mirror of
https://github.com/aykhans/AzSuicideDataVisualization.git
synced 2025-04-23 02:40:43 +00:00
1785 lines
59 KiB
Python
1785 lines
59 KiB
Python
# Licensed to the Apache Software Foundation (ASF) under one
|
|
# or more contributor license agreements. See the NOTICE file
|
|
# distributed with this work for additional information
|
|
# regarding copyright ownership. The ASF licenses this file
|
|
# to you under the Apache License, Version 2.0 (the
|
|
# "License"); you may not use this file except in compliance
|
|
# with the License. You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing,
|
|
# software distributed under the License is distributed on an
|
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
# KIND, either express or implied. See the License for the
|
|
# specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
import datetime
|
|
import os
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pyarrow as pa
|
|
from pyarrow import fs
|
|
from pyarrow.filesystem import LocalFileSystem
|
|
from pyarrow.tests import util
|
|
from pyarrow.tests.parquet.common import (
|
|
parametrize_legacy_dataset, parametrize_legacy_dataset_fixed,
|
|
parametrize_legacy_dataset_not_supported)
|
|
from pyarrow.util import guid
|
|
from pyarrow.vendored.version import Version
|
|
|
|
try:
|
|
import pyarrow.parquet as pq
|
|
from pyarrow.tests.parquet.common import (
|
|
_read_table, _test_dataframe, _write_table)
|
|
except ImportError:
|
|
pq = None
|
|
|
|
|
|
try:
|
|
import pandas as pd
|
|
import pandas.testing as tm
|
|
|
|
except ImportError:
|
|
pd = tm = None
|
|
|
|
|
|
@pytest.mark.pandas
|
|
def test_parquet_piece_read(tempdir):
|
|
df = _test_dataframe(1000)
|
|
table = pa.Table.from_pandas(df)
|
|
|
|
path = tempdir / 'parquet_piece_read.parquet'
|
|
_write_table(table, path, version='2.6')
|
|
|
|
with pytest.warns(FutureWarning):
|
|
piece1 = pq.ParquetDatasetPiece(path)
|
|
|
|
result = piece1.read()
|
|
assert result.equals(table)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
def test_parquet_piece_open_and_get_metadata(tempdir):
|
|
df = _test_dataframe(100)
|
|
table = pa.Table.from_pandas(df)
|
|
|
|
path = tempdir / 'parquet_piece_read.parquet'
|
|
_write_table(table, path, version='2.6')
|
|
|
|
with pytest.warns(FutureWarning):
|
|
piece = pq.ParquetDatasetPiece(path)
|
|
table1 = piece.read()
|
|
assert isinstance(table1, pa.Table)
|
|
meta1 = piece.get_metadata()
|
|
assert isinstance(meta1, pq.FileMetaData)
|
|
|
|
assert table.equals(table1)
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:ParquetDatasetPiece:FutureWarning")
|
|
def test_parquet_piece_basics():
|
|
path = '/baz.parq'
|
|
|
|
piece1 = pq.ParquetDatasetPiece(path)
|
|
piece2 = pq.ParquetDatasetPiece(path, row_group=1)
|
|
piece3 = pq.ParquetDatasetPiece(
|
|
path, row_group=1, partition_keys=[('foo', 0), ('bar', 1)])
|
|
|
|
assert str(piece1) == path
|
|
assert str(piece2) == '/baz.parq | row_group=1'
|
|
assert str(piece3) == 'partition[foo=0, bar=1] /baz.parq | row_group=1'
|
|
|
|
assert piece1 == piece1
|
|
assert piece2 == piece2
|
|
assert piece3 == piece3
|
|
assert piece1 != piece3
|
|
|
|
|
|
def test_partition_set_dictionary_type():
|
|
set1 = pq.PartitionSet('key1', ['foo', 'bar', 'baz'])
|
|
set2 = pq.PartitionSet('key2', [2007, 2008, 2009])
|
|
|
|
assert isinstance(set1.dictionary, pa.StringArray)
|
|
assert isinstance(set2.dictionary, pa.IntegerArray)
|
|
|
|
set3 = pq.PartitionSet('key2', [datetime.datetime(2007, 1, 1)])
|
|
with pytest.raises(TypeError):
|
|
set3.dictionary
|
|
|
|
|
|
@parametrize_legacy_dataset_fixed
|
|
def test_filesystem_uri(tempdir, use_legacy_dataset):
|
|
table = pa.table({"a": [1, 2, 3]})
|
|
|
|
directory = tempdir / "data_dir"
|
|
directory.mkdir()
|
|
path = directory / "data.parquet"
|
|
pq.write_table(table, str(path))
|
|
|
|
# filesystem object
|
|
result = pq.read_table(
|
|
path, filesystem=fs.LocalFileSystem(),
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
assert result.equals(table)
|
|
|
|
# filesystem URI
|
|
result = pq.read_table(
|
|
"data_dir/data.parquet", filesystem=util._filesystem_uri(tempdir),
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
assert result.equals(table)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_read_partitioned_directory(tempdir, use_legacy_dataset):
|
|
fs = LocalFileSystem._get_instance()
|
|
_partition_test_for_filesystem(fs, tempdir, use_legacy_dataset)
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:'ParquetDataset:FutureWarning")
|
|
@pytest.mark.pandas
|
|
def test_create_parquet_dataset_multi_threaded(tempdir):
|
|
fs = LocalFileSystem._get_instance()
|
|
base_path = tempdir
|
|
|
|
_partition_test_for_filesystem(fs, base_path)
|
|
|
|
manifest = pq.ParquetManifest(base_path, filesystem=fs,
|
|
metadata_nthreads=1)
|
|
with pytest.warns(
|
|
FutureWarning, match="Specifying the 'metadata_nthreads'"
|
|
):
|
|
dataset = pq.ParquetDataset(
|
|
base_path, filesystem=fs, metadata_nthreads=16)
|
|
assert len(dataset.pieces) > 0
|
|
partitions = dataset.partitions
|
|
assert len(partitions.partition_names) > 0
|
|
assert partitions.partition_names == manifest.partitions.partition_names
|
|
assert len(partitions.levels) == len(manifest.partitions.levels)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_read_partitioned_columns_selection(tempdir, use_legacy_dataset):
|
|
# ARROW-3861 - do not include partition columns in resulting table when
|
|
# `columns` keyword was passed without those columns
|
|
fs = LocalFileSystem._get_instance()
|
|
base_path = tempdir
|
|
_partition_test_for_filesystem(fs, base_path)
|
|
|
|
dataset = pq.ParquetDataset(
|
|
base_path, use_legacy_dataset=use_legacy_dataset)
|
|
result = dataset.read(columns=["values"])
|
|
if use_legacy_dataset:
|
|
# ParquetDataset implementation always includes the partition columns
|
|
# automatically, and we can't easily "fix" this since dask relies on
|
|
# this behaviour (ARROW-8644)
|
|
assert result.column_names == ["values", "foo", "bar"]
|
|
else:
|
|
assert result.column_names == ["values"]
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_filters_equivalency(tempdir, use_legacy_dataset):
|
|
fs = LocalFileSystem._get_instance()
|
|
base_path = tempdir
|
|
|
|
integer_keys = [0, 1]
|
|
string_keys = ['a', 'b', 'c']
|
|
boolean_keys = [True, False]
|
|
partition_spec = [
|
|
['integer', integer_keys],
|
|
['string', string_keys],
|
|
['boolean', boolean_keys]
|
|
]
|
|
|
|
df = pd.DataFrame({
|
|
'integer': np.array(integer_keys, dtype='i4').repeat(15),
|
|
'string': np.tile(np.tile(np.array(string_keys, dtype=object), 5), 2),
|
|
'boolean': np.tile(np.tile(np.array(boolean_keys, dtype='bool'), 5),
|
|
3),
|
|
}, columns=['integer', 'string', 'boolean'])
|
|
|
|
_generate_partition_directories(fs, base_path, partition_spec, df)
|
|
|
|
# Old filters syntax:
|
|
# integer == 1 AND string != b AND boolean == True
|
|
dataset = pq.ParquetDataset(
|
|
base_path, filesystem=fs,
|
|
filters=[('integer', '=', 1), ('string', '!=', 'b'),
|
|
('boolean', '==', 'True')],
|
|
use_legacy_dataset=use_legacy_dataset,
|
|
)
|
|
table = dataset.read()
|
|
result_df = (table.to_pandas().reset_index(drop=True))
|
|
|
|
assert 0 not in result_df['integer'].values
|
|
assert 'b' not in result_df['string'].values
|
|
assert False not in result_df['boolean'].values
|
|
|
|
# filters in disjunctive normal form:
|
|
# (integer == 1 AND string != b AND boolean == True) OR
|
|
# (integer == 2 AND boolean == False)
|
|
# TODO(ARROW-3388): boolean columns are reconstructed as string
|
|
filters = [
|
|
[
|
|
('integer', '=', 1),
|
|
('string', '!=', 'b'),
|
|
('boolean', '==', 'True')
|
|
],
|
|
[('integer', '=', 0), ('boolean', '==', 'False')]
|
|
]
|
|
dataset = pq.ParquetDataset(
|
|
base_path, filesystem=fs, filters=filters,
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
table = dataset.read()
|
|
result_df = table.to_pandas().reset_index(drop=True)
|
|
|
|
# Check that all rows in the DF fulfill the filter
|
|
# Pandas 0.23.x has problems with indexing constant memoryviews in
|
|
# categoricals. Thus we need to make an explicit copy here with np.array.
|
|
df_filter_1 = (np.array(result_df['integer']) == 1) \
|
|
& (np.array(result_df['string']) != 'b') \
|
|
& (np.array(result_df['boolean']) == 'True')
|
|
df_filter_2 = (np.array(result_df['integer']) == 0) \
|
|
& (np.array(result_df['boolean']) == 'False')
|
|
assert df_filter_1.sum() > 0
|
|
assert df_filter_2.sum() > 0
|
|
assert result_df.shape[0] == (df_filter_1.sum() + df_filter_2.sum())
|
|
|
|
if use_legacy_dataset:
|
|
# Check for \0 in predicate values. Until they are correctly
|
|
# implemented in ARROW-3391, they would otherwise lead to weird
|
|
# results with the current code.
|
|
with pytest.raises(NotImplementedError):
|
|
filters = [[('string', '==', b'1\0a')]]
|
|
pq.ParquetDataset(base_path, filesystem=fs, filters=filters)
|
|
with pytest.raises(NotImplementedError):
|
|
filters = [[('string', '==', '1\0a')]]
|
|
pq.ParquetDataset(base_path, filesystem=fs, filters=filters)
|
|
else:
|
|
for filters in [[[('string', '==', b'1\0a')]],
|
|
[[('string', '==', '1\0a')]]]:
|
|
dataset = pq.ParquetDataset(
|
|
base_path, filesystem=fs, filters=filters,
|
|
use_legacy_dataset=False)
|
|
assert dataset.read().num_rows == 0
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_filters_cutoff_exclusive_integer(tempdir, use_legacy_dataset):
|
|
fs = LocalFileSystem._get_instance()
|
|
base_path = tempdir
|
|
|
|
integer_keys = [0, 1, 2, 3, 4]
|
|
partition_spec = [
|
|
['integers', integer_keys],
|
|
]
|
|
N = 5
|
|
|
|
df = pd.DataFrame({
|
|
'index': np.arange(N),
|
|
'integers': np.array(integer_keys, dtype='i4'),
|
|
}, columns=['index', 'integers'])
|
|
|
|
_generate_partition_directories(fs, base_path, partition_spec, df)
|
|
|
|
dataset = pq.ParquetDataset(
|
|
base_path, filesystem=fs,
|
|
filters=[
|
|
('integers', '<', 4),
|
|
('integers', '>', 1),
|
|
],
|
|
use_legacy_dataset=use_legacy_dataset
|
|
)
|
|
table = dataset.read()
|
|
result_df = (table.to_pandas()
|
|
.sort_values(by='index')
|
|
.reset_index(drop=True))
|
|
|
|
result_list = [x for x in map(int, result_df['integers'].values)]
|
|
assert result_list == [2, 3]
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
@pytest.mark.xfail(
|
|
# different error with use_legacy_datasets because result_df is no longer
|
|
# categorical
|
|
raises=(TypeError, AssertionError),
|
|
reason='Loss of type information in creation of categoricals.'
|
|
)
|
|
def test_filters_cutoff_exclusive_datetime(tempdir, use_legacy_dataset):
|
|
fs = LocalFileSystem._get_instance()
|
|
base_path = tempdir
|
|
|
|
date_keys = [
|
|
datetime.date(2018, 4, 9),
|
|
datetime.date(2018, 4, 10),
|
|
datetime.date(2018, 4, 11),
|
|
datetime.date(2018, 4, 12),
|
|
datetime.date(2018, 4, 13)
|
|
]
|
|
partition_spec = [
|
|
['dates', date_keys]
|
|
]
|
|
N = 5
|
|
|
|
df = pd.DataFrame({
|
|
'index': np.arange(N),
|
|
'dates': np.array(date_keys, dtype='datetime64'),
|
|
}, columns=['index', 'dates'])
|
|
|
|
_generate_partition_directories(fs, base_path, partition_spec, df)
|
|
|
|
dataset = pq.ParquetDataset(
|
|
base_path, filesystem=fs,
|
|
filters=[
|
|
('dates', '<', "2018-04-12"),
|
|
('dates', '>', "2018-04-10")
|
|
],
|
|
use_legacy_dataset=use_legacy_dataset
|
|
)
|
|
table = dataset.read()
|
|
result_df = (table.to_pandas()
|
|
.sort_values(by='index')
|
|
.reset_index(drop=True))
|
|
|
|
expected = pd.Categorical(
|
|
np.array([datetime.date(2018, 4, 11)], dtype='datetime64'),
|
|
categories=np.array(date_keys, dtype='datetime64'))
|
|
|
|
assert result_df['dates'].values == expected
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@pytest.mark.dataset
|
|
def test_filters_inclusive_datetime(tempdir):
|
|
# ARROW-11480
|
|
path = tempdir / 'timestamps.parquet'
|
|
|
|
pd.DataFrame({
|
|
"dates": pd.date_range("2020-01-01", periods=10, freq="D"),
|
|
"id": range(10)
|
|
}).to_parquet(path, use_deprecated_int96_timestamps=True)
|
|
|
|
table = pq.read_table(path, filters=[
|
|
("dates", "<=", datetime.datetime(2020, 1, 5))
|
|
])
|
|
|
|
assert table.column('id').to_pylist() == [0, 1, 2, 3, 4]
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_filters_inclusive_integer(tempdir, use_legacy_dataset):
|
|
fs = LocalFileSystem._get_instance()
|
|
base_path = tempdir
|
|
|
|
integer_keys = [0, 1, 2, 3, 4]
|
|
partition_spec = [
|
|
['integers', integer_keys],
|
|
]
|
|
N = 5
|
|
|
|
df = pd.DataFrame({
|
|
'index': np.arange(N),
|
|
'integers': np.array(integer_keys, dtype='i4'),
|
|
}, columns=['index', 'integers'])
|
|
|
|
_generate_partition_directories(fs, base_path, partition_spec, df)
|
|
|
|
dataset = pq.ParquetDataset(
|
|
base_path, filesystem=fs,
|
|
filters=[
|
|
('integers', '<=', 3),
|
|
('integers', '>=', 2),
|
|
],
|
|
use_legacy_dataset=use_legacy_dataset
|
|
)
|
|
table = dataset.read()
|
|
result_df = (table.to_pandas()
|
|
.sort_values(by='index')
|
|
.reset_index(drop=True))
|
|
|
|
result_list = [int(x) for x in map(int, result_df['integers'].values)]
|
|
assert result_list == [2, 3]
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_filters_inclusive_set(tempdir, use_legacy_dataset):
|
|
fs = LocalFileSystem._get_instance()
|
|
base_path = tempdir
|
|
|
|
integer_keys = [0, 1]
|
|
string_keys = ['a', 'b', 'c']
|
|
boolean_keys = [True, False]
|
|
partition_spec = [
|
|
['integer', integer_keys],
|
|
['string', string_keys],
|
|
['boolean', boolean_keys]
|
|
]
|
|
|
|
df = pd.DataFrame({
|
|
'integer': np.array(integer_keys, dtype='i4').repeat(15),
|
|
'string': np.tile(np.tile(np.array(string_keys, dtype=object), 5), 2),
|
|
'boolean': np.tile(np.tile(np.array(boolean_keys, dtype='bool'), 5),
|
|
3),
|
|
}, columns=['integer', 'string', 'boolean'])
|
|
|
|
_generate_partition_directories(fs, base_path, partition_spec, df)
|
|
|
|
dataset = pq.ParquetDataset(
|
|
base_path, filesystem=fs,
|
|
filters=[('string', 'in', 'ab')],
|
|
use_legacy_dataset=use_legacy_dataset
|
|
)
|
|
table = dataset.read()
|
|
result_df = (table.to_pandas().reset_index(drop=True))
|
|
|
|
assert 'a' in result_df['string'].values
|
|
assert 'b' in result_df['string'].values
|
|
assert 'c' not in result_df['string'].values
|
|
|
|
dataset = pq.ParquetDataset(
|
|
base_path, filesystem=fs,
|
|
filters=[('integer', 'in', [1]), ('string', 'in', ('a', 'b')),
|
|
('boolean', 'not in', {'False'})],
|
|
use_legacy_dataset=use_legacy_dataset
|
|
)
|
|
table = dataset.read()
|
|
result_df = (table.to_pandas().reset_index(drop=True))
|
|
|
|
assert 0 not in result_df['integer'].values
|
|
assert 'c' not in result_df['string'].values
|
|
assert False not in result_df['boolean'].values
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_filters_invalid_pred_op(tempdir, use_legacy_dataset):
|
|
fs = LocalFileSystem._get_instance()
|
|
base_path = tempdir
|
|
|
|
integer_keys = [0, 1, 2, 3, 4]
|
|
partition_spec = [
|
|
['integers', integer_keys],
|
|
]
|
|
N = 5
|
|
|
|
df = pd.DataFrame({
|
|
'index': np.arange(N),
|
|
'integers': np.array(integer_keys, dtype='i4'),
|
|
}, columns=['index', 'integers'])
|
|
|
|
_generate_partition_directories(fs, base_path, partition_spec, df)
|
|
|
|
with pytest.raises(TypeError):
|
|
pq.ParquetDataset(base_path,
|
|
filesystem=fs,
|
|
filters=[('integers', 'in', 3), ],
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
|
|
with pytest.raises(ValueError):
|
|
pq.ParquetDataset(base_path,
|
|
filesystem=fs,
|
|
filters=[('integers', '=<', 3), ],
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
|
|
if use_legacy_dataset:
|
|
with pytest.raises(ValueError):
|
|
pq.ParquetDataset(base_path,
|
|
filesystem=fs,
|
|
filters=[('integers', 'in', set()), ],
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
else:
|
|
# Dataset API returns empty table instead
|
|
dataset = pq.ParquetDataset(base_path,
|
|
filesystem=fs,
|
|
filters=[('integers', 'in', set()), ],
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
assert dataset.read().num_rows == 0
|
|
|
|
if use_legacy_dataset:
|
|
with pytest.raises(ValueError):
|
|
pq.ParquetDataset(base_path,
|
|
filesystem=fs,
|
|
filters=[('integers', '!=', {3})],
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
else:
|
|
dataset = pq.ParquetDataset(base_path,
|
|
filesystem=fs,
|
|
filters=[('integers', '!=', {3})],
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
with pytest.raises(NotImplementedError):
|
|
assert dataset.read().num_rows == 0
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset_fixed
|
|
def test_filters_invalid_column(tempdir, use_legacy_dataset):
|
|
# ARROW-5572 - raise error on invalid name in filter specification
|
|
# works with new dataset / xfail with legacy implementation
|
|
fs = LocalFileSystem._get_instance()
|
|
base_path = tempdir
|
|
|
|
integer_keys = [0, 1, 2, 3, 4]
|
|
partition_spec = [['integers', integer_keys]]
|
|
N = 5
|
|
|
|
df = pd.DataFrame({
|
|
'index': np.arange(N),
|
|
'integers': np.array(integer_keys, dtype='i4'),
|
|
}, columns=['index', 'integers'])
|
|
|
|
_generate_partition_directories(fs, base_path, partition_spec, df)
|
|
|
|
msg = r"No match for FieldRef.Name\(non_existent_column\)"
|
|
with pytest.raises(ValueError, match=msg):
|
|
pq.ParquetDataset(base_path, filesystem=fs,
|
|
filters=[('non_existent_column', '<', 3), ],
|
|
use_legacy_dataset=use_legacy_dataset).read()
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_filters_read_table(tempdir, use_legacy_dataset):
|
|
# test that filters keyword is passed through in read_table
|
|
fs = LocalFileSystem._get_instance()
|
|
base_path = tempdir
|
|
|
|
integer_keys = [0, 1, 2, 3, 4]
|
|
partition_spec = [
|
|
['integers', integer_keys],
|
|
]
|
|
N = 5
|
|
|
|
df = pd.DataFrame({
|
|
'index': np.arange(N),
|
|
'integers': np.array(integer_keys, dtype='i4'),
|
|
}, columns=['index', 'integers'])
|
|
|
|
_generate_partition_directories(fs, base_path, partition_spec, df)
|
|
|
|
table = pq.read_table(
|
|
base_path, filesystem=fs, filters=[('integers', '<', 3)],
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
assert table.num_rows == 3
|
|
|
|
table = pq.read_table(
|
|
base_path, filesystem=fs, filters=[[('integers', '<', 3)]],
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
assert table.num_rows == 3
|
|
|
|
table = pq.read_pandas(
|
|
base_path, filters=[('integers', '<', 3)],
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
assert table.num_rows == 3
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset_fixed
|
|
def test_partition_keys_with_underscores(tempdir, use_legacy_dataset):
|
|
# ARROW-5666 - partition field values with underscores preserve underscores
|
|
# xfail with legacy dataset -> they get interpreted as integers
|
|
fs = LocalFileSystem._get_instance()
|
|
base_path = tempdir
|
|
|
|
string_keys = ["2019_2", "2019_3"]
|
|
partition_spec = [
|
|
['year_week', string_keys],
|
|
]
|
|
N = 2
|
|
|
|
df = pd.DataFrame({
|
|
'index': np.arange(N),
|
|
'year_week': np.array(string_keys, dtype='object'),
|
|
}, columns=['index', 'year_week'])
|
|
|
|
_generate_partition_directories(fs, base_path, partition_spec, df)
|
|
|
|
dataset = pq.ParquetDataset(
|
|
base_path, use_legacy_dataset=use_legacy_dataset)
|
|
result = dataset.read()
|
|
assert result.column("year_week").to_pylist() == string_keys
|
|
|
|
|
|
@pytest.mark.s3
|
|
@parametrize_legacy_dataset
|
|
def test_read_s3fs(s3_example_s3fs, use_legacy_dataset):
|
|
fs, path = s3_example_s3fs
|
|
path = path + "/test.parquet"
|
|
table = pa.table({"a": [1, 2, 3]})
|
|
_write_table(table, path, filesystem=fs)
|
|
|
|
result = _read_table(
|
|
path, filesystem=fs, use_legacy_dataset=use_legacy_dataset
|
|
)
|
|
assert result.equals(table)
|
|
|
|
|
|
@pytest.mark.s3
|
|
@parametrize_legacy_dataset
|
|
def test_read_directory_s3fs(s3_example_s3fs, use_legacy_dataset):
|
|
fs, directory = s3_example_s3fs
|
|
path = directory + "/test.parquet"
|
|
table = pa.table({"a": [1, 2, 3]})
|
|
_write_table(table, path, filesystem=fs)
|
|
|
|
result = _read_table(
|
|
directory, filesystem=fs, use_legacy_dataset=use_legacy_dataset
|
|
)
|
|
assert result.equals(table)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_read_single_file_list(tempdir, use_legacy_dataset):
|
|
data_path = str(tempdir / 'data.parquet')
|
|
|
|
table = pa.table({"a": [1, 2, 3]})
|
|
_write_table(table, data_path)
|
|
|
|
result = pq.ParquetDataset(
|
|
[data_path], use_legacy_dataset=use_legacy_dataset
|
|
).read()
|
|
assert result.equals(table)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@pytest.mark.s3
|
|
@parametrize_legacy_dataset
|
|
def test_read_partitioned_directory_s3fs_wrapper(
|
|
s3_example_s3fs, use_legacy_dataset
|
|
):
|
|
import s3fs
|
|
|
|
from pyarrow.filesystem import S3FSWrapper
|
|
|
|
if Version(s3fs.__version__) >= Version("0.5"):
|
|
pytest.skip("S3FSWrapper no longer working for s3fs 0.5+")
|
|
|
|
fs, path = s3_example_s3fs
|
|
with pytest.warns(FutureWarning):
|
|
wrapper = S3FSWrapper(fs)
|
|
_partition_test_for_filesystem(wrapper, path)
|
|
|
|
# Check that we can auto-wrap
|
|
dataset = pq.ParquetDataset(
|
|
path, filesystem=fs, use_legacy_dataset=use_legacy_dataset
|
|
)
|
|
dataset.read()
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@pytest.mark.s3
|
|
@parametrize_legacy_dataset
|
|
def test_read_partitioned_directory_s3fs(s3_example_s3fs, use_legacy_dataset):
|
|
fs, path = s3_example_s3fs
|
|
_partition_test_for_filesystem(
|
|
fs, path, use_legacy_dataset=use_legacy_dataset
|
|
)
|
|
|
|
|
|
def _partition_test_for_filesystem(fs, base_path, use_legacy_dataset=True):
|
|
foo_keys = [0, 1]
|
|
bar_keys = ['a', 'b', 'c']
|
|
partition_spec = [
|
|
['foo', foo_keys],
|
|
['bar', bar_keys]
|
|
]
|
|
N = 30
|
|
|
|
df = pd.DataFrame({
|
|
'index': np.arange(N),
|
|
'foo': np.array(foo_keys, dtype='i4').repeat(15),
|
|
'bar': np.tile(np.tile(np.array(bar_keys, dtype=object), 5), 2),
|
|
'values': np.random.randn(N)
|
|
}, columns=['index', 'foo', 'bar', 'values'])
|
|
|
|
_generate_partition_directories(fs, base_path, partition_spec, df)
|
|
|
|
dataset = pq.ParquetDataset(
|
|
base_path, filesystem=fs, use_legacy_dataset=use_legacy_dataset)
|
|
table = dataset.read()
|
|
result_df = (table.to_pandas()
|
|
.sort_values(by='index')
|
|
.reset_index(drop=True))
|
|
|
|
expected_df = (df.sort_values(by='index')
|
|
.reset_index(drop=True)
|
|
.reindex(columns=result_df.columns))
|
|
|
|
expected_df['foo'] = pd.Categorical(df['foo'], categories=foo_keys)
|
|
expected_df['bar'] = pd.Categorical(df['bar'], categories=bar_keys)
|
|
|
|
assert (result_df.columns == ['index', 'values', 'foo', 'bar']).all()
|
|
|
|
tm.assert_frame_equal(result_df, expected_df)
|
|
|
|
|
|
def _generate_partition_directories(fs, base_dir, partition_spec, df):
|
|
# partition_spec : list of lists, e.g. [['foo', [0, 1, 2],
|
|
# ['bar', ['a', 'b', 'c']]
|
|
# part_table : a pyarrow.Table to write to each partition
|
|
DEPTH = len(partition_spec)
|
|
|
|
pathsep = getattr(fs, "pathsep", getattr(fs, "sep", "/"))
|
|
|
|
def _visit_level(base_dir, level, part_keys):
|
|
name, values = partition_spec[level]
|
|
for value in values:
|
|
this_part_keys = part_keys + [(name, value)]
|
|
|
|
level_dir = pathsep.join([
|
|
str(base_dir),
|
|
'{}={}'.format(name, value)
|
|
])
|
|
fs.mkdir(level_dir)
|
|
|
|
if level == DEPTH - 1:
|
|
# Generate example data
|
|
file_path = pathsep.join([level_dir, guid()])
|
|
filtered_df = _filter_partition(df, this_part_keys)
|
|
part_table = pa.Table.from_pandas(filtered_df)
|
|
with fs.open(file_path, 'wb') as f:
|
|
_write_table(part_table, f)
|
|
assert fs.exists(file_path)
|
|
|
|
file_success = pathsep.join([level_dir, '_SUCCESS'])
|
|
with fs.open(file_success, 'wb') as f:
|
|
pass
|
|
else:
|
|
_visit_level(level_dir, level + 1, this_part_keys)
|
|
file_success = pathsep.join([level_dir, '_SUCCESS'])
|
|
with fs.open(file_success, 'wb') as f:
|
|
pass
|
|
|
|
_visit_level(base_dir, 0, [])
|
|
|
|
|
|
def _test_read_common_metadata_files(fs, base_path):
|
|
import pandas as pd
|
|
|
|
import pyarrow.parquet as pq
|
|
|
|
N = 100
|
|
df = pd.DataFrame({
|
|
'index': np.arange(N),
|
|
'values': np.random.randn(N)
|
|
}, columns=['index', 'values'])
|
|
|
|
base_path = str(base_path)
|
|
data_path = os.path.join(base_path, 'data.parquet')
|
|
|
|
table = pa.Table.from_pandas(df)
|
|
|
|
with fs.open(data_path, 'wb') as f:
|
|
_write_table(table, f)
|
|
|
|
metadata_path = os.path.join(base_path, '_common_metadata')
|
|
with fs.open(metadata_path, 'wb') as f:
|
|
pq.write_metadata(table.schema, f)
|
|
|
|
dataset = pq.ParquetDataset(base_path, filesystem=fs)
|
|
with pytest.warns(FutureWarning):
|
|
assert dataset.common_metadata_path == str(metadata_path)
|
|
|
|
with fs.open(data_path) as f:
|
|
common_schema = pq.read_metadata(f).schema
|
|
assert dataset.schema.equals(common_schema)
|
|
|
|
# handle list of one directory
|
|
dataset2 = pq.ParquetDataset([base_path], filesystem=fs)
|
|
assert dataset2.schema.equals(dataset.schema)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@pytest.mark.filterwarnings("ignore:'ParquetDataset.schema:FutureWarning")
|
|
def test_read_common_metadata_files(tempdir):
|
|
fs = LocalFileSystem._get_instance()
|
|
_test_read_common_metadata_files(fs, tempdir)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@pytest.mark.filterwarnings("ignore:'ParquetDataset.schema:FutureWarning")
|
|
def test_read_metadata_files(tempdir):
|
|
fs = LocalFileSystem._get_instance()
|
|
|
|
N = 100
|
|
df = pd.DataFrame({
|
|
'index': np.arange(N),
|
|
'values': np.random.randn(N)
|
|
}, columns=['index', 'values'])
|
|
|
|
data_path = tempdir / 'data.parquet'
|
|
|
|
table = pa.Table.from_pandas(df)
|
|
|
|
with fs.open(data_path, 'wb') as f:
|
|
_write_table(table, f)
|
|
|
|
metadata_path = tempdir / '_metadata'
|
|
with fs.open(metadata_path, 'wb') as f:
|
|
pq.write_metadata(table.schema, f)
|
|
|
|
dataset = pq.ParquetDataset(tempdir, filesystem=fs)
|
|
with pytest.warns(FutureWarning):
|
|
assert dataset.metadata_path == str(metadata_path)
|
|
|
|
with fs.open(data_path) as f:
|
|
metadata_schema = pq.read_metadata(f).schema
|
|
assert dataset.schema.equals(metadata_schema)
|
|
|
|
|
|
def _filter_partition(df, part_keys):
|
|
predicate = np.ones(len(df), dtype=bool)
|
|
|
|
to_drop = []
|
|
for name, value in part_keys:
|
|
to_drop.append(name)
|
|
|
|
# to avoid pandas warning
|
|
if isinstance(value, (datetime.date, datetime.datetime)):
|
|
value = pd.Timestamp(value)
|
|
|
|
predicate &= df[name] == value
|
|
|
|
return df[predicate].drop(to_drop, axis=1)
|
|
|
|
|
|
@parametrize_legacy_dataset
|
|
@pytest.mark.pandas
|
|
def test_filter_before_validate_schema(tempdir, use_legacy_dataset):
|
|
# ARROW-4076 apply filter before schema validation
|
|
# to avoid checking unneeded schemas
|
|
|
|
# create partitioned dataset with mismatching schemas which would
|
|
# otherwise raise if first validation all schemas
|
|
dir1 = tempdir / 'A=0'
|
|
dir1.mkdir()
|
|
table1 = pa.Table.from_pandas(pd.DataFrame({'B': [1, 2, 3]}))
|
|
pq.write_table(table1, dir1 / 'data.parquet')
|
|
|
|
dir2 = tempdir / 'A=1'
|
|
dir2.mkdir()
|
|
table2 = pa.Table.from_pandas(pd.DataFrame({'B': ['a', 'b', 'c']}))
|
|
pq.write_table(table2, dir2 / 'data.parquet')
|
|
|
|
# read single file using filter
|
|
table = pq.read_table(tempdir, filters=[[('A', '==', 0)]],
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
assert table.column('B').equals(pa.chunked_array([[1, 2, 3]]))
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_read_multiple_files(tempdir, use_legacy_dataset):
|
|
nfiles = 10
|
|
size = 5
|
|
|
|
dirpath = tempdir / guid()
|
|
dirpath.mkdir()
|
|
|
|
test_data = []
|
|
paths = []
|
|
for i in range(nfiles):
|
|
df = _test_dataframe(size, seed=i)
|
|
|
|
# Hack so that we don't have a dtype cast in v1 files
|
|
df['uint32'] = df['uint32'].astype(np.int64)
|
|
|
|
path = dirpath / '{}.parquet'.format(i)
|
|
|
|
table = pa.Table.from_pandas(df)
|
|
_write_table(table, path)
|
|
|
|
test_data.append(table)
|
|
paths.append(path)
|
|
|
|
# Write a _SUCCESS.crc file
|
|
(dirpath / '_SUCCESS.crc').touch()
|
|
|
|
def read_multiple_files(paths, columns=None, use_threads=True, **kwargs):
|
|
dataset = pq.ParquetDataset(
|
|
paths, use_legacy_dataset=use_legacy_dataset, **kwargs)
|
|
return dataset.read(columns=columns, use_threads=use_threads)
|
|
|
|
result = read_multiple_files(paths)
|
|
expected = pa.concat_tables(test_data)
|
|
|
|
assert result.equals(expected)
|
|
|
|
# Read with provided metadata
|
|
# TODO(dataset) specifying metadata not yet supported
|
|
metadata = pq.read_metadata(paths[0])
|
|
if use_legacy_dataset:
|
|
result2 = read_multiple_files(paths, metadata=metadata)
|
|
assert result2.equals(expected)
|
|
|
|
with pytest.warns(FutureWarning, match="Specifying the 'schema'"):
|
|
result3 = pq.ParquetDataset(dirpath, schema=metadata.schema).read()
|
|
assert result3.equals(expected)
|
|
else:
|
|
with pytest.raises(ValueError, match="no longer supported"):
|
|
pq.read_table(paths, metadata=metadata, use_legacy_dataset=False)
|
|
|
|
# Read column subset
|
|
to_read = [0, 2, 6, result.num_columns - 1]
|
|
|
|
col_names = [result.field(i).name for i in to_read]
|
|
out = pq.read_table(
|
|
dirpath, columns=col_names, use_legacy_dataset=use_legacy_dataset
|
|
)
|
|
expected = pa.Table.from_arrays([result.column(i) for i in to_read],
|
|
names=col_names,
|
|
metadata=result.schema.metadata)
|
|
assert out.equals(expected)
|
|
|
|
# Read with multiple threads
|
|
pq.read_table(
|
|
dirpath, use_threads=True, use_legacy_dataset=use_legacy_dataset
|
|
)
|
|
|
|
# Test failure modes with non-uniform metadata
|
|
bad_apple = _test_dataframe(size, seed=i).iloc[:, :4]
|
|
bad_apple_path = tempdir / '{}.parquet'.format(guid())
|
|
|
|
t = pa.Table.from_pandas(bad_apple)
|
|
_write_table(t, bad_apple_path)
|
|
|
|
if not use_legacy_dataset:
|
|
# TODO(dataset) Dataset API skips bad files
|
|
return
|
|
|
|
bad_meta = pq.read_metadata(bad_apple_path)
|
|
|
|
with pytest.raises(ValueError):
|
|
read_multiple_files(paths + [bad_apple_path])
|
|
|
|
with pytest.raises(ValueError):
|
|
read_multiple_files(paths, metadata=bad_meta)
|
|
|
|
mixed_paths = [bad_apple_path, paths[0]]
|
|
|
|
with pytest.raises(ValueError):
|
|
with pytest.warns(FutureWarning, match="Specifying the 'schema'"):
|
|
read_multiple_files(mixed_paths, schema=bad_meta.schema)
|
|
|
|
with pytest.raises(ValueError):
|
|
read_multiple_files(mixed_paths)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_dataset_read_pandas(tempdir, use_legacy_dataset):
|
|
nfiles = 5
|
|
size = 5
|
|
|
|
dirpath = tempdir / guid()
|
|
dirpath.mkdir()
|
|
|
|
test_data = []
|
|
frames = []
|
|
paths = []
|
|
for i in range(nfiles):
|
|
df = _test_dataframe(size, seed=i)
|
|
df.index = np.arange(i * size, (i + 1) * size)
|
|
df.index.name = 'index'
|
|
|
|
path = dirpath / '{}.parquet'.format(i)
|
|
|
|
table = pa.Table.from_pandas(df)
|
|
_write_table(table, path)
|
|
test_data.append(table)
|
|
frames.append(df)
|
|
paths.append(path)
|
|
|
|
dataset = pq.ParquetDataset(dirpath, use_legacy_dataset=use_legacy_dataset)
|
|
columns = ['uint8', 'strings']
|
|
result = dataset.read_pandas(columns=columns).to_pandas()
|
|
expected = pd.concat([x[columns] for x in frames])
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# also be able to pass the columns as a set (ARROW-12314)
|
|
result = dataset.read_pandas(columns=set(columns)).to_pandas()
|
|
assert result.shape == expected.shape
|
|
# column order can be different because of using a set
|
|
tm.assert_frame_equal(result.reindex(columns=expected.columns), expected)
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:'ParquetDataset:FutureWarning")
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_dataset_memory_map(tempdir, use_legacy_dataset):
|
|
# ARROW-2627: Check that we can use ParquetDataset with memory-mapping
|
|
dirpath = tempdir / guid()
|
|
dirpath.mkdir()
|
|
|
|
df = _test_dataframe(10, seed=0)
|
|
path = dirpath / '{}.parquet'.format(0)
|
|
table = pa.Table.from_pandas(df)
|
|
_write_table(table, path, version='2.6')
|
|
|
|
dataset = pq.ParquetDataset(
|
|
dirpath, memory_map=True, use_legacy_dataset=use_legacy_dataset)
|
|
assert dataset.read().equals(table)
|
|
if use_legacy_dataset:
|
|
assert dataset.pieces[0].read().equals(table)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_dataset_enable_buffered_stream(tempdir, use_legacy_dataset):
|
|
dirpath = tempdir / guid()
|
|
dirpath.mkdir()
|
|
|
|
df = _test_dataframe(10, seed=0)
|
|
path = dirpath / '{}.parquet'.format(0)
|
|
table = pa.Table.from_pandas(df)
|
|
_write_table(table, path, version='2.6')
|
|
|
|
with pytest.raises(ValueError):
|
|
pq.ParquetDataset(
|
|
dirpath, buffer_size=-64,
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
|
|
for buffer_size in [128, 1024]:
|
|
dataset = pq.ParquetDataset(
|
|
dirpath, buffer_size=buffer_size,
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
assert dataset.read().equals(table)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_dataset_enable_pre_buffer(tempdir, use_legacy_dataset):
|
|
dirpath = tempdir / guid()
|
|
dirpath.mkdir()
|
|
|
|
df = _test_dataframe(10, seed=0)
|
|
path = dirpath / '{}.parquet'.format(0)
|
|
table = pa.Table.from_pandas(df)
|
|
_write_table(table, path, version='2.6')
|
|
|
|
for pre_buffer in (True, False):
|
|
dataset = pq.ParquetDataset(
|
|
dirpath, pre_buffer=pre_buffer,
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
assert dataset.read().equals(table)
|
|
actual = pq.read_table(dirpath, pre_buffer=pre_buffer,
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
assert actual.equals(table)
|
|
|
|
|
|
def _make_example_multifile_dataset(base_path, nfiles=10, file_nrows=5):
|
|
test_data = []
|
|
paths = []
|
|
for i in range(nfiles):
|
|
df = _test_dataframe(file_nrows, seed=i)
|
|
path = base_path / '{}.parquet'.format(i)
|
|
|
|
test_data.append(_write_table(df, path))
|
|
paths.append(path)
|
|
return paths
|
|
|
|
|
|
def _assert_dataset_paths(dataset, paths, use_legacy_dataset):
|
|
if use_legacy_dataset:
|
|
assert set(map(str, paths)) == {x.path for x in dataset._pieces}
|
|
else:
|
|
paths = [str(path.as_posix()) for path in paths]
|
|
assert set(paths) == set(dataset._dataset.files)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
@pytest.mark.parametrize('dir_prefix', ['_', '.'])
|
|
def test_ignore_private_directories(tempdir, dir_prefix, use_legacy_dataset):
|
|
dirpath = tempdir / guid()
|
|
dirpath.mkdir()
|
|
|
|
paths = _make_example_multifile_dataset(dirpath, nfiles=10,
|
|
file_nrows=5)
|
|
|
|
# private directory
|
|
(dirpath / '{}staging'.format(dir_prefix)).mkdir()
|
|
|
|
dataset = pq.ParquetDataset(dirpath, use_legacy_dataset=use_legacy_dataset)
|
|
|
|
_assert_dataset_paths(dataset, paths, use_legacy_dataset)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_ignore_hidden_files_dot(tempdir, use_legacy_dataset):
|
|
dirpath = tempdir / guid()
|
|
dirpath.mkdir()
|
|
|
|
paths = _make_example_multifile_dataset(dirpath, nfiles=10,
|
|
file_nrows=5)
|
|
|
|
with (dirpath / '.DS_Store').open('wb') as f:
|
|
f.write(b'gibberish')
|
|
|
|
with (dirpath / '.private').open('wb') as f:
|
|
f.write(b'gibberish')
|
|
|
|
dataset = pq.ParquetDataset(dirpath, use_legacy_dataset=use_legacy_dataset)
|
|
|
|
_assert_dataset_paths(dataset, paths, use_legacy_dataset)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_ignore_hidden_files_underscore(tempdir, use_legacy_dataset):
|
|
dirpath = tempdir / guid()
|
|
dirpath.mkdir()
|
|
|
|
paths = _make_example_multifile_dataset(dirpath, nfiles=10,
|
|
file_nrows=5)
|
|
|
|
with (dirpath / '_committed_123').open('wb') as f:
|
|
f.write(b'abcd')
|
|
|
|
with (dirpath / '_started_321').open('wb') as f:
|
|
f.write(b'abcd')
|
|
|
|
dataset = pq.ParquetDataset(dirpath, use_legacy_dataset=use_legacy_dataset)
|
|
|
|
_assert_dataset_paths(dataset, paths, use_legacy_dataset)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
@pytest.mark.parametrize('dir_prefix', ['_', '.'])
|
|
def test_ignore_no_private_directories_in_base_path(
|
|
tempdir, dir_prefix, use_legacy_dataset
|
|
):
|
|
# ARROW-8427 - don't ignore explicitly listed files if parent directory
|
|
# is a private directory
|
|
dirpath = tempdir / "{0}data".format(dir_prefix) / guid()
|
|
dirpath.mkdir(parents=True)
|
|
|
|
paths = _make_example_multifile_dataset(dirpath, nfiles=10,
|
|
file_nrows=5)
|
|
|
|
dataset = pq.ParquetDataset(paths, use_legacy_dataset=use_legacy_dataset)
|
|
_assert_dataset_paths(dataset, paths, use_legacy_dataset)
|
|
|
|
# ARROW-9644 - don't ignore full directory with underscore in base path
|
|
dataset = pq.ParquetDataset(dirpath, use_legacy_dataset=use_legacy_dataset)
|
|
_assert_dataset_paths(dataset, paths, use_legacy_dataset)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset_fixed
|
|
def test_ignore_custom_prefixes(tempdir, use_legacy_dataset):
|
|
# ARROW-9573 - allow override of default ignore_prefixes
|
|
part = ["xxx"] * 3 + ["yyy"] * 3
|
|
table = pa.table([
|
|
pa.array(range(len(part))),
|
|
pa.array(part).dictionary_encode(),
|
|
], names=['index', '_part'])
|
|
|
|
# TODO use_legacy_dataset ARROW-10247
|
|
pq.write_to_dataset(table, str(tempdir), partition_cols=['_part'])
|
|
|
|
private_duplicate = tempdir / '_private_duplicate'
|
|
private_duplicate.mkdir()
|
|
pq.write_to_dataset(table, str(private_duplicate),
|
|
partition_cols=['_part'])
|
|
|
|
read = pq.read_table(
|
|
tempdir, use_legacy_dataset=use_legacy_dataset,
|
|
ignore_prefixes=['_private'])
|
|
|
|
assert read.equals(table)
|
|
|
|
|
|
@parametrize_legacy_dataset_fixed
|
|
def test_empty_directory(tempdir, use_legacy_dataset):
|
|
# ARROW-5310 - reading empty directory
|
|
# fails with legacy implementation
|
|
empty_dir = tempdir / 'dataset'
|
|
empty_dir.mkdir()
|
|
|
|
dataset = pq.ParquetDataset(
|
|
empty_dir, use_legacy_dataset=use_legacy_dataset)
|
|
result = dataset.read()
|
|
assert result.num_rows == 0
|
|
assert result.num_columns == 0
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:'ParquetDataset.schema:FutureWarning")
|
|
def _test_write_to_dataset_with_partitions(base_path,
|
|
use_legacy_dataset=True,
|
|
filesystem=None,
|
|
schema=None,
|
|
index_name=None):
|
|
import pandas as pd
|
|
import pandas.testing as tm
|
|
|
|
import pyarrow.parquet as pq
|
|
|
|
# ARROW-1400
|
|
output_df = pd.DataFrame({'group1': list('aaabbbbccc'),
|
|
'group2': list('eefeffgeee'),
|
|
'num': list(range(10)),
|
|
'nan': [np.nan] * 10,
|
|
'date': np.arange('2017-01-01', '2017-01-11',
|
|
dtype='datetime64[D]')})
|
|
cols = output_df.columns.tolist()
|
|
partition_by = ['group1', 'group2']
|
|
output_table = pa.Table.from_pandas(output_df, schema=schema, safe=False,
|
|
preserve_index=False)
|
|
pq.write_to_dataset(output_table, base_path, partition_by,
|
|
filesystem=filesystem,
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
|
|
metadata_path = os.path.join(str(base_path), '_common_metadata')
|
|
|
|
if filesystem is not None:
|
|
with filesystem.open(metadata_path, 'wb') as f:
|
|
pq.write_metadata(output_table.schema, f)
|
|
else:
|
|
pq.write_metadata(output_table.schema, metadata_path)
|
|
|
|
# ARROW-2891: Ensure the output_schema is preserved when writing a
|
|
# partitioned dataset
|
|
dataset = pq.ParquetDataset(base_path,
|
|
filesystem=filesystem,
|
|
validate_schema=True,
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
# ARROW-2209: Ensure the dataset schema also includes the partition columns
|
|
if use_legacy_dataset:
|
|
with pytest.warns(FutureWarning, match="'ParquetDataset.schema'"):
|
|
dataset_cols = set(dataset.schema.to_arrow_schema().names)
|
|
else:
|
|
# NB schema property is an arrow and not parquet schema
|
|
dataset_cols = set(dataset.schema.names)
|
|
|
|
assert dataset_cols == set(output_table.schema.names)
|
|
|
|
input_table = dataset.read()
|
|
input_df = input_table.to_pandas()
|
|
|
|
# Read data back in and compare with original DataFrame
|
|
# Partitioned columns added to the end of the DataFrame when read
|
|
input_df_cols = input_df.columns.tolist()
|
|
assert partition_by == input_df_cols[-1 * len(partition_by):]
|
|
|
|
input_df = input_df[cols]
|
|
# Partitioned columns become 'categorical' dtypes
|
|
for col in partition_by:
|
|
output_df[col] = output_df[col].astype('category')
|
|
tm.assert_frame_equal(output_df, input_df)
|
|
|
|
|
|
def _test_write_to_dataset_no_partitions(base_path,
|
|
use_legacy_dataset=True,
|
|
filesystem=None):
|
|
import pandas as pd
|
|
|
|
import pyarrow.parquet as pq
|
|
|
|
# ARROW-1400
|
|
output_df = pd.DataFrame({'group1': list('aaabbbbccc'),
|
|
'group2': list('eefeffgeee'),
|
|
'num': list(range(10)),
|
|
'date': np.arange('2017-01-01', '2017-01-11',
|
|
dtype='datetime64[D]')})
|
|
cols = output_df.columns.tolist()
|
|
output_table = pa.Table.from_pandas(output_df)
|
|
|
|
if filesystem is None:
|
|
filesystem = LocalFileSystem._get_instance()
|
|
|
|
# Without partitions, append files to root_path
|
|
n = 5
|
|
for i in range(n):
|
|
pq.write_to_dataset(output_table, base_path,
|
|
use_legacy_dataset=use_legacy_dataset,
|
|
filesystem=filesystem)
|
|
output_files = [file for file in filesystem.ls(str(base_path))
|
|
if file.endswith(".parquet")]
|
|
assert len(output_files) == n
|
|
|
|
# Deduplicated incoming DataFrame should match
|
|
# original outgoing Dataframe
|
|
input_table = pq.ParquetDataset(
|
|
base_path, filesystem=filesystem,
|
|
use_legacy_dataset=use_legacy_dataset
|
|
).read()
|
|
input_df = input_table.to_pandas()
|
|
input_df = input_df.drop_duplicates()
|
|
input_df = input_df[cols]
|
|
assert output_df.equals(input_df)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_write_to_dataset_with_partitions(tempdir, use_legacy_dataset):
|
|
_test_write_to_dataset_with_partitions(str(tempdir), use_legacy_dataset)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_write_to_dataset_with_partitions_and_schema(
|
|
tempdir, use_legacy_dataset
|
|
):
|
|
schema = pa.schema([pa.field('group1', type=pa.string()),
|
|
pa.field('group2', type=pa.string()),
|
|
pa.field('num', type=pa.int64()),
|
|
pa.field('nan', type=pa.int32()),
|
|
pa.field('date', type=pa.timestamp(unit='us'))])
|
|
_test_write_to_dataset_with_partitions(
|
|
str(tempdir), use_legacy_dataset, schema=schema)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_write_to_dataset_with_partitions_and_index_name(
|
|
tempdir, use_legacy_dataset
|
|
):
|
|
_test_write_to_dataset_with_partitions(
|
|
str(tempdir), use_legacy_dataset, index_name='index_name')
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_write_to_dataset_no_partitions(tempdir, use_legacy_dataset):
|
|
_test_write_to_dataset_no_partitions(str(tempdir), use_legacy_dataset)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_write_to_dataset_pathlib(tempdir, use_legacy_dataset):
|
|
_test_write_to_dataset_with_partitions(
|
|
tempdir / "test1", use_legacy_dataset)
|
|
_test_write_to_dataset_no_partitions(
|
|
tempdir / "test2", use_legacy_dataset)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@pytest.mark.s3
|
|
@parametrize_legacy_dataset
|
|
def test_write_to_dataset_pathlib_nonlocal(
|
|
tempdir, s3_example_s3fs, use_legacy_dataset
|
|
):
|
|
# pathlib paths are only accepted for local files
|
|
fs, _ = s3_example_s3fs
|
|
|
|
with pytest.raises(TypeError, match="path-like objects are only allowed"):
|
|
_test_write_to_dataset_with_partitions(
|
|
tempdir / "test1", use_legacy_dataset, filesystem=fs)
|
|
|
|
with pytest.raises(TypeError, match="path-like objects are only allowed"):
|
|
_test_write_to_dataset_no_partitions(
|
|
tempdir / "test2", use_legacy_dataset, filesystem=fs)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@pytest.mark.s3
|
|
@parametrize_legacy_dataset
|
|
def test_write_to_dataset_with_partitions_s3fs(
|
|
s3_example_s3fs, use_legacy_dataset
|
|
):
|
|
fs, path = s3_example_s3fs
|
|
|
|
_test_write_to_dataset_with_partitions(
|
|
path, use_legacy_dataset, filesystem=fs)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@pytest.mark.s3
|
|
@parametrize_legacy_dataset
|
|
def test_write_to_dataset_no_partitions_s3fs(
|
|
s3_example_s3fs, use_legacy_dataset
|
|
):
|
|
fs, path = s3_example_s3fs
|
|
|
|
_test_write_to_dataset_no_partitions(
|
|
path, use_legacy_dataset, filesystem=fs)
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:'ParquetDataset:FutureWarning")
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset_not_supported
|
|
def test_write_to_dataset_with_partitions_and_custom_filenames(
|
|
tempdir, use_legacy_dataset
|
|
):
|
|
output_df = pd.DataFrame({'group1': list('aaabbbbccc'),
|
|
'group2': list('eefeffgeee'),
|
|
'num': list(range(10)),
|
|
'nan': [np.nan] * 10,
|
|
'date': np.arange('2017-01-01', '2017-01-11',
|
|
dtype='datetime64[D]')})
|
|
partition_by = ['group1', 'group2']
|
|
output_table = pa.Table.from_pandas(output_df)
|
|
path = str(tempdir)
|
|
|
|
def partition_filename_callback(keys):
|
|
return "{}-{}.parquet".format(*keys)
|
|
|
|
pq.write_to_dataset(output_table, path,
|
|
partition_by, partition_filename_callback,
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
|
|
dataset = pq.ParquetDataset(path)
|
|
|
|
# ARROW-3538: Ensure partition filenames match the given pattern
|
|
# defined in the local function partition_filename_callback
|
|
expected_basenames = [
|
|
'a-e.parquet', 'a-f.parquet',
|
|
'b-e.parquet', 'b-f.parquet',
|
|
'b-g.parquet', 'c-e.parquet'
|
|
]
|
|
output_basenames = [os.path.basename(p.path) for p in dataset.pieces]
|
|
|
|
assert sorted(expected_basenames) == sorted(output_basenames)
|
|
|
|
|
|
@pytest.mark.dataset
|
|
@pytest.mark.pandas
|
|
def test_write_to_dataset_filesystem(tempdir):
|
|
df = pd.DataFrame({'A': [1, 2, 3]})
|
|
table = pa.Table.from_pandas(df)
|
|
path = str(tempdir)
|
|
|
|
pq.write_to_dataset(table, path, filesystem=fs.LocalFileSystem())
|
|
result = pq.read_table(path)
|
|
assert result.equals(table)
|
|
|
|
|
|
# TODO(dataset) support pickling
|
|
def _make_dataset_for_pickling(tempdir, N=100):
|
|
path = tempdir / 'data.parquet'
|
|
fs = LocalFileSystem._get_instance()
|
|
|
|
df = pd.DataFrame({
|
|
'index': np.arange(N),
|
|
'values': np.random.randn(N)
|
|
}, columns=['index', 'values'])
|
|
table = pa.Table.from_pandas(df)
|
|
|
|
num_groups = 3
|
|
with pq.ParquetWriter(path, table.schema) as writer:
|
|
for i in range(num_groups):
|
|
writer.write_table(table)
|
|
|
|
reader = pq.ParquetFile(path)
|
|
assert reader.metadata.num_row_groups == num_groups
|
|
|
|
metadata_path = tempdir / '_metadata'
|
|
with fs.open(metadata_path, 'wb') as f:
|
|
pq.write_metadata(table.schema, f)
|
|
|
|
dataset = pq.ParquetDataset(tempdir, filesystem=fs)
|
|
with pytest.warns(FutureWarning):
|
|
assert dataset.metadata_path == str(metadata_path)
|
|
|
|
return dataset
|
|
|
|
|
|
def _assert_dataset_is_picklable(dataset, pickler):
|
|
def is_pickleable(obj):
|
|
return obj == pickler.loads(pickler.dumps(obj))
|
|
|
|
assert is_pickleable(dataset)
|
|
with pytest.warns(FutureWarning):
|
|
metadata = dataset.metadata
|
|
assert is_pickleable(metadata)
|
|
assert is_pickleable(metadata.schema)
|
|
assert len(metadata.schema)
|
|
for column in metadata.schema:
|
|
assert is_pickleable(column)
|
|
|
|
for piece in dataset._pieces:
|
|
assert is_pickleable(piece)
|
|
metadata = piece.get_metadata()
|
|
assert metadata.num_row_groups
|
|
for i in range(metadata.num_row_groups):
|
|
assert is_pickleable(metadata.row_group(i))
|
|
|
|
|
|
@pytest.mark.pandas
|
|
def test_builtin_pickle_dataset(tempdir, datadir):
|
|
import pickle
|
|
dataset = _make_dataset_for_pickling(tempdir)
|
|
_assert_dataset_is_picklable(dataset, pickler=pickle)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
def test_cloudpickle_dataset(tempdir, datadir):
|
|
cp = pytest.importorskip('cloudpickle')
|
|
dataset = _make_dataset_for_pickling(tempdir)
|
|
_assert_dataset_is_picklable(dataset, pickler=cp)
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_partitioned_dataset(tempdir, use_legacy_dataset):
|
|
# ARROW-3208: Segmentation fault when reading a Parquet partitioned dataset
|
|
# to a Parquet file
|
|
path = tempdir / "ARROW-3208"
|
|
df = pd.DataFrame({
|
|
'one': [-1, 10, 2.5, 100, 1000, 1, 29.2],
|
|
'two': [-1, 10, 2, 100, 1000, 1, 11],
|
|
'three': [0, 0, 0, 0, 0, 0, 0]
|
|
})
|
|
table = pa.Table.from_pandas(df)
|
|
pq.write_to_dataset(table, root_path=str(path),
|
|
partition_cols=['one', 'two'])
|
|
table = pq.ParquetDataset(
|
|
path, use_legacy_dataset=use_legacy_dataset).read()
|
|
pq.write_table(table, path / "output.parquet")
|
|
|
|
|
|
@pytest.mark.pandas
|
|
@parametrize_legacy_dataset
|
|
def test_dataset_read_dictionary(tempdir, use_legacy_dataset):
|
|
path = tempdir / "ARROW-3325-dataset"
|
|
t1 = pa.table([[util.rands(10) for i in range(5)] * 10], names=['f0'])
|
|
t2 = pa.table([[util.rands(10) for i in range(5)] * 10], names=['f0'])
|
|
pq.write_to_dataset(t1, root_path=str(path),
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
pq.write_to_dataset(t2, root_path=str(path),
|
|
use_legacy_dataset=use_legacy_dataset)
|
|
|
|
result = pq.ParquetDataset(
|
|
path, read_dictionary=['f0'],
|
|
use_legacy_dataset=use_legacy_dataset).read()
|
|
|
|
# The order of the chunks is non-deterministic
|
|
ex_chunks = [t1[0].chunk(0).dictionary_encode(),
|
|
t2[0].chunk(0).dictionary_encode()]
|
|
|
|
assert result[0].num_chunks == 2
|
|
c0, c1 = result[0].chunk(0), result[0].chunk(1)
|
|
if c0.equals(ex_chunks[0]):
|
|
assert c1.equals(ex_chunks[1])
|
|
else:
|
|
assert c0.equals(ex_chunks[1])
|
|
assert c1.equals(ex_chunks[0])
|
|
|
|
|
|
@pytest.mark.dataset
|
|
@pytest.mark.pandas
|
|
@pytest.mark.filterwarnings("ignore:Passing 'use_legacy:FutureWarning")
|
|
def test_read_table_schema(tempdir):
|
|
# test that schema keyword is passed through in read_table
|
|
table = pa.table({'a': pa.array([1, 2, 3], pa.int32())})
|
|
pq.write_table(table, tempdir / "data1.parquet")
|
|
pq.write_table(table, tempdir / "data2.parquet")
|
|
|
|
schema = pa.schema([('a', 'int64')])
|
|
|
|
# reading single file (which is special cased in the code)
|
|
result = pq.read_table(tempdir / "data1.parquet", schema=schema)
|
|
expected = pa.table({'a': [1, 2, 3]}, schema=schema)
|
|
assert result.equals(expected)
|
|
|
|
# reading multiple fiels
|
|
result = pq.read_table(tempdir, schema=schema)
|
|
expected = pa.table({'a': [1, 2, 3, 1, 2, 3]}, schema=schema)
|
|
assert result.equals(expected)
|
|
|
|
# don't allow it with the legacy reader
|
|
with pytest.raises(
|
|
ValueError, match="The 'schema' argument is only supported"
|
|
):
|
|
pq.read_table(tempdir / "data.parquet", schema=schema,
|
|
use_legacy_dataset=True)
|
|
|
|
# using ParquetDataset directory with non-legacy implementation
|
|
result = pq.ParquetDataset(
|
|
tempdir, schema=schema, use_legacy_dataset=False
|
|
)
|
|
expected = pa.table({'a': [1, 2, 3, 1, 2, 3]}, schema=schema)
|
|
assert result.read().equals(expected)
|
|
|
|
|
|
@pytest.mark.dataset
|
|
def test_dataset_unsupported_keywords():
|
|
|
|
with pytest.raises(ValueError, match="not yet supported with the new"):
|
|
pq.ParquetDataset("", use_legacy_dataset=False, metadata=pa.schema([]))
|
|
|
|
with pytest.raises(ValueError, match="not yet supported with the new"):
|
|
pq.ParquetDataset("", use_legacy_dataset=False, validate_schema=False)
|
|
|
|
with pytest.raises(ValueError, match="not yet supported with the new"):
|
|
pq.ParquetDataset("", use_legacy_dataset=False, split_row_groups=True)
|
|
|
|
with pytest.raises(ValueError, match="not yet supported with the new"):
|
|
pq.ParquetDataset("", use_legacy_dataset=False, metadata_nthreads=4)
|
|
|
|
with pytest.raises(ValueError, match="no longer supported"):
|
|
pq.read_table("", use_legacy_dataset=False, metadata=pa.schema([]))
|
|
|
|
|
|
@pytest.mark.dataset
|
|
@pytest.mark.filterwarnings("ignore:Passing 'use_legacy:FutureWarning")
|
|
def test_dataset_partitioning(tempdir):
|
|
import pyarrow.dataset as ds
|
|
|
|
# create small dataset with directory partitioning
|
|
root_path = tempdir / "test_partitioning"
|
|
(root_path / "2012" / "10" / "01").mkdir(parents=True)
|
|
|
|
table = pa.table({'a': [1, 2, 3]})
|
|
pq.write_table(
|
|
table, str(root_path / "2012" / "10" / "01" / "data.parquet"))
|
|
|
|
# This works with new dataset API
|
|
|
|
# read_table
|
|
part = ds.partitioning(field_names=["year", "month", "day"])
|
|
result = pq.read_table(
|
|
str(root_path), partitioning=part, use_legacy_dataset=False)
|
|
assert result.column_names == ["a", "year", "month", "day"]
|
|
|
|
result = pq.ParquetDataset(
|
|
str(root_path), partitioning=part, use_legacy_dataset=False).read()
|
|
assert result.column_names == ["a", "year", "month", "day"]
|
|
|
|
# This raises an error for legacy dataset
|
|
with pytest.raises(ValueError):
|
|
pq.read_table(
|
|
str(root_path), partitioning=part, use_legacy_dataset=True)
|
|
|
|
with pytest.raises(ValueError):
|
|
pq.ParquetDataset(
|
|
str(root_path), partitioning=part, use_legacy_dataset=True)
|
|
|
|
|
|
@pytest.mark.dataset
|
|
def test_parquet_dataset_new_filesystem(tempdir):
|
|
# Ensure we can pass new FileSystem object to ParquetDataset
|
|
# (use new implementation automatically without specifying
|
|
# use_legacy_dataset=False)
|
|
table = pa.table({'a': [1, 2, 3]})
|
|
pq.write_table(table, tempdir / 'data.parquet')
|
|
# don't use simple LocalFileSystem (as that gets mapped to legacy one)
|
|
filesystem = fs.SubTreeFileSystem(str(tempdir), fs.LocalFileSystem())
|
|
dataset = pq.ParquetDataset('.', filesystem=filesystem)
|
|
result = dataset.read()
|
|
assert result.equals(table)
|
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:'ParquetDataset:FutureWarning")
|
|
def test_parquet_dataset_partitions_piece_path_with_fsspec(tempdir):
|
|
# ARROW-10462 ensure that on Windows we properly use posix-style paths
|
|
# as used by fsspec
|
|
fsspec = pytest.importorskip("fsspec")
|
|
filesystem = fsspec.filesystem('file')
|
|
table = pa.table({'a': [1, 2, 3]})
|
|
pq.write_table(table, tempdir / 'data.parquet')
|
|
|
|
# pass a posix-style path (using "/" also on Windows)
|
|
path = str(tempdir).replace("\\", "/")
|
|
dataset = pq.ParquetDataset(path, filesystem=filesystem)
|
|
# ensure the piece path is also posix-style
|
|
expected = path + "/data.parquet"
|
|
assert dataset.pieces[0].path == expected
|
|
|
|
|
|
@pytest.mark.dataset
|
|
def test_parquet_dataset_deprecated_properties(tempdir):
|
|
table = pa.table({'a': [1, 2, 3]})
|
|
path = tempdir / 'data.parquet'
|
|
pq.write_table(table, path)
|
|
dataset = pq.ParquetDataset(path)
|
|
|
|
with pytest.warns(FutureWarning, match="'ParquetDataset.pieces"):
|
|
dataset.pieces
|
|
|
|
with pytest.warns(FutureWarning, match="'ParquetDataset.partitions"):
|
|
dataset.partitions
|
|
|
|
with pytest.warns(FutureWarning, match="'ParquetDataset.memory_map"):
|
|
dataset.memory_map
|
|
|
|
with pytest.warns(FutureWarning, match="'ParquetDataset.read_dictio"):
|
|
dataset.read_dictionary
|
|
|
|
with pytest.warns(FutureWarning, match="'ParquetDataset.buffer_size"):
|
|
dataset.buffer_size
|
|
|
|
with pytest.warns(FutureWarning, match="'ParquetDataset.fs"):
|
|
dataset.fs
|
|
|
|
with pytest.warns(FutureWarning, match="'ParquetDataset.schema'"):
|
|
dataset.schema
|
|
|
|
with pytest.warns(FutureWarning, match="'ParquetDataset.common_metadata'"):
|
|
dataset.common_metadata
|
|
|
|
with pytest.warns(FutureWarning, match="'ParquetDataset.metadata"):
|
|
dataset.metadata
|
|
|
|
with pytest.warns(FutureWarning, match="'ParquetDataset.metadata_path"):
|
|
dataset.metadata_path
|
|
|
|
with pytest.warns(FutureWarning,
|
|
match="'ParquetDataset.common_metadata_path"):
|
|
dataset.common_metadata_path
|
|
|
|
dataset2 = pq.ParquetDataset(path, use_legacy_dataset=False)
|
|
|
|
with pytest.warns(FutureWarning, match="'ParquetDataset.pieces"):
|
|
dataset2.pieces
|
|
|
|
|
|
@pytest.mark.dataset
|
|
def test_parquet_write_to_dataset_deprecated_properties(tempdir):
|
|
table = pa.table({'a': [1, 2, 3]})
|
|
path = tempdir / 'data.parquet'
|
|
|
|
with pytest.warns(FutureWarning,
|
|
match="Passing 'use_legacy_dataset=True'"):
|
|
pq.write_to_dataset(table, path, use_legacy_dataset=True)
|
|
|
|
# check also that legacy implementation is set when
|
|
# partition_filename_cb is specified
|
|
with pytest.warns(FutureWarning,
|
|
match="Passing 'use_legacy_dataset=True'"):
|
|
pq.write_to_dataset(table, path,
|
|
partition_filename_cb=lambda x: 'filename.parquet')
|
|
|
|
|
|
@pytest.mark.dataset
|
|
def test_parquet_write_to_dataset_unsupported_keywards_in_legacy(tempdir):
|
|
table = pa.table({'a': [1, 2, 3]})
|
|
path = tempdir / 'data.parquet'
|
|
|
|
with pytest.raises(ValueError, match="schema"):
|
|
pq.write_to_dataset(table, path, use_legacy_dataset=True,
|
|
schema=pa.schema([
|
|
('a', pa.int32())
|
|
]))
|
|
|
|
with pytest.raises(ValueError, match="partitioning"):
|
|
pq.write_to_dataset(table, path, use_legacy_dataset=True,
|
|
partitioning=["a"])
|
|
|
|
with pytest.raises(ValueError, match="use_threads"):
|
|
pq.write_to_dataset(table, path, use_legacy_dataset=True,
|
|
use_threads=False)
|
|
|
|
with pytest.raises(ValueError, match="file_visitor"):
|
|
pq.write_to_dataset(table, path, use_legacy_dataset=True,
|
|
file_visitor=lambda x: x)
|
|
with pytest.raises(ValueError, match="existing_data_behavior"):
|
|
pq.write_to_dataset(table, path, use_legacy_dataset=True,
|
|
existing_data_behavior='error')
|