptr<Page>>& pages,
|
|
Encoding::type encoding = Encoding::PLAIN) {
|
|
int num_pages = static_cast<int>(values_per_page.size());
|
|
int def_level_start = 0;
|
|
int def_level_end = 0;
|
|
int rep_level_start = 0;
|
|
int rep_level_end = 0;
|
|
int value_start = 0;
|
|
for (int i = 0; i < num_pages; i++) {
|
|
if (max_def_level > 0) {
|
|
def_level_start = i * num_levels_per_page;
|
|
def_level_end = (i + 1) * num_levels_per_page;
|
|
}
|
|
if (max_rep_level > 0) {
|
|
rep_level_start = i * num_levels_per_page;
|
|
rep_level_end = (i + 1) * num_levels_per_page;
|
|
}
|
|
std::shared_ptr<DataPage> page = MakeDataPage<Type>(
|
|
d, slice(values, value_start, value_start + values_per_page[i]),
|
|
values_per_page[i], encoding, nullptr, 0,
|
|
slice(def_levels, def_level_start, def_level_end), max_def_level,
|
|
slice(rep_levels, rep_level_start, rep_level_end), max_rep_level);
|
|
pages.push_back(page);
|
|
value_start += values_per_page[i];
|
|
}
|
|
}
|
|
|
|
// Generates pages from randomly generated data
|
|
template <typename Type>
|
|
static inline int MakePages(const ColumnDescriptor* d, int num_pages, int levels_per_page,
|
|
std::vector<int16_t>& def_levels,
|
|
std::vector<int16_t>& rep_levels,
|
|
std::vector<typename Type::c_type>& values,
|
|
std::vector<uint8_t>& buffer,
|
|
std::vector<std::shared_ptr<Page>>& pages,
|
|
Encoding::type encoding = Encoding::PLAIN) {
|
|
int num_levels = levels_per_page * num_pages;
|
|
int num_values = 0;
|
|
uint32_t seed = 0;
|
|
int16_t zero = 0;
|
|
int16_t max_def_level = d->max_definition_level();
|
|
int16_t max_rep_level = d->max_repetition_level();
|
|
std::vector<int> values_per_page(num_pages, levels_per_page);
|
|
// Create definition levels
|
|
if (max_def_level > 0) {
|
|
def_levels.resize(num_levels);
|
|
random_numbers(num_levels, seed, zero, max_def_level, def_levels.data());
|
|
for (int p = 0; p < num_pages; p++) {
|
|
int num_values_per_page = 0;
|
|
for (int i = 0; i < levels_per_page; i++) {
|
|
if (def_levels[i + p * levels_per_page] == max_def_level) {
|
|
num_values_per_page++;
|
|
num_values++;
|
|
}
|
|
}
|
|
values_per_page[p] = num_values_per_page;
|
|
}
|
|
} else {
|
|
num_values = num_levels;
|
|
}
|
|
// Create repetition levels
|
|
if (max_rep_level > 0) {
|
|
rep_levels.resize(num_levels);
|
|
random_numbers(num_levels, seed, zero, max_rep_level, rep_levels.data());
|
|
}
|
|
// Create values
|
|
values.resize(num_values);
|
|
if (encoding == Encoding::PLAIN) {
|
|
InitValues<typename Type::c_type>(num_values, values, buffer);
|
|
PaginatePlain<Type>(d, values, def_levels, max_def_level, rep_levels, max_rep_level,
|
|
levels_per_page, values_per_page, pages);
|
|
} else if (encoding == Encoding::RLE_DICTIONARY ||
|
|
encoding == Encoding::PLAIN_DICTIONARY) {
|
|
// Calls InitValues and repeats the data
|
|
InitDictValues<typename Type::c_type>(num_values, levels_per_page, values, buffer);
|
|
PaginateDict<Type>(d, values, def_levels, max_def_level, rep_levels, max_rep_level,
|
|
levels_per_page, values_per_page, pages);
|
|
}
|
|
|
|
return num_values;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// Test data generation
|
|
|
|
template <>
|
|
void inline InitValues<bool>(int num_values, std::vector<bool>& values,
|
|
std::vector<uint8_t>& buffer) {
|
|
values = {};
|
|
::arrow::random_is_valid(num_values, 0.5, &values,
|
|
static_cast<int>(::arrow::random_seed()));
|
|
}
|
|
|
|
template <>
|
|
inline void InitValues<ByteArray>(int num_values, std::vector<ByteArray>& values,
|
|
std::vector<uint8_t>& buffer) {
|
|
int max_byte_array_len = 12;
|
|
int num_bytes = static_cast<int>(max_byte_array_len + sizeof(uint32_t));
|
|
size_t nbytes = num_values * num_bytes;
|
|
buffer.resize(nbytes);
|
|
random_byte_array(num_values, 0, buffer.data(), values.data(), max_byte_array_len);
|
|
}
|
|
|
|
inline void InitWideByteArrayValues(int num_values, std::vector<ByteArray>& values,
|
|
std::vector<uint8_t>& buffer, int min_len,
|
|
int max_len) {
|
|
int num_bytes = static_cast<int>(max_len + sizeof(uint32_t));
|
|
size_t nbytes = num_values * num_bytes;
|
|
buffer.resize(nbytes);
|
|
random_byte_array(num_values, 0, buffer.data(), values.data(), min_len, max_len);
|
|
}
|
|
|
|
template <>
|
|
inline void InitValues<FLBA>(int num_values, std::vector<FLBA>& values,
|
|
std::vector<uint8_t>& buffer) {
|
|
size_t nbytes = num_values * FLBA_LENGTH;
|
|
buffer.resize(nbytes);
|
|
random_fixed_byte_array(num_values, 0, buffer.data(), FLBA_LENGTH, values.data());
|
|
}
|
|
|
|
template <>
|
|
inline void InitValues<Int96>(int num_values, std::vector<Int96>& values,
|
|
std::vector<uint8_t>& buffer) {
|
|
random_Int96_numbers(num_values, 0, std::numeric_limits<int32_t>::min(),
|
|
std::numeric_limits<int32_t>::max(), values.data());
|
|
}
|
|
|
|
inline std::string TestColumnName(int i) {
|
|
std::stringstream col_name;
|
|
col_name << "column_" << i;
|
|
return col_name.str();
|
|
}
|
|
|
|
// This class lives here because of its dependency on the InitValues specializations.
|
|
template <typename TestType>
|
|
class PrimitiveTypedTest : public ::testing::Test {
|
|
public:
|
|
using c_type = typename TestType::c_type;
|
|
|
|
void SetUpSchema(Repetition::type repetition, int num_columns = 1) {
|
|
std::vector<schema::NodePtr> fields;
|
|
|
|
for (int i = 0; i < num_columns; ++i) {
|
|
std::string name = TestColumnName(i);
|
|
fields.push_back(schema::PrimitiveNode::Make(name, repetition, TestType::type_num,
|
|
ConvertedType::NONE, FLBA_LENGTH));
|
|
}
|
|
node_ = schema::GroupNode::Make("schema", Repetition::REQUIRED, fields);
|
|
schema_.Init(node_);
|
|
}
|
|
|
|
void GenerateData(int64_t num_values);
|
|
void SetupValuesOut(int64_t num_values);
|
|
void SyncValuesOut();
|
|
|
|
protected:
|
|
schema::NodePtr node_;
|
|
SchemaDescriptor schema_;
|
|
|
|
// Input buffers
|
|
std::vector<c_type> values_;
|
|
|
|
std::vector<int16_t> def_levels_;
|
|
|
|
std::vector<uint8_t> buffer_;
|
|
// Pointer to the values, needed as we cannot use std::vector<bool>::data()
|
|
c_type* values_ptr_;
|
|
std::vector<uint8_t> bool_buffer_;
|
|
|
|
// Output buffers
|
|
std::vector<c_type> values_out_;
|
|
std::vector<uint8_t> bool_buffer_out_;
|
|
c_type* values_out_ptr_;
|
|
};
|
|
|
|
template <typename TestType>
|
|
inline void PrimitiveTypedTest<TestType>::SyncValuesOut() {}
|
|
|
|
template <>
|
|
inline void PrimitiveTypedTest<BooleanType>::SyncValuesOut() {
|
|
std::vector<uint8_t>::const_iterator source_iterator = bool_buffer_out_.begin();
|
|
std::vector<c_type>::iterator destination_iterator = values_out_.begin();
|
|
while (source_iterator != bool_buffer_out_.end()) {
|
|
*destination_iterator++ = *source_iterator++ != 0;
|
|
}
|
|
}
|
|
|
|
template <typename TestType>
|
|
inline void PrimitiveTypedTest<TestType>::SetupValuesOut(int64_t num_values) {
|
|
values_out_.clear();
|
|
values_out_.resize(num_values);
|
|
values_out_ptr_ = values_out_.data();
|
|
}
|
|
|
|
template <>
|
|
inline void PrimitiveTypedTest<BooleanType>::SetupValuesOut(int64_t num_values) {
|
|
values_out_.clear();
|
|
values_out_.resize(num_values);
|
|
|
|
bool_buffer_out_.clear();
|
|
bool_buffer_out_.resize(num_values);
|
|
// Write once to all values so we can copy it without getting Valgrind errors
|
|
// about uninitialised values.
|
|
std::fill(bool_buffer_out_.begin(), bool_buffer_out_.end(), true);
|
|
values_out_ptr_ = reinterpret_cast<bool*>(bool_buffer_out_.data());
|
|
}
|
|
|
|
template <typename TestType>
|
|
inline void PrimitiveTypedTest<TestType>::GenerateData(int64_t num_values) {
|
|
def_levels_.resize(num_values);
|
|
values_.resize(num_values);
|
|
|
|
InitValues<c_type>(static_cast<int>(num_values), values_, buffer_);
|
|
values_ptr_ = values_.data();
|
|
|
|
std::fill(def_levels_.begin(), def_levels_.end(), 1);
|
|
}
|
|
|
|
template <>
|
|
inline void PrimitiveTypedTest<BooleanType>::GenerateData(int64_t num_values) {
|
|
def_levels_.resize(num_values);
|
|
values_.resize(num_values);
|
|
|
|
InitValues<c_type>(static_cast<int>(num_values), values_, buffer_);
|
|
bool_buffer_.resize(num_values);
|
|
std::copy(values_.begin(), values_.end(), bool_buffer_.begin());
|
|
values_ptr_ = reinterpret_cast<bool*>(bool_buffer_.data());
|
|
|
|
std::fill(def_levels_.begin(), def_levels_.end(), 1);
|
|
}
|
|
|
|
} // namespace test
|
|
} // namespace parquet
|