mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-04-22 10:28:02 +00:00
392 lines
14 KiB
C++
392 lines
14 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#include "tensorflow/core/framework/device_base.h"
|
|
#include "tensorflow/core/framework/op.h"
|
|
#include "tensorflow/core/framework/op_kernel.h"
|
|
#include "tensorflow/core/framework/shape_inference.h"
|
|
#include "tensorflow/core/platform/logging.h"
|
|
#include "tensorflow/core/platform/mutex.h"
|
|
#include "tensorflow/stream_executor/device_memory.h"
|
|
#include "tensorflow/stream_executor/event.h"
|
|
#include "tensorflow/stream_executor/stream.h"
|
|
|
|
#ifdef GOOGLE_CUDA
|
|
#include "tensorflow/core/common_runtime/gpu/gpu_event_mgr.h"
|
|
#include "tensorflow/core/platform/stream_executor.h"
|
|
#endif
|
|
|
|
#include "arrow/adapters/tensorflow/convert.h"
|
|
#include "arrow/api.h"
|
|
#include "arrow/io/api.h"
|
|
#include "arrow/util/logging.h"
|
|
|
|
// These headers do not include Python.h
|
|
#include "arrow/python/deserialize.h"
|
|
#include "arrow/python/serialize.h"
|
|
|
|
#include "plasma/client.h"
|
|
|
|
namespace tf = tensorflow;
|
|
|
|
using ArrowStatus = arrow::Status;
|
|
using CPUDevice = Eigen::ThreadPoolDevice;
|
|
using GPUDevice = Eigen::GpuDevice;
|
|
|
|
using Event = perftools::gputools::Event;
|
|
using Stream = perftools::gputools::Stream;
|
|
|
|
// NOTE(zongheng): for some reason using unique_ptr or shared_ptr results in
|
|
// CUDA_ERROR_DEINITIALIZED on program exit. I suspect this is because the
|
|
// static object's dtor gets called *after* TensorFlow's own CUDA cleanup.
|
|
// Instead, we use a raw pointer here and manually clean up in the Ops' dtors.
|
|
static Stream* d2h_stream = nullptr;
|
|
static tf::mutex d2h_stream_mu;
|
|
|
|
// TODO(zongheng): CPU kernels' std::memcpy might be able to be sped up by
|
|
// parallelization.
|
|
|
|
int64_t get_byte_width(const arrow::DataType& dtype) {
|
|
return arrow::internal::checked_cast<const arrow::FixedWidthType&>(dtype)
|
|
.bit_width() / CHAR_BIT;
|
|
}
|
|
|
|
// Put: tf.Tensor -> plasma.
|
|
template <typename Device>
|
|
class TensorToPlasmaOp : public tf::AsyncOpKernel {
|
|
public:
|
|
explicit TensorToPlasmaOp(tf::OpKernelConstruction* context) : tf::AsyncOpKernel(context) {
|
|
OP_REQUIRES_OK(context, context->GetAttr("plasma_store_socket_name",
|
|
&plasma_store_socket_name_));
|
|
tf::mutex_lock lock(mu_);
|
|
if (!connected_) {
|
|
VLOG(1) << "Connecting to Plasma...";
|
|
ARROW_CHECK_OK(client_.Connect(plasma_store_socket_name_));
|
|
VLOG(1) << "Connected!";
|
|
connected_ = true;
|
|
}
|
|
}
|
|
|
|
~TensorToPlasmaOp() override {
|
|
{
|
|
tf::mutex_lock lock(mu_);
|
|
ARROW_CHECK_OK(client_.Disconnect());
|
|
connected_ = false;
|
|
}
|
|
{
|
|
tf::mutex_lock lock(d2h_stream_mu);
|
|
if (d2h_stream != nullptr) {
|
|
delete d2h_stream;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ComputeAsync(tf::OpKernelContext* context, DoneCallback done) override {
|
|
const int num_inputs = context->num_inputs();
|
|
OP_REQUIRES_ASYNC(
|
|
context, num_inputs >= 2,
|
|
tf::errors::InvalidArgument("Input should have at least 1 tensor and 1 object_id"),
|
|
done);
|
|
const int num_tensors = num_inputs - 1;
|
|
|
|
// Check that all tensors have the same dtype
|
|
tf::DataType tf_dtype = context->input(0).dtype();
|
|
for (int i = 1; i < num_inputs - 1; i++) {
|
|
if (tf_dtype != context->input(i).dtype()) {
|
|
ARROW_CHECK_OK(arrow::Status(arrow::StatusCode::TypeError,
|
|
"All input tensors must have the same data type"));
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<arrow::DataType> arrow_dtype;
|
|
ARROW_CHECK_OK(arrow::adapters::tensorflow::GetArrowType(tf_dtype, &arrow_dtype));
|
|
int64_t byte_width = get_byte_width(*arrow_dtype);
|
|
|
|
std::vector<size_t> offsets;
|
|
offsets.reserve(num_tensors + 1);
|
|
offsets.push_back(0);
|
|
int64_t total_bytes = 0;
|
|
for (int i = 0; i < num_tensors; ++i) {
|
|
const size_t s = context->input(i).TotalBytes();
|
|
CHECK_EQ(s, context->input(i).NumElements() * byte_width);
|
|
CHECK_GT(s, 0);
|
|
total_bytes += s;
|
|
offsets.push_back(total_bytes);
|
|
}
|
|
|
|
const tf::Tensor& plasma_object_id = context->input(num_inputs - 1);
|
|
CHECK_EQ(plasma_object_id.NumElements(), 1);
|
|
const std::string& plasma_object_id_str = plasma_object_id.flat<std::string>()(0);
|
|
VLOG(1) << "plasma_object_id_str: '" << plasma_object_id_str << "'";
|
|
const plasma::ObjectID object_id =
|
|
plasma::ObjectID::from_binary(plasma_object_id_str);
|
|
|
|
std::vector<int64_t> shape = {total_bytes / byte_width};
|
|
|
|
arrow::io::MockOutputStream mock;
|
|
ARROW_CHECK_OK(arrow::py::WriteNdarrayHeader(arrow_dtype, shape, 0, &mock));
|
|
int64_t header_size = mock.GetExtentBytesWritten();
|
|
|
|
std::shared_ptr<Buffer> data_buffer;
|
|
{
|
|
tf::mutex_lock lock(mu_);
|
|
ARROW_CHECK_OK(client_.Create(object_id, header_size + total_bytes,
|
|
/*metadata=*/nullptr, 0, &data_buffer));
|
|
}
|
|
|
|
int64_t offset;
|
|
arrow::io::FixedSizeBufferWriter buf(data_buffer);
|
|
ARROW_CHECK_OK(arrow::py::WriteNdarrayHeader(arrow_dtype, shape, total_bytes, &buf));
|
|
ARROW_CHECK_OK(buf.Tell(&offset));
|
|
|
|
uint8_t* data = reinterpret_cast<uint8_t*>(data_buffer->mutable_data() + offset);
|
|
|
|
auto wrapped_callback = [this, context, done, data_buffer, data, object_id]() {
|
|
{
|
|
tf::mutex_lock lock(mu_);
|
|
ARROW_CHECK_OK(client_.Seal(object_id));
|
|
ARROW_CHECK_OK(client_.Release(object_id));
|
|
#ifdef GOOGLE_CUDA
|
|
auto orig_stream = context->op_device_context()->stream();
|
|
auto stream_executor = orig_stream->parent();
|
|
CHECK(stream_executor->HostMemoryUnregister(static_cast<void*>(data)));
|
|
#endif
|
|
}
|
|
context->SetStatus(tensorflow::Status::OK());
|
|
done();
|
|
};
|
|
|
|
if (std::is_same<Device, CPUDevice>::value) {
|
|
for (int i = 0; i < num_tensors; ++i) {
|
|
const auto& input_tensor = context->input(i);
|
|
std::memcpy(static_cast<void*>(data + offsets[i]),
|
|
input_tensor.tensor_data().data(),
|
|
static_cast<tf::uint64>(offsets[i + 1] - offsets[i]));
|
|
}
|
|
wrapped_callback();
|
|
} else {
|
|
#ifdef GOOGLE_CUDA
|
|
auto orig_stream = context->op_device_context()->stream();
|
|
OP_REQUIRES_ASYNC(context, orig_stream != nullptr,
|
|
tf::errors::Internal("No GPU stream available."), done);
|
|
auto stream_executor = orig_stream->parent();
|
|
|
|
// NOTE(zongheng): this is critical of getting good performance out of D2H
|
|
// async memcpy. Under the hood it performs cuMemHostRegister(), see:
|
|
// http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html#group__CUDA__MEM_1gf0a9fe11544326dabd743b7aa6b54223
|
|
CHECK(stream_executor->HostMemoryRegister(static_cast<void*>(data),
|
|
static_cast<tf::uint64>(total_bytes)));
|
|
|
|
{
|
|
tf::mutex_lock l(d2h_stream_mu);
|
|
if (d2h_stream == nullptr) {
|
|
d2h_stream = new Stream(stream_executor);
|
|
CHECK(d2h_stream->Init().ok());
|
|
}
|
|
}
|
|
|
|
// Needed to make sure the input buffers have been computed.
|
|
// NOTE(ekl): this is unnecessary when the op is behind a NCCL allreduce already
|
|
CHECK(d2h_stream->ThenWaitFor(orig_stream).ok());
|
|
|
|
for (int i = 0; i < num_tensors; ++i) {
|
|
const auto& input_tensor = context->input(i);
|
|
auto input_buffer = const_cast<char*>(input_tensor.tensor_data().data());
|
|
perftools::gputools::DeviceMemoryBase wrapped_src(
|
|
static_cast<void*>(input_buffer));
|
|
const bool success =
|
|
d2h_stream
|
|
->ThenMemcpy(static_cast<void*>(data + offsets[i]), wrapped_src,
|
|
static_cast<tf::uint64>(offsets[i + 1] - offsets[i]))
|
|
.ok();
|
|
OP_REQUIRES_ASYNC(context, success,
|
|
tf::errors::Internal("D2H memcpy failed to be enqueued."), done);
|
|
}
|
|
context->device()->tensorflow_gpu_device_info()->event_mgr->ThenExecute(
|
|
d2h_stream, std::move(wrapped_callback));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::string plasma_store_socket_name_;
|
|
|
|
tf::mutex mu_;
|
|
bool connected_ = false;
|
|
plasma::PlasmaClient client_ GUARDED_BY(mu_);
|
|
};
|
|
|
|
static Stream* h2d_stream = nullptr;
|
|
static tf::mutex h2d_stream_mu;
|
|
|
|
// Get: plasma -> tf.Tensor.
|
|
template <typename Device>
|
|
class PlasmaToTensorOp : public tf::AsyncOpKernel {
|
|
public:
|
|
explicit PlasmaToTensorOp(tf::OpKernelConstruction* context) : tf::AsyncOpKernel(context) {
|
|
OP_REQUIRES_OK(context, context->GetAttr("plasma_store_socket_name",
|
|
&plasma_store_socket_name_));
|
|
tf::mutex_lock lock(mu_);
|
|
if (!connected_) {
|
|
VLOG(1) << "Connecting to Plasma...";
|
|
ARROW_CHECK_OK(client_.Connect(plasma_store_socket_name_));
|
|
VLOG(1) << "Connected!";
|
|
connected_ = true;
|
|
}
|
|
}
|
|
|
|
~PlasmaToTensorOp() override {
|
|
{
|
|
tf::mutex_lock lock(mu_);
|
|
ARROW_CHECK_OK(client_.Disconnect());
|
|
connected_ = false;
|
|
}
|
|
{
|
|
tf::mutex_lock lock(h2d_stream_mu);
|
|
if (h2d_stream != nullptr) {
|
|
delete h2d_stream;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ComputeAsync(tf::OpKernelContext* context, DoneCallback done) override {
|
|
const tf::Tensor& plasma_object_id = context->input(0);
|
|
CHECK_EQ(plasma_object_id.NumElements(), 1);
|
|
const std::string& plasma_object_id_str = plasma_object_id.flat<std::string>()(0);
|
|
|
|
VLOG(1) << "plasma_object_id_str: '" << plasma_object_id_str << "'";
|
|
const plasma::ObjectID object_id =
|
|
plasma::ObjectID::from_binary(plasma_object_id_str);
|
|
|
|
plasma::ObjectBuffer object_buffer;
|
|
{
|
|
tf::mutex_lock lock(mu_);
|
|
// NOTE(zongheng): this is a blocking call. We might want to (1) make
|
|
// Plasma asynchronous, (2) launch a thread / event here ourselves, or
|
|
// something like that...
|
|
ARROW_CHECK_OK(client_.Get(&object_id, /*num_objects=*/1,
|
|
/*timeout_ms=*/-1, &object_buffer));
|
|
}
|
|
|
|
std::shared_ptr<arrow::Tensor> ndarray;
|
|
ARROW_CHECK_OK(arrow::py::NdarrayFromBuffer(object_buffer.data, &ndarray));
|
|
|
|
int64_t byte_width = get_byte_width(*ndarray->type());
|
|
const int64_t size_in_bytes = ndarray->data()->size();
|
|
|
|
tf::TensorShape shape({static_cast<int64_t>(size_in_bytes / byte_width)});
|
|
|
|
const float* plasma_data = reinterpret_cast<const float*>(ndarray->raw_data());
|
|
|
|
tf::Tensor* output_tensor = nullptr;
|
|
OP_REQUIRES_OK_ASYNC(context, context->allocate_output(0, shape, &output_tensor),
|
|
done);
|
|
|
|
auto wrapped_callback = [this, context, done, plasma_data, object_id]() {
|
|
{
|
|
tf::mutex_lock lock(mu_);
|
|
ARROW_CHECK_OK(client_.Release(object_id));
|
|
#ifdef GOOGLE_CUDA
|
|
auto orig_stream = context->op_device_context()->stream();
|
|
auto stream_executor = orig_stream->parent();
|
|
CHECK(stream_executor->HostMemoryUnregister(
|
|
const_cast<void*>(static_cast<const void*>(plasma_data))));
|
|
#endif
|
|
}
|
|
done();
|
|
};
|
|
|
|
if (std::is_same<Device, CPUDevice>::value) {
|
|
std::memcpy(
|
|
reinterpret_cast<void*>(const_cast<char*>(output_tensor->tensor_data().data())),
|
|
plasma_data, size_in_bytes);
|
|
wrapped_callback();
|
|
} else {
|
|
#ifdef GOOGLE_CUDA
|
|
auto orig_stream = context->op_device_context()->stream();
|
|
OP_REQUIRES_ASYNC(context, orig_stream != nullptr,
|
|
tf::errors::Internal("No GPU stream available."), done);
|
|
auto stream_executor = orig_stream->parent();
|
|
|
|
{
|
|
tf::mutex_lock l(h2d_stream_mu);
|
|
if (h2d_stream == nullptr) {
|
|
h2d_stream = new Stream(stream_executor);
|
|
CHECK(h2d_stream->Init().ok());
|
|
}
|
|
}
|
|
|
|
// Important. See note in T2P op.
|
|
CHECK(stream_executor->HostMemoryRegister(
|
|
const_cast<void*>(static_cast<const void*>(plasma_data)),
|
|
static_cast<tf::uint64>(size_in_bytes)));
|
|
|
|
perftools::gputools::DeviceMemoryBase wrapped_dst(
|
|
reinterpret_cast<void*>(const_cast<char*>(output_tensor->tensor_data().data())));
|
|
const bool success =
|
|
h2d_stream
|
|
->ThenMemcpy(&wrapped_dst, static_cast<const void*>(plasma_data),
|
|
static_cast<tf::uint64>(size_in_bytes))
|
|
.ok();
|
|
OP_REQUIRES_ASYNC(context, success,
|
|
tf::errors::Internal("H2D memcpy failed to be enqueued."), done);
|
|
|
|
// Without this sync the main compute stream might proceed to use the
|
|
// Tensor buffer, but its contents might still be in-flight from our
|
|
// h2d_stream.
|
|
CHECK(orig_stream->ThenWaitFor(h2d_stream).ok());
|
|
|
|
context->device()->tensorflow_gpu_device_info()->event_mgr->ThenExecute(
|
|
h2d_stream, std::move(wrapped_callback));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::string plasma_store_socket_name_;
|
|
|
|
tf::mutex mu_;
|
|
bool connected_ = false;
|
|
plasma::PlasmaClient client_ GUARDED_BY(mu_);
|
|
};
|
|
|
|
REGISTER_OP("TensorToPlasma")
|
|
.Input("input_tensor: dtypes")
|
|
.Input("plasma_object_id: string")
|
|
.Attr("dtypes: list(type)")
|
|
.Attr("plasma_store_socket_name: string");
|
|
|
|
REGISTER_KERNEL_BUILDER(Name("TensorToPlasma").Device(tf::DEVICE_CPU),
|
|
TensorToPlasmaOp<CPUDevice>);
|
|
#ifdef GOOGLE_CUDA
|
|
REGISTER_KERNEL_BUILDER(Name("TensorToPlasma").Device(tf::DEVICE_GPU),
|
|
TensorToPlasmaOp<GPUDevice>);
|
|
#endif
|
|
|
|
REGISTER_OP("PlasmaToTensor")
|
|
.Input("plasma_object_id: string")
|
|
.Output("tensor: dtype")
|
|
.Attr("dtype: type")
|
|
.Attr("plasma_store_socket_name: string");
|
|
|
|
REGISTER_KERNEL_BUILDER(Name("PlasmaToTensor").Device(tf::DEVICE_CPU),
|
|
PlasmaToTensorOp<CPUDevice>);
|
|
#ifdef GOOGLE_CUDA
|
|
REGISTER_KERNEL_BUILDER(Name("PlasmaToTensor").Device(tf::DEVICE_GPU),
|
|
PlasmaToTensorOp<GPUDevice>);
|
|
#endif
|