mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-04-22 10:28:02 +00:00
463 lines
18 KiB
Python
463 lines
18 KiB
Python
from numpy.testing import assert_raises
|
|
from numpy.f2py.symbolic import (
|
|
Expr, Op, ArithOp, Language,
|
|
as_symbol, as_number, as_string, as_array, as_complex,
|
|
as_terms, as_factors, eliminate_quotes, insert_quotes,
|
|
fromstring, as_expr, as_apply,
|
|
as_numer_denom, as_ternary, as_ref, as_deref,
|
|
normalize, as_eq, as_ne, as_lt, as_gt, as_le, as_ge
|
|
)
|
|
from . import util
|
|
|
|
|
|
class TestSymbolic(util.F2PyTest):
|
|
|
|
def test_eliminate_quotes(self):
|
|
def worker(s):
|
|
r, d = eliminate_quotes(s)
|
|
s1 = insert_quotes(r, d)
|
|
assert s1 == s
|
|
|
|
for kind in ['', 'mykind_']:
|
|
worker(kind + '"1234" // "ABCD"')
|
|
worker(kind + '"1234" // ' + kind + '"ABCD"')
|
|
worker(kind + '"1234" // \'ABCD\'')
|
|
worker(kind + '"1234" // ' + kind + '\'ABCD\'')
|
|
worker(kind + '"1\\"2\'AB\'34"')
|
|
worker('a = ' + kind + "'1\\'2\"AB\"34'")
|
|
|
|
def test_sanity(self):
|
|
x = as_symbol('x')
|
|
y = as_symbol('y')
|
|
z = as_symbol('z')
|
|
|
|
assert x.op == Op.SYMBOL
|
|
assert repr(x) == "Expr(Op.SYMBOL, 'x')"
|
|
assert x == x
|
|
assert x != y
|
|
assert hash(x) is not None
|
|
|
|
n = as_number(123)
|
|
m = as_number(456)
|
|
assert n.op == Op.INTEGER
|
|
assert repr(n) == "Expr(Op.INTEGER, (123, 4))"
|
|
assert n == n
|
|
assert n != m
|
|
assert hash(n) is not None
|
|
|
|
fn = as_number(12.3)
|
|
fm = as_number(45.6)
|
|
assert fn.op == Op.REAL
|
|
assert repr(fn) == "Expr(Op.REAL, (12.3, 4))"
|
|
assert fn == fn
|
|
assert fn != fm
|
|
assert hash(fn) is not None
|
|
|
|
c = as_complex(1, 2)
|
|
c2 = as_complex(3, 4)
|
|
assert c.op == Op.COMPLEX
|
|
assert repr(c) == ("Expr(Op.COMPLEX, (Expr(Op.INTEGER, (1, 4)),"
|
|
" Expr(Op.INTEGER, (2, 4))))")
|
|
assert c == c
|
|
assert c != c2
|
|
assert hash(c) is not None
|
|
|
|
s = as_string("'123'")
|
|
s2 = as_string('"ABC"')
|
|
assert s.op == Op.STRING
|
|
assert repr(s) == "Expr(Op.STRING, (\"'123'\", 1))", repr(s)
|
|
assert s == s
|
|
assert s != s2
|
|
|
|
a = as_array((n, m))
|
|
b = as_array((n,))
|
|
assert a.op == Op.ARRAY
|
|
assert repr(a) == ("Expr(Op.ARRAY, (Expr(Op.INTEGER, (123, 4)),"
|
|
" Expr(Op.INTEGER, (456, 4))))")
|
|
assert a == a
|
|
assert a != b
|
|
|
|
t = as_terms(x)
|
|
u = as_terms(y)
|
|
assert t.op == Op.TERMS
|
|
assert repr(t) == "Expr(Op.TERMS, {Expr(Op.SYMBOL, 'x'): 1})"
|
|
assert t == t
|
|
assert t != u
|
|
assert hash(t) is not None
|
|
|
|
v = as_factors(x)
|
|
w = as_factors(y)
|
|
assert v.op == Op.FACTORS
|
|
assert repr(v) == "Expr(Op.FACTORS, {Expr(Op.SYMBOL, 'x'): 1})"
|
|
assert v == v
|
|
assert w != v
|
|
assert hash(v) is not None
|
|
|
|
t = as_ternary(x, y, z)
|
|
u = as_ternary(x, z, y)
|
|
assert t.op == Op.TERNARY
|
|
assert t == t
|
|
assert t != u
|
|
assert hash(t) is not None
|
|
|
|
e = as_eq(x, y)
|
|
f = as_lt(x, y)
|
|
assert e.op == Op.RELATIONAL
|
|
assert e == e
|
|
assert e != f
|
|
assert hash(e) is not None
|
|
|
|
def test_tostring_fortran(self):
|
|
x = as_symbol('x')
|
|
y = as_symbol('y')
|
|
z = as_symbol('z')
|
|
n = as_number(123)
|
|
m = as_number(456)
|
|
a = as_array((n, m))
|
|
c = as_complex(n, m)
|
|
|
|
assert str(x) == 'x'
|
|
assert str(n) == '123'
|
|
assert str(a) == '[123, 456]'
|
|
assert str(c) == '(123, 456)'
|
|
|
|
assert str(Expr(Op.TERMS, {x: 1})) == 'x'
|
|
assert str(Expr(Op.TERMS, {x: 2})) == '2 * x'
|
|
assert str(Expr(Op.TERMS, {x: -1})) == '-x'
|
|
assert str(Expr(Op.TERMS, {x: -2})) == '-2 * x'
|
|
assert str(Expr(Op.TERMS, {x: 1, y: 1})) == 'x + y'
|
|
assert str(Expr(Op.TERMS, {x: -1, y: -1})) == '-x - y'
|
|
assert str(Expr(Op.TERMS, {x: 2, y: 3})) == '2 * x + 3 * y'
|
|
assert str(Expr(Op.TERMS, {x: -2, y: 3})) == '-2 * x + 3 * y'
|
|
assert str(Expr(Op.TERMS, {x: 2, y: -3})) == '2 * x - 3 * y'
|
|
|
|
assert str(Expr(Op.FACTORS, {x: 1})) == 'x'
|
|
assert str(Expr(Op.FACTORS, {x: 2})) == 'x ** 2'
|
|
assert str(Expr(Op.FACTORS, {x: -1})) == 'x ** -1'
|
|
assert str(Expr(Op.FACTORS, {x: -2})) == 'x ** -2'
|
|
assert str(Expr(Op.FACTORS, {x: 1, y: 1})) == 'x * y'
|
|
assert str(Expr(Op.FACTORS, {x: 2, y: 3})) == 'x ** 2 * y ** 3'
|
|
|
|
v = Expr(Op.FACTORS, {x: 2, Expr(Op.TERMS, {x: 1, y: 1}): 3})
|
|
assert str(v) == 'x ** 2 * (x + y) ** 3', str(v)
|
|
v = Expr(Op.FACTORS, {x: 2, Expr(Op.FACTORS, {x: 1, y: 1}): 3})
|
|
assert str(v) == 'x ** 2 * (x * y) ** 3', str(v)
|
|
|
|
assert str(Expr(Op.APPLY, ('f', (), {}))) == 'f()'
|
|
assert str(Expr(Op.APPLY, ('f', (x,), {}))) == 'f(x)'
|
|
assert str(Expr(Op.APPLY, ('f', (x, y), {}))) == 'f(x, y)'
|
|
assert str(Expr(Op.INDEXING, ('f', x))) == 'f[x]'
|
|
|
|
assert str(as_ternary(x, y, z)) == 'merge(y, z, x)'
|
|
assert str(as_eq(x, y)) == 'x .eq. y'
|
|
assert str(as_ne(x, y)) == 'x .ne. y'
|
|
assert str(as_lt(x, y)) == 'x .lt. y'
|
|
assert str(as_le(x, y)) == 'x .le. y'
|
|
assert str(as_gt(x, y)) == 'x .gt. y'
|
|
assert str(as_ge(x, y)) == 'x .ge. y'
|
|
|
|
def test_tostring_c(self):
|
|
language = Language.C
|
|
x = as_symbol('x')
|
|
y = as_symbol('y')
|
|
z = as_symbol('z')
|
|
n = as_number(123)
|
|
|
|
assert Expr(Op.FACTORS, {x: 2}).tostring(language=language) == 'x * x'
|
|
assert Expr(Op.FACTORS, {x + y: 2}).tostring(
|
|
language=language) == '(x + y) * (x + y)'
|
|
assert Expr(Op.FACTORS, {x: 12}).tostring(
|
|
language=language) == 'pow(x, 12)'
|
|
|
|
assert as_apply(ArithOp.DIV, x, y).tostring(
|
|
language=language) == 'x / y'
|
|
assert as_apply(ArithOp.DIV, x, x + y).tostring(
|
|
language=language) == 'x / (x + y)'
|
|
assert as_apply(ArithOp.DIV, x - y, x + y).tostring(
|
|
language=language) == '(x - y) / (x + y)'
|
|
assert (x + (x - y) / (x + y) + n).tostring(
|
|
language=language) == '123 + x + (x - y) / (x + y)'
|
|
|
|
assert as_ternary(x, y, z).tostring(language=language) == "(x?y:z)"
|
|
assert as_eq(x, y).tostring(language=language) == "x == y"
|
|
assert as_ne(x, y).tostring(language=language) == "x != y"
|
|
assert as_lt(x, y).tostring(language=language) == "x < y"
|
|
assert as_le(x, y).tostring(language=language) == "x <= y"
|
|
assert as_gt(x, y).tostring(language=language) == "x > y"
|
|
assert as_ge(x, y).tostring(language=language) == "x >= y"
|
|
|
|
def test_operations(self):
|
|
x = as_symbol('x')
|
|
y = as_symbol('y')
|
|
z = as_symbol('z')
|
|
|
|
assert x + x == Expr(Op.TERMS, {x: 2})
|
|
assert x - x == Expr(Op.INTEGER, (0, 4))
|
|
assert x + y == Expr(Op.TERMS, {x: 1, y: 1})
|
|
assert x - y == Expr(Op.TERMS, {x: 1, y: -1})
|
|
assert x * x == Expr(Op.FACTORS, {x: 2})
|
|
assert x * y == Expr(Op.FACTORS, {x: 1, y: 1})
|
|
|
|
assert +x == x
|
|
assert -x == Expr(Op.TERMS, {x: -1}), repr(-x)
|
|
assert 2 * x == Expr(Op.TERMS, {x: 2})
|
|
assert 2 + x == Expr(Op.TERMS, {x: 1, as_number(1): 2})
|
|
assert 2 * x + 3 * y == Expr(Op.TERMS, {x: 2, y: 3})
|
|
assert (x + y) * 2 == Expr(Op.TERMS, {x: 2, y: 2})
|
|
|
|
assert x ** 2 == Expr(Op.FACTORS, {x: 2})
|
|
assert (x + y) ** 2 == Expr(Op.TERMS,
|
|
{Expr(Op.FACTORS, {x: 2}): 1,
|
|
Expr(Op.FACTORS, {y: 2}): 1,
|
|
Expr(Op.FACTORS, {x: 1, y: 1}): 2})
|
|
assert (x + y) * x == x ** 2 + x * y
|
|
assert (x + y) ** 2 == x ** 2 + 2 * x * y + y ** 2
|
|
assert (x + y) ** 2 + (x - y) ** 2 == 2 * x ** 2 + 2 * y ** 2
|
|
assert (x + y) * z == x * z + y * z
|
|
assert z * (x + y) == x * z + y * z
|
|
|
|
assert (x / 2) == as_apply(ArithOp.DIV, x, as_number(2))
|
|
assert (2 * x / 2) == x
|
|
assert (3 * x / 2) == as_apply(ArithOp.DIV, 3*x, as_number(2))
|
|
assert (4 * x / 2) == 2 * x
|
|
assert (5 * x / 2) == as_apply(ArithOp.DIV, 5*x, as_number(2))
|
|
assert (6 * x / 2) == 3 * x
|
|
assert ((3*5) * x / 6) == as_apply(ArithOp.DIV, 5*x, as_number(2))
|
|
assert (30*x**2*y**4 / (24*x**3*y**3)) == as_apply(ArithOp.DIV,
|
|
5*y, 4*x)
|
|
assert ((15 * x / 6) / 5) == as_apply(
|
|
ArithOp.DIV, x, as_number(2)), ((15 * x / 6) / 5)
|
|
assert (x / (5 / x)) == as_apply(ArithOp.DIV, x**2, as_number(5))
|
|
|
|
assert (x / 2.0) == Expr(Op.TERMS, {x: 0.5})
|
|
|
|
s = as_string('"ABC"')
|
|
t = as_string('"123"')
|
|
|
|
assert s // t == Expr(Op.STRING, ('"ABC123"', 1))
|
|
assert s // x == Expr(Op.CONCAT, (s, x))
|
|
assert x // s == Expr(Op.CONCAT, (x, s))
|
|
|
|
c = as_complex(1., 2.)
|
|
assert -c == as_complex(-1., -2.)
|
|
assert c + c == as_expr((1+2j)*2)
|
|
assert c * c == as_expr((1+2j)**2)
|
|
|
|
def test_substitute(self):
|
|
x = as_symbol('x')
|
|
y = as_symbol('y')
|
|
z = as_symbol('z')
|
|
a = as_array((x, y))
|
|
|
|
assert x.substitute({x: y}) == y
|
|
assert (x + y).substitute({x: z}) == y + z
|
|
assert (x * y).substitute({x: z}) == y * z
|
|
assert (x ** 4).substitute({x: z}) == z ** 4
|
|
assert (x / y).substitute({x: z}) == z / y
|
|
assert x.substitute({x: y + z}) == y + z
|
|
assert a.substitute({x: y + z}) == as_array((y + z, y))
|
|
|
|
assert as_ternary(x, y, z).substitute(
|
|
{x: y + z}) == as_ternary(y + z, y, z)
|
|
assert as_eq(x, y).substitute(
|
|
{x: y + z}) == as_eq(y + z, y)
|
|
|
|
def test_fromstring(self):
|
|
|
|
x = as_symbol('x')
|
|
y = as_symbol('y')
|
|
z = as_symbol('z')
|
|
f = as_symbol('f')
|
|
s = as_string('"ABC"')
|
|
t = as_string('"123"')
|
|
a = as_array((x, y))
|
|
|
|
assert fromstring('x') == x
|
|
assert fromstring('+ x') == x
|
|
assert fromstring('- x') == -x
|
|
assert fromstring('x + y') == x + y
|
|
assert fromstring('x + 1') == x + 1
|
|
assert fromstring('x * y') == x * y
|
|
assert fromstring('x * 2') == x * 2
|
|
assert fromstring('x / y') == x / y
|
|
assert fromstring('x ** 2',
|
|
language=Language.Python) == x ** 2
|
|
assert fromstring('x ** 2 ** 3',
|
|
language=Language.Python) == x ** 2 ** 3
|
|
assert fromstring('(x + y) * z') == (x + y) * z
|
|
|
|
assert fromstring('f(x)') == f(x)
|
|
assert fromstring('f(x,y)') == f(x, y)
|
|
assert fromstring('f[x]') == f[x]
|
|
assert fromstring('f[x][y]') == f[x][y]
|
|
|
|
assert fromstring('"ABC"') == s
|
|
assert normalize(fromstring('"ABC" // "123" ',
|
|
language=Language.Fortran)) == s // t
|
|
assert fromstring('f("ABC")') == f(s)
|
|
assert fromstring('MYSTRKIND_"ABC"') == as_string('"ABC"', 'MYSTRKIND')
|
|
|
|
assert fromstring('(/x, y/)') == a, fromstring('(/x, y/)')
|
|
assert fromstring('f((/x, y/))') == f(a)
|
|
assert fromstring('(/(x+y)*z/)') == as_array(((x+y)*z,))
|
|
|
|
assert fromstring('123') == as_number(123)
|
|
assert fromstring('123_2') == as_number(123, 2)
|
|
assert fromstring('123_myintkind') == as_number(123, 'myintkind')
|
|
|
|
assert fromstring('123.0') == as_number(123.0, 4)
|
|
assert fromstring('123.0_4') == as_number(123.0, 4)
|
|
assert fromstring('123.0_8') == as_number(123.0, 8)
|
|
assert fromstring('123.0e0') == as_number(123.0, 4)
|
|
assert fromstring('123.0d0') == as_number(123.0, 8)
|
|
assert fromstring('123d0') == as_number(123.0, 8)
|
|
assert fromstring('123e-0') == as_number(123.0, 4)
|
|
assert fromstring('123d+0') == as_number(123.0, 8)
|
|
assert fromstring('123.0_myrealkind') == as_number(123.0, 'myrealkind')
|
|
assert fromstring('3E4') == as_number(30000.0, 4)
|
|
|
|
assert fromstring('(1, 2)') == as_complex(1, 2)
|
|
assert fromstring('(1e2, PI)') == as_complex(
|
|
as_number(100.0), as_symbol('PI'))
|
|
|
|
assert fromstring('[1, 2]') == as_array((as_number(1), as_number(2)))
|
|
|
|
assert fromstring('POINT(x, y=1)') == as_apply(
|
|
as_symbol('POINT'), x, y=as_number(1))
|
|
assert (fromstring('PERSON(name="John", age=50, shape=(/34, 23/))')
|
|
== as_apply(as_symbol('PERSON'),
|
|
name=as_string('"John"'),
|
|
age=as_number(50),
|
|
shape=as_array((as_number(34), as_number(23)))))
|
|
|
|
assert fromstring('x?y:z') == as_ternary(x, y, z)
|
|
|
|
assert fromstring('*x') == as_deref(x)
|
|
assert fromstring('**x') == as_deref(as_deref(x))
|
|
assert fromstring('&x') == as_ref(x)
|
|
assert fromstring('(*x) * (*y)') == as_deref(x) * as_deref(y)
|
|
assert fromstring('(*x) * *y') == as_deref(x) * as_deref(y)
|
|
assert fromstring('*x * *y') == as_deref(x) * as_deref(y)
|
|
assert fromstring('*x**y') == as_deref(x) * as_deref(y)
|
|
|
|
assert fromstring('x == y') == as_eq(x, y)
|
|
assert fromstring('x != y') == as_ne(x, y)
|
|
assert fromstring('x < y') == as_lt(x, y)
|
|
assert fromstring('x > y') == as_gt(x, y)
|
|
assert fromstring('x <= y') == as_le(x, y)
|
|
assert fromstring('x >= y') == as_ge(x, y)
|
|
|
|
assert fromstring('x .eq. y', language=Language.Fortran) == as_eq(x, y)
|
|
assert fromstring('x .ne. y', language=Language.Fortran) == as_ne(x, y)
|
|
assert fromstring('x .lt. y', language=Language.Fortran) == as_lt(x, y)
|
|
assert fromstring('x .gt. y', language=Language.Fortran) == as_gt(x, y)
|
|
assert fromstring('x .le. y', language=Language.Fortran) == as_le(x, y)
|
|
assert fromstring('x .ge. y', language=Language.Fortran) == as_ge(x, y)
|
|
|
|
def test_traverse(self):
|
|
x = as_symbol('x')
|
|
y = as_symbol('y')
|
|
z = as_symbol('z')
|
|
f = as_symbol('f')
|
|
|
|
# Use traverse to substitute a symbol
|
|
def replace_visit(s, r=z):
|
|
if s == x:
|
|
return r
|
|
|
|
assert x.traverse(replace_visit) == z
|
|
assert y.traverse(replace_visit) == y
|
|
assert z.traverse(replace_visit) == z
|
|
assert (f(y)).traverse(replace_visit) == f(y)
|
|
assert (f(x)).traverse(replace_visit) == f(z)
|
|
assert (f[y]).traverse(replace_visit) == f[y]
|
|
assert (f[z]).traverse(replace_visit) == f[z]
|
|
assert (x + y + z).traverse(replace_visit) == (2 * z + y)
|
|
assert (x + f(y, x - z)).traverse(
|
|
replace_visit) == (z + f(y, as_number(0)))
|
|
assert as_eq(x, y).traverse(replace_visit) == as_eq(z, y)
|
|
|
|
# Use traverse to collect symbols, method 1
|
|
function_symbols = set()
|
|
symbols = set()
|
|
|
|
def collect_symbols(s):
|
|
if s.op is Op.APPLY:
|
|
oper = s.data[0]
|
|
function_symbols.add(oper)
|
|
if oper in symbols:
|
|
symbols.remove(oper)
|
|
elif s.op is Op.SYMBOL and s not in function_symbols:
|
|
symbols.add(s)
|
|
|
|
(x + f(y, x - z)).traverse(collect_symbols)
|
|
assert function_symbols == {f}
|
|
assert symbols == {x, y, z}
|
|
|
|
# Use traverse to collect symbols, method 2
|
|
def collect_symbols2(expr, symbols):
|
|
if expr.op is Op.SYMBOL:
|
|
symbols.add(expr)
|
|
|
|
symbols = set()
|
|
(x + f(y, x - z)).traverse(collect_symbols2, symbols)
|
|
assert symbols == {x, y, z, f}
|
|
|
|
# Use traverse to partially collect symbols
|
|
def collect_symbols3(expr, symbols):
|
|
if expr.op is Op.APPLY:
|
|
# skip traversing function calls
|
|
return expr
|
|
if expr.op is Op.SYMBOL:
|
|
symbols.add(expr)
|
|
|
|
symbols = set()
|
|
(x + f(y, x - z)).traverse(collect_symbols3, symbols)
|
|
assert symbols == {x}
|
|
|
|
def test_linear_solve(self):
|
|
x = as_symbol('x')
|
|
y = as_symbol('y')
|
|
z = as_symbol('z')
|
|
|
|
assert x.linear_solve(x) == (as_number(1), as_number(0))
|
|
assert (x+1).linear_solve(x) == (as_number(1), as_number(1))
|
|
assert (2*x).linear_solve(x) == (as_number(2), as_number(0))
|
|
assert (2*x+3).linear_solve(x) == (as_number(2), as_number(3))
|
|
assert as_number(3).linear_solve(x) == (as_number(0), as_number(3))
|
|
assert y.linear_solve(x) == (as_number(0), y)
|
|
assert (y*z).linear_solve(x) == (as_number(0), y * z)
|
|
|
|
assert (x+y).linear_solve(x) == (as_number(1), y)
|
|
assert (z*x+y).linear_solve(x) == (z, y)
|
|
assert ((z+y)*x+y).linear_solve(x) == (z + y, y)
|
|
assert (z*y*x+y).linear_solve(x) == (z * y, y)
|
|
|
|
assert_raises(RuntimeError, lambda: (x*x).linear_solve(x))
|
|
|
|
def test_as_numer_denom(self):
|
|
x = as_symbol('x')
|
|
y = as_symbol('y')
|
|
n = as_number(123)
|
|
|
|
assert as_numer_denom(x) == (x, as_number(1))
|
|
assert as_numer_denom(x / n) == (x, n)
|
|
assert as_numer_denom(n / x) == (n, x)
|
|
assert as_numer_denom(x / y) == (x, y)
|
|
assert as_numer_denom(x * y) == (x * y, as_number(1))
|
|
assert as_numer_denom(n + x / y) == (x + n * y, y)
|
|
assert as_numer_denom(n + x / (y - x / n)) == (y * n ** 2, y * n - x)
|
|
|
|
def test_polynomial_atoms(self):
|
|
x = as_symbol('x')
|
|
y = as_symbol('y')
|
|
n = as_number(123)
|
|
|
|
assert x.polynomial_atoms() == {x}
|
|
assert n.polynomial_atoms() == set()
|
|
assert (y[x]).polynomial_atoms() == {y[x]}
|
|
assert (y(x)).polynomial_atoms() == {y(x)}
|
|
assert (y(x) + x).polynomial_atoms() == {y(x), x}
|
|
assert (y(x) * x[y]).polynomial_atoms() == {y(x), x[y]}
|
|
assert (y(x) ** x).polynomial_atoms() == {y(x)}
|