Files
AzSuicideDataVisualization/.venv/Lib/site-packages/plotly/graph_objs/parcats/_dimension.py
2022-05-23 00:16:32 +04:00

451 lines
14 KiB
Python

from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType
import copy as _copy
class Dimension(_BaseTraceHierarchyType):
# class properties
# --------------------
_parent_path_str = "parcats"
_path_str = "parcats.dimension"
_valid_props = {
"categoryarray",
"categoryarraysrc",
"categoryorder",
"displayindex",
"label",
"ticktext",
"ticktextsrc",
"values",
"valuessrc",
"visible",
}
# categoryarray
# -------------
@property
def categoryarray(self):
"""
Sets the order in which categories in this dimension appear.
Only has an effect if `categoryorder` is set to "array". Used
with `categoryorder`.
The 'categoryarray' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["categoryarray"]
@categoryarray.setter
def categoryarray(self, val):
self["categoryarray"] = val
# categoryarraysrc
# ----------------
@property
def categoryarraysrc(self):
"""
Sets the source reference on Chart Studio Cloud for
`categoryarray`.
The 'categoryarraysrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["categoryarraysrc"]
@categoryarraysrc.setter
def categoryarraysrc(self, val):
self["categoryarraysrc"] = val
# categoryorder
# -------------
@property
def categoryorder(self):
"""
Specifies the ordering logic for the categories in the
dimension. By default, plotly uses "trace", which specifies the
order that is present in the data supplied. Set `categoryorder`
to *category ascending* or *category descending* if order
should be determined by the alphanumerical order of the
category names. Set `categoryorder` to "array" to derive the
ordering from the attribute `categoryarray`. If a category is
not found in the `categoryarray` array, the sorting behavior
for that attribute will be identical to the "trace" mode. The
unspecified categories will follow the categories in
`categoryarray`.
The 'categoryorder' property is an enumeration that may be specified as:
- One of the following enumeration values:
['trace', 'category ascending', 'category descending',
'array']
Returns
-------
Any
"""
return self["categoryorder"]
@categoryorder.setter
def categoryorder(self, val):
self["categoryorder"] = val
# displayindex
# ------------
@property
def displayindex(self):
"""
The display index of dimension, from left to right, zero
indexed, defaults to dimension index.
The 'displayindex' property is a integer and may be specified as:
- An int (or float that will be cast to an int)
Returns
-------
int
"""
return self["displayindex"]
@displayindex.setter
def displayindex(self, val):
self["displayindex"] = val
# label
# -----
@property
def label(self):
"""
The shown name of the dimension.
The 'label' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["label"]
@label.setter
def label(self, val):
self["label"] = val
# ticktext
# --------
@property
def ticktext(self):
"""
Sets alternative tick labels for the categories in this
dimension. Only has an effect if `categoryorder` is set to
"array". Should be an array the same length as `categoryarray`
Used with `categoryorder`.
The 'ticktext' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["ticktext"]
@ticktext.setter
def ticktext(self, val):
self["ticktext"] = val
# ticktextsrc
# -----------
@property
def ticktextsrc(self):
"""
Sets the source reference on Chart Studio Cloud for `ticktext`.
The 'ticktextsrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["ticktextsrc"]
@ticktextsrc.setter
def ticktextsrc(self, val):
self["ticktextsrc"] = val
# values
# ------
@property
def values(self):
"""
Dimension values. `values[n]` represents the category value of
the `n`th point in the dataset, therefore the `values` vector
for all dimensions must be the same (longer vectors will be
truncated).
The 'values' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["values"]
@values.setter
def values(self, val):
self["values"] = val
# valuessrc
# ---------
@property
def valuessrc(self):
"""
Sets the source reference on Chart Studio Cloud for `values`.
The 'valuessrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["valuessrc"]
@valuessrc.setter
def valuessrc(self, val):
self["valuessrc"] = val
# visible
# -------
@property
def visible(self):
"""
Shows the dimension when set to `true` (the default). Hides the
dimension for `false`.
The 'visible' property must be specified as a bool
(either True, or False)
Returns
-------
bool
"""
return self["visible"]
@visible.setter
def visible(self, val):
self["visible"] = val
# Self properties description
# ---------------------------
@property
def _prop_descriptions(self):
return """\
categoryarray
Sets the order in which categories in this dimension
appear. Only has an effect if `categoryorder` is set to
"array". Used with `categoryorder`.
categoryarraysrc
Sets the source reference on Chart Studio Cloud for
`categoryarray`.
categoryorder
Specifies the ordering logic for the categories in the
dimension. By default, plotly uses "trace", which
specifies the order that is present in the data
supplied. Set `categoryorder` to *category ascending*
or *category descending* if order should be determined
by the alphanumerical order of the category names. Set
`categoryorder` to "array" to derive the ordering from
the attribute `categoryarray`. If a category is not
found in the `categoryarray` array, the sorting
behavior for that attribute will be identical to the
"trace" mode. The unspecified categories will follow
the categories in `categoryarray`.
displayindex
The display index of dimension, from left to right,
zero indexed, defaults to dimension index.
label
The shown name of the dimension.
ticktext
Sets alternative tick labels for the categories in this
dimension. Only has an effect if `categoryorder` is set
to "array". Should be an array the same length as
`categoryarray` Used with `categoryorder`.
ticktextsrc
Sets the source reference on Chart Studio Cloud for
`ticktext`.
values
Dimension values. `values[n]` represents the category
value of the `n`th point in the dataset, therefore the
`values` vector for all dimensions must be the same
(longer vectors will be truncated).
valuessrc
Sets the source reference on Chart Studio Cloud for
`values`.
visible
Shows the dimension when set to `true` (the default).
Hides the dimension for `false`.
"""
def __init__(
self,
arg=None,
categoryarray=None,
categoryarraysrc=None,
categoryorder=None,
displayindex=None,
label=None,
ticktext=None,
ticktextsrc=None,
values=None,
valuessrc=None,
visible=None,
**kwargs,
):
"""
Construct a new Dimension object
The dimensions (variables) of the parallel categories diagram.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of
:class:`plotly.graph_objs.parcats.Dimension`
categoryarray
Sets the order in which categories in this dimension
appear. Only has an effect if `categoryorder` is set to
"array". Used with `categoryorder`.
categoryarraysrc
Sets the source reference on Chart Studio Cloud for
`categoryarray`.
categoryorder
Specifies the ordering logic for the categories in the
dimension. By default, plotly uses "trace", which
specifies the order that is present in the data
supplied. Set `categoryorder` to *category ascending*
or *category descending* if order should be determined
by the alphanumerical order of the category names. Set
`categoryorder` to "array" to derive the ordering from
the attribute `categoryarray`. If a category is not
found in the `categoryarray` array, the sorting
behavior for that attribute will be identical to the
"trace" mode. The unspecified categories will follow
the categories in `categoryarray`.
displayindex
The display index of dimension, from left to right,
zero indexed, defaults to dimension index.
label
The shown name of the dimension.
ticktext
Sets alternative tick labels for the categories in this
dimension. Only has an effect if `categoryorder` is set
to "array". Should be an array the same length as
`categoryarray` Used with `categoryorder`.
ticktextsrc
Sets the source reference on Chart Studio Cloud for
`ticktext`.
values
Dimension values. `values[n]` represents the category
value of the `n`th point in the dataset, therefore the
`values` vector for all dimensions must be the same
(longer vectors will be truncated).
valuessrc
Sets the source reference on Chart Studio Cloud for
`values`.
visible
Shows the dimension when set to `true` (the default).
Hides the dimension for `false`.
Returns
-------
Dimension
"""
super(Dimension, self).__init__("dimensions")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.parcats.Dimension
constructor must be a dict or
an instance of :class:`plotly.graph_objs.parcats.Dimension`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("categoryarray", None)
_v = categoryarray if categoryarray is not None else _v
if _v is not None:
self["categoryarray"] = _v
_v = arg.pop("categoryarraysrc", None)
_v = categoryarraysrc if categoryarraysrc is not None else _v
if _v is not None:
self["categoryarraysrc"] = _v
_v = arg.pop("categoryorder", None)
_v = categoryorder if categoryorder is not None else _v
if _v is not None:
self["categoryorder"] = _v
_v = arg.pop("displayindex", None)
_v = displayindex if displayindex is not None else _v
if _v is not None:
self["displayindex"] = _v
_v = arg.pop("label", None)
_v = label if label is not None else _v
if _v is not None:
self["label"] = _v
_v = arg.pop("ticktext", None)
_v = ticktext if ticktext is not None else _v
if _v is not None:
self["ticktext"] = _v
_v = arg.pop("ticktextsrc", None)
_v = ticktextsrc if ticktextsrc is not None else _v
if _v is not None:
self["ticktextsrc"] = _v
_v = arg.pop("values", None)
_v = values if values is not None else _v
if _v is not None:
self["values"] = _v
_v = arg.pop("valuessrc", None)
_v = valuessrc if valuessrc is not None else _v
if _v is not None:
self["valuessrc"] = _v
_v = arg.pop("visible", None)
_v = visible if visible is not None else _v
if _v is not None:
self["visible"] = _v
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False