2022-05-23 00:16:32 +04:00

716 lines
25 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// This module defines an abstract interface for iterating through pages in a
// Parquet column chunk within a row group. It could be extended in the future
// to iterate through all data pages in all chunks in a file.
#pragma once
#include <algorithm>
#include <limits>
#include <memory>
#include <random>
#include <string>
#include <utility>
#include <vector>
#include <gtest/gtest.h>
#include "arrow/io/memory.h"
#include "arrow/testing/util.h"
#include "parquet/column_page.h"
#include "parquet/column_reader.h"
#include "parquet/column_writer.h"
#include "parquet/encoding.h"
#include "parquet/platform.h"
namespace parquet {
static constexpr int FLBA_LENGTH = 12;
inline bool operator==(const FixedLenByteArray& a, const FixedLenByteArray& b) {
return 0 == memcmp(a.ptr, b.ptr, FLBA_LENGTH);
}
namespace test {
typedef ::testing::Types<BooleanType, Int32Type, Int64Type, Int96Type, FloatType,
DoubleType, ByteArrayType, FLBAType>
ParquetTypes;
class ParquetTestException : public parquet::ParquetException {
using ParquetException::ParquetException;
};
const char* get_data_dir();
std::string get_bad_data_dir();
std::string get_data_file(const std::string& filename, bool is_good = true);
template <typename T>
static inline void assert_vector_equal(const std::vector<T>& left,
const std::vector<T>& right) {
ASSERT_EQ(left.size(), right.size());
for (size_t i = 0; i < left.size(); ++i) {
ASSERT_EQ(left[i], right[i]) << i;
}
}
template <typename T>
static inline bool vector_equal(const std::vector<T>& left, const std::vector<T>& right) {
if (left.size() != right.size()) {
return false;
}
for (size_t i = 0; i < left.size(); ++i) {
if (left[i] != right[i]) {
std::cerr << "index " << i << " left was " << left[i] << " right was " << right[i]
<< std::endl;
return false;
}
}
return true;
}
template <typename T>
static std::vector<T> slice(const std::vector<T>& values, int start, int end) {
if (end < start) {
return std::vector<T>(0);
}
std::vector<T> out(end - start);
for (int i = start; i < end; ++i) {
out[i - start] = values[i];
}
return out;
}
void random_bytes(int n, uint32_t seed, std::vector<uint8_t>* out);
void random_bools(int n, double p, uint32_t seed, bool* out);
template <typename T>
inline void random_numbers(int n, uint32_t seed, T min_value, T max_value, T* out) {
std::default_random_engine gen(seed);
std::uniform_int_distribution<T> d(min_value, max_value);
for (int i = 0; i < n; ++i) {
out[i] = d(gen);
}
}
template <>
inline void random_numbers(int n, uint32_t seed, float min_value, float max_value,
float* out) {
std::default_random_engine gen(seed);
std::uniform_real_distribution<float> d(min_value, max_value);
for (int i = 0; i < n; ++i) {
out[i] = d(gen);
}
}
template <>
inline void random_numbers(int n, uint32_t seed, double min_value, double max_value,
double* out) {
std::default_random_engine gen(seed);
std::uniform_real_distribution<double> d(min_value, max_value);
for (int i = 0; i < n; ++i) {
out[i] = d(gen);
}
}
void random_Int96_numbers(int n, uint32_t seed, int32_t min_value, int32_t max_value,
Int96* out);
void random_fixed_byte_array(int n, uint32_t seed, uint8_t* buf, int len, FLBA* out);
void random_byte_array(int n, uint32_t seed, uint8_t* buf, ByteArray* out, int min_size,
int max_size);
void random_byte_array(int n, uint32_t seed, uint8_t* buf, ByteArray* out, int max_size);
template <typename Type, typename Sequence>
std::shared_ptr<Buffer> EncodeValues(Encoding::type encoding, bool use_dictionary,
const Sequence& values, int length,
const ColumnDescriptor* descr) {
auto encoder = MakeTypedEncoder<Type>(encoding, use_dictionary, descr);
encoder->Put(values, length);
return encoder->FlushValues();
}
template <typename T>
static void InitValues(int num_values, std::vector<T>& values,
std::vector<uint8_t>& buffer) {
random_numbers(num_values, 0, std::numeric_limits<T>::min(),
std::numeric_limits<T>::max(), values.data());
}
template <typename T>
static void InitDictValues(int num_values, int num_dicts, std::vector<T>& values,
std::vector<uint8_t>& buffer) {
int repeat_factor = num_values / num_dicts;
InitValues<T>(num_dicts, values, buffer);
// add some repeated values
for (int j = 1; j < repeat_factor; ++j) {
for (int i = 0; i < num_dicts; ++i) {
std::memcpy(&values[num_dicts * j + i], &values[i], sizeof(T));
}
}
// computed only dict_per_page * repeat_factor - 1 values < num_values
// compute remaining
for (int i = num_dicts * repeat_factor; i < num_values; ++i) {
std::memcpy(&values[i], &values[i - num_dicts * repeat_factor], sizeof(T));
}
}
template <>
inline void InitDictValues<bool>(int num_values, int num_dicts, std::vector<bool>& values,
std::vector<uint8_t>& buffer) {
// No op for bool
}
class MockPageReader : public PageReader {
public:
explicit MockPageReader(const std::vector<std::shared_ptr<Page>>& pages)
: pages_(pages), page_index_(0) {}
std::shared_ptr<Page> NextPage() override {
if (page_index_ == static_cast<int>(pages_.size())) {
// EOS to consumer
return std::shared_ptr<Page>(nullptr);
}
return pages_[page_index_++];
}
// No-op
void set_max_page_header_size(uint32_t size) override {}
private:
std::vector<std::shared_ptr<Page>> pages_;
int page_index_;
};
// TODO(wesm): this is only used for testing for now. Refactor to form part of
// primary file write path
template <typename Type>
class DataPageBuilder {
public:
using c_type = typename Type::c_type;
// This class writes data and metadata to the passed inputs
explicit DataPageBuilder(ArrowOutputStream* sink)
: sink_(sink),
num_values_(0),
encoding_(Encoding::PLAIN),
definition_level_encoding_(Encoding::RLE),
repetition_level_encoding_(Encoding::RLE),
have_def_levels_(false),
have_rep_levels_(false),
have_values_(false) {}
void AppendDefLevels(const std::vector<int16_t>& levels, int16_t max_level,
Encoding::type encoding = Encoding::RLE) {
AppendLevels(levels, max_level, encoding);
num_values_ = std::max(static_cast<int32_t>(levels.size()), num_values_);
definition_level_encoding_ = encoding;
have_def_levels_ = true;
}
void AppendRepLevels(const std::vector<int16_t>& levels, int16_t max_level,
Encoding::type encoding = Encoding::RLE) {
AppendLevels(levels, max_level, encoding);
num_values_ = std::max(static_cast<int32_t>(levels.size()), num_values_);
repetition_level_encoding_ = encoding;
have_rep_levels_ = true;
}
void AppendValues(const ColumnDescriptor* d, const std::vector<c_type>& values,
Encoding::type encoding = Encoding::PLAIN) {
std::shared_ptr<Buffer> values_sink = EncodeValues<Type>(
encoding, false, values.data(), static_cast<int>(values.size()), d);
PARQUET_THROW_NOT_OK(sink_->Write(values_sink->data(), values_sink->size()));
num_values_ = std::max(static_cast<int32_t>(values.size()), num_values_);
encoding_ = encoding;
have_values_ = true;
}
int32_t num_values() const { return num_values_; }
Encoding::type encoding() const { return encoding_; }
Encoding::type rep_level_encoding() const { return repetition_level_encoding_; }
Encoding::type def_level_encoding() const { return definition_level_encoding_; }
private:
ArrowOutputStream* sink_;
int32_t num_values_;
Encoding::type encoding_;
Encoding::type definition_level_encoding_;
Encoding::type repetition_level_encoding_;
bool have_def_levels_;
bool have_rep_levels_;
bool have_values_;
// Used internally for both repetition and definition levels
void AppendLevels(const std::vector<int16_t>& levels, int16_t max_level,
Encoding::type encoding) {
if (encoding != Encoding::RLE) {
ParquetException::NYI("only rle encoding currently implemented");
}
std::vector<uint8_t> encode_buffer(LevelEncoder::MaxBufferSize(
Encoding::RLE, max_level, static_cast<int>(levels.size())));
// We encode into separate memory from the output stream because the
// RLE-encoded bytes have to be preceded in the stream by their absolute
// size.
LevelEncoder encoder;
encoder.Init(encoding, max_level, static_cast<int>(levels.size()),
encode_buffer.data(), static_cast<int>(encode_buffer.size()));
encoder.Encode(static_cast<int>(levels.size()), levels.data());
int32_t rle_bytes = encoder.len();
PARQUET_THROW_NOT_OK(
sink_->Write(reinterpret_cast<const uint8_t*>(&rle_bytes), sizeof(int32_t)));
PARQUET_THROW_NOT_OK(sink_->Write(encode_buffer.data(), rle_bytes));
}
};
template <>
inline void DataPageBuilder<BooleanType>::AppendValues(const ColumnDescriptor* d,
const std::vector<bool>& values,
Encoding::type encoding) {
if (encoding != Encoding::PLAIN) {
ParquetException::NYI("only plain encoding currently implemented");
}
auto encoder = MakeTypedEncoder<BooleanType>(Encoding::PLAIN, false, d);
dynamic_cast<BooleanEncoder*>(encoder.get())
->Put(values, static_cast<int>(values.size()));
std::shared_ptr<Buffer> buffer = encoder->FlushValues();
PARQUET_THROW_NOT_OK(sink_->Write(buffer->data(), buffer->size()));
num_values_ = std::max(static_cast<int32_t>(values.size()), num_values_);
encoding_ = encoding;
have_values_ = true;
}
template <typename Type>
static std::shared_ptr<DataPageV1> MakeDataPage(
const ColumnDescriptor* d, const std::vector<typename Type::c_type>& values,
int num_vals, Encoding::type encoding, const uint8_t* indices, int indices_size,
const std::vector<int16_t>& def_levels, int16_t max_def_level,
const std::vector<int16_t>& rep_levels, int16_t max_rep_level) {
int num_values = 0;
auto page_stream = CreateOutputStream();
test::DataPageBuilder<Type> page_builder(page_stream.get());
if (!rep_levels.empty()) {
page_builder.AppendRepLevels(rep_levels, max_rep_level);
}
if (!def_levels.empty()) {
page_builder.AppendDefLevels(def_levels, max_def_level);
}
if (encoding == Encoding::PLAIN) {
page_builder.AppendValues(d, values, encoding);
num_values = std::max(page_builder.num_values(), num_vals);
} else { // DICTIONARY PAGES
PARQUET_THROW_NOT_OK(page_stream->Write(indices, indices_size));
num_values = std::max(page_builder.num_values(), num_vals);
}
PARQUET_ASSIGN_OR_THROW(auto buffer, page_stream->Finish());
return std::make_shared<DataPageV1>(buffer, num_values, encoding,
page_builder.def_level_encoding(),
page_builder.rep_level_encoding(), buffer->size());
}
template <typename TYPE>
class DictionaryPageBuilder {
public:
typedef typename TYPE::c_type TC;
static constexpr int TN = TYPE::type_num;
using SpecializedEncoder = typename EncodingTraits<TYPE>::Encoder;
// This class writes data and metadata to the passed inputs
explicit DictionaryPageBuilder(const ColumnDescriptor* d)
: num_dict_values_(0), have_values_(false) {
auto encoder = MakeTypedEncoder<TYPE>(Encoding::PLAIN, true, d);
dict_traits_ = dynamic_cast<DictEncoder<TYPE>*>(encoder.get());
encoder_.reset(dynamic_cast<SpecializedEncoder*>(encoder.release()));
}
~DictionaryPageBuilder() {}
std::shared_ptr<Buffer> AppendValues(const std::vector<TC>& values) {
int num_values = static_cast<int>(values.size());
// Dictionary encoding
encoder_->Put(values.data(), num_values);
num_dict_values_ = dict_traits_->num_entries();
have_values_ = true;
return encoder_->FlushValues();
}
std::shared_ptr<Buffer> WriteDict() {
std::shared_ptr<Buffer> dict_buffer =
AllocateBuffer(::arrow::default_memory_pool(), dict_traits_->dict_encoded_size());
dict_traits_->WriteDict(dict_buffer->mutable_data());
return dict_buffer;
}
int32_t num_values() const { return num_dict_values_; }
private:
DictEncoder<TYPE>* dict_traits_;
std::unique_ptr<SpecializedEncoder> encoder_;
int32_t num_dict_values_;
bool have_values_;
};
template <>
inline DictionaryPageBuilder<BooleanType>::DictionaryPageBuilder(
const ColumnDescriptor* d) {
ParquetException::NYI("only plain encoding currently implemented for boolean");
}
template <>
inline std::shared_ptr<Buffer> DictionaryPageBuilder<BooleanType>::WriteDict() {
ParquetException::NYI("only plain encoding currently implemented for boolean");
return nullptr;
}
template <>
inline std::shared_ptr<Buffer> DictionaryPageBuilder<BooleanType>::AppendValues(
const std::vector<TC>& values) {
ParquetException::NYI("only plain encoding currently implemented for boolean");
return nullptr;
}
template <typename Type>
inline static std::shared_ptr<DictionaryPage> MakeDictPage(
const ColumnDescriptor* d, const std::vector<typename Type::c_type>& values,
const std::vector<int>& values_per_page, Encoding::type encoding,
std::vector<std::shared_ptr<Buffer>>& rle_indices) {
test::DictionaryPageBuilder<Type> page_builder(d);
int num_pages = static_cast<int>(values_per_page.size());
int value_start = 0;
for (int i = 0; i < num_pages; i++) {
rle_indices.push_back(page_builder.AppendValues(
slice(values, value_start, value_start + values_per_page[i])));
value_start += values_per_page[i];
}
auto buffer = page_builder.WriteDict();
return std::make_shared<DictionaryPage>(buffer, page_builder.num_values(),
Encoding::PLAIN);
}
// Given def/rep levels and values create multiple dict pages
template <typename Type>
inline static void PaginateDict(const ColumnDescriptor* d,
const std::vector<typename Type::c_type>& values,
const std::vector<int16_t>& def_levels,
int16_t max_def_level,
const std::vector<int16_t>& rep_levels,
int16_t max_rep_level, int num_levels_per_page,
const std::vector<int>& values_per_page,
std::vector<std::shared_ptr<Page>>& pages,
Encoding::type encoding = Encoding::RLE_DICTIONARY) {
int num_pages = static_cast<int>(values_per_page.size());
std::vector<std::shared_ptr<Buffer>> rle_indices;
std::shared_ptr<DictionaryPage> dict_page =
MakeDictPage<Type>(d, values, values_per_page, encoding, rle_indices);
pages.push_back(dict_page);
int def_level_start = 0;
int def_level_end = 0;
int rep_level_start = 0;
int rep_level_end = 0;
for (int i = 0; i < num_pages; i++) {
if (max_def_level > 0) {
def_level_start = i * num_levels_per_page;
def_level_end = (i + 1) * num_levels_per_page;
}
if (max_rep_level > 0) {
rep_level_start = i * num_levels_per_page;
rep_level_end = (i + 1) * num_levels_per_page;
}
std::shared_ptr<DataPageV1> data_page = MakeDataPage<Int32Type>(
d, {}, values_per_page[i], encoding, rle_indices[i]->data(),
static_cast<int>(rle_indices[i]->size()),
slice(def_levels, def_level_start, def_level_end), max_def_level,
slice(rep_levels, rep_level_start, rep_level_end), max_rep_level);
pages.push_back(data_page);
}
}
// Given def/rep levels and values create multiple plain pages
template <typename Type>
static inline void PaginatePlain(const ColumnDescriptor* d,
const std::vector<typename Type::c_type>& values,
const std::vector<int16_t>& def_levels,
int16_t max_def_level,
const std::vector<int16_t>& rep_levels,
int16_t max_rep_level, int num_levels_per_page,
const std::vector<int>& values_per_page,
std::vector<std::shared_ptr<Page>>& pages,
Encoding::type encoding = Encoding::PLAIN) {
int num_pages = static_cast<int>(values_per_page.size());
int def_level_start = 0;
int def_level_end = 0;
int rep_level_start = 0;
int rep_level_end = 0;
int value_start = 0;
for (int i = 0; i < num_pages; i++) {
if (max_def_level > 0) {
def_level_start = i * num_levels_per_page;
def_level_end = (i + 1) * num_levels_per_page;
}
if (max_rep_level > 0) {
rep_level_start = i * num_levels_per_page;
rep_level_end = (i + 1) * num_levels_per_page;
}
std::shared_ptr<DataPage> page = MakeDataPage<Type>(
d, slice(values, value_start, value_start + values_per_page[i]),
values_per_page[i], encoding, nullptr, 0,
slice(def_levels, def_level_start, def_level_end), max_def_level,
slice(rep_levels, rep_level_start, rep_level_end), max_rep_level);
pages.push_back(page);
value_start += values_per_page[i];
}
}
// Generates pages from randomly generated data
template <typename Type>
static inline int MakePages(const ColumnDescriptor* d, int num_pages, int levels_per_page,
std::vector<int16_t>& def_levels,
std::vector<int16_t>& rep_levels,
std::vector<typename Type::c_type>& values,
std::vector<uint8_t>& buffer,
std::vector<std::shared_ptr<Page>>& pages,
Encoding::type encoding = Encoding::PLAIN) {
int num_levels = levels_per_page * num_pages;
int num_values = 0;
uint32_t seed = 0;
int16_t zero = 0;
int16_t max_def_level = d->max_definition_level();
int16_t max_rep_level = d->max_repetition_level();
std::vector<int> values_per_page(num_pages, levels_per_page);
// Create definition levels
if (max_def_level > 0) {
def_levels.resize(num_levels);
random_numbers(num_levels, seed, zero, max_def_level, def_levels.data());
for (int p = 0; p < num_pages; p++) {
int num_values_per_page = 0;
for (int i = 0; i < levels_per_page; i++) {
if (def_levels[i + p * levels_per_page] == max_def_level) {
num_values_per_page++;
num_values++;
}
}
values_per_page[p] = num_values_per_page;
}
} else {
num_values = num_levels;
}
// Create repetition levels
if (max_rep_level > 0) {
rep_levels.resize(num_levels);
random_numbers(num_levels, seed, zero, max_rep_level, rep_levels.data());
}
// Create values
values.resize(num_values);
if (encoding == Encoding::PLAIN) {
InitValues<typename Type::c_type>(num_values, values, buffer);
PaginatePlain<Type>(d, values, def_levels, max_def_level, rep_levels, max_rep_level,
levels_per_page, values_per_page, pages);
} else if (encoding == Encoding::RLE_DICTIONARY ||
encoding == Encoding::PLAIN_DICTIONARY) {
// Calls InitValues and repeats the data
InitDictValues<typename Type::c_type>(num_values, levels_per_page, values, buffer);
PaginateDict<Type>(d, values, def_levels, max_def_level, rep_levels, max_rep_level,
levels_per_page, values_per_page, pages);
}
return num_values;
}
// ----------------------------------------------------------------------
// Test data generation
template <>
void inline InitValues<bool>(int num_values, std::vector<bool>& values,
std::vector<uint8_t>& buffer) {
values = {};
::arrow::random_is_valid(num_values, 0.5, &values,
static_cast<int>(::arrow::random_seed()));
}
template <>
inline void InitValues<ByteArray>(int num_values, std::vector<ByteArray>& values,
std::vector<uint8_t>& buffer) {
int max_byte_array_len = 12;
int num_bytes = static_cast<int>(max_byte_array_len + sizeof(uint32_t));
size_t nbytes = num_values * num_bytes;
buffer.resize(nbytes);
random_byte_array(num_values, 0, buffer.data(), values.data(), max_byte_array_len);
}
inline void InitWideByteArrayValues(int num_values, std::vector<ByteArray>& values,
std::vector<uint8_t>& buffer, int min_len,
int max_len) {
int num_bytes = static_cast<int>(max_len + sizeof(uint32_t));
size_t nbytes = num_values * num_bytes;
buffer.resize(nbytes);
random_byte_array(num_values, 0, buffer.data(), values.data(), min_len, max_len);
}
template <>
inline void InitValues<FLBA>(int num_values, std::vector<FLBA>& values,
std::vector<uint8_t>& buffer) {
size_t nbytes = num_values * FLBA_LENGTH;
buffer.resize(nbytes);
random_fixed_byte_array(num_values, 0, buffer.data(), FLBA_LENGTH, values.data());
}
template <>
inline void InitValues<Int96>(int num_values, std::vector<Int96>& values,
std::vector<uint8_t>& buffer) {
random_Int96_numbers(num_values, 0, std::numeric_limits<int32_t>::min(),
std::numeric_limits<int32_t>::max(), values.data());
}
inline std::string TestColumnName(int i) {
std::stringstream col_name;
col_name << "column_" << i;
return col_name.str();
}
// This class lives here because of its dependency on the InitValues specializations.
template <typename TestType>
class PrimitiveTypedTest : public ::testing::Test {
public:
using c_type = typename TestType::c_type;
void SetUpSchema(Repetition::type repetition, int num_columns = 1) {
std::vector<schema::NodePtr> fields;
for (int i = 0; i < num_columns; ++i) {
std::string name = TestColumnName(i);
fields.push_back(schema::PrimitiveNode::Make(name, repetition, TestType::type_num,
ConvertedType::NONE, FLBA_LENGTH));
}
node_ = schema::GroupNode::Make("schema", Repetition::REQUIRED, fields);
schema_.Init(node_);
}
void GenerateData(int64_t num_values);
void SetupValuesOut(int64_t num_values);
void SyncValuesOut();
protected:
schema::NodePtr node_;
SchemaDescriptor schema_;
// Input buffers
std::vector<c_type> values_;
std::vector<int16_t> def_levels_;
std::vector<uint8_t> buffer_;
// Pointer to the values, needed as we cannot use std::vector<bool>::data()
c_type* values_ptr_;
std::vector<uint8_t> bool_buffer_;
// Output buffers
std::vector<c_type> values_out_;
std::vector<uint8_t> bool_buffer_out_;
c_type* values_out_ptr_;
};
template <typename TestType>
inline void PrimitiveTypedTest<TestType>::SyncValuesOut() {}
template <>
inline void PrimitiveTypedTest<BooleanType>::SyncValuesOut() {
std::vector<uint8_t>::const_iterator source_iterator = bool_buffer_out_.begin();
std::vector<c_type>::iterator destination_iterator = values_out_.begin();
while (source_iterator != bool_buffer_out_.end()) {
*destination_iterator++ = *source_iterator++ != 0;
}
}
template <typename TestType>
inline void PrimitiveTypedTest<TestType>::SetupValuesOut(int64_t num_values) {
values_out_.clear();
values_out_.resize(num_values);
values_out_ptr_ = values_out_.data();
}
template <>
inline void PrimitiveTypedTest<BooleanType>::SetupValuesOut(int64_t num_values) {
values_out_.clear();
values_out_.resize(num_values);
bool_buffer_out_.clear();
bool_buffer_out_.resize(num_values);
// Write once to all values so we can copy it without getting Valgrind errors
// about uninitialised values.
std::fill(bool_buffer_out_.begin(), bool_buffer_out_.end(), true);
values_out_ptr_ = reinterpret_cast<bool*>(bool_buffer_out_.data());
}
template <typename TestType>
inline void PrimitiveTypedTest<TestType>::GenerateData(int64_t num_values) {
def_levels_.resize(num_values);
values_.resize(num_values);
InitValues<c_type>(static_cast<int>(num_values), values_, buffer_);
values_ptr_ = values_.data();
std::fill(def_levels_.begin(), def_levels_.end(), 1);
}
template <>
inline void PrimitiveTypedTest<BooleanType>::GenerateData(int64_t num_values) {
def_levels_.resize(num_values);
values_.resize(num_values);
InitValues<c_type>(static_cast<int>(num_values), values_, buffer_);
bool_buffer_.resize(num_values);
std::copy(values_.begin(), values_.end(), bool_buffer_.begin());
values_ptr_ = reinterpret_cast<bool*>(bool_buffer_.data());
std::fill(def_levels_.begin(), def_levels_.end(), 1);
}
} // namespace test
} // namespace parquet