2022-05-23 00:16:32 +04:00

323 lines
9.5 KiB
Python

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import pytest
import pyarrow as pa
from pyarrow import fs
from pyarrow.filesystem import FileSystem, LocalFileSystem
from pyarrow.tests.parquet.common import parametrize_legacy_dataset
try:
import pyarrow.parquet as pq
from pyarrow.tests.parquet.common import _read_table, _test_dataframe
except ImportError:
pq = None
try:
import pandas as pd
import pandas.testing as tm
except ImportError:
pd = tm = None
@pytest.mark.pandas
@parametrize_legacy_dataset
def test_parquet_incremental_file_build(tempdir, use_legacy_dataset):
df = _test_dataframe(100)
df['unique_id'] = 0
arrow_table = pa.Table.from_pandas(df, preserve_index=False)
out = pa.BufferOutputStream()
writer = pq.ParquetWriter(out, arrow_table.schema, version='2.6')
frames = []
for i in range(10):
df['unique_id'] = i
arrow_table = pa.Table.from_pandas(df, preserve_index=False)
writer.write_table(arrow_table)
frames.append(df.copy())
writer.close()
buf = out.getvalue()
result = _read_table(
pa.BufferReader(buf), use_legacy_dataset=use_legacy_dataset)
expected = pd.concat(frames, ignore_index=True)
tm.assert_frame_equal(result.to_pandas(), expected)
def test_validate_schema_write_table(tempdir):
# ARROW-2926
simple_fields = [
pa.field('POS', pa.uint32()),
pa.field('desc', pa.string())
]
simple_schema = pa.schema(simple_fields)
# simple_table schema does not match simple_schema
simple_from_array = [pa.array([1]), pa.array(['bla'])]
simple_table = pa.Table.from_arrays(simple_from_array, ['POS', 'desc'])
path = tempdir / 'simple_validate_schema.parquet'
with pq.ParquetWriter(path, simple_schema,
version='2.6',
compression='snappy', flavor='spark') as w:
with pytest.raises(ValueError):
w.write_table(simple_table)
@pytest.mark.pandas
@parametrize_legacy_dataset
def test_parquet_writer_context_obj(tempdir, use_legacy_dataset):
df = _test_dataframe(100)
df['unique_id'] = 0
arrow_table = pa.Table.from_pandas(df, preserve_index=False)
out = pa.BufferOutputStream()
with pq.ParquetWriter(out, arrow_table.schema, version='2.6') as writer:
frames = []
for i in range(10):
df['unique_id'] = i
arrow_table = pa.Table.from_pandas(df, preserve_index=False)
writer.write_table(arrow_table)
frames.append(df.copy())
buf = out.getvalue()
result = _read_table(
pa.BufferReader(buf), use_legacy_dataset=use_legacy_dataset)
expected = pd.concat(frames, ignore_index=True)
tm.assert_frame_equal(result.to_pandas(), expected)
@pytest.mark.pandas
@parametrize_legacy_dataset
def test_parquet_writer_context_obj_with_exception(
tempdir, use_legacy_dataset
):
df = _test_dataframe(100)
df['unique_id'] = 0
arrow_table = pa.Table.from_pandas(df, preserve_index=False)
out = pa.BufferOutputStream()
error_text = 'Artificial Error'
try:
with pq.ParquetWriter(out,
arrow_table.schema,
version='2.6') as writer:
frames = []
for i in range(10):
df['unique_id'] = i
arrow_table = pa.Table.from_pandas(df, preserve_index=False)
writer.write_table(arrow_table)
frames.append(df.copy())
if i == 5:
raise ValueError(error_text)
except Exception as e:
assert str(e) == error_text
buf = out.getvalue()
result = _read_table(
pa.BufferReader(buf), use_legacy_dataset=use_legacy_dataset)
expected = pd.concat(frames, ignore_index=True)
tm.assert_frame_equal(result.to_pandas(), expected)
@pytest.mark.pandas
@pytest.mark.parametrize("filesystem", [
None,
LocalFileSystem._get_instance(),
fs.LocalFileSystem(),
])
def test_parquet_writer_write_wrappers(tempdir, filesystem):
df = _test_dataframe(100)
table = pa.Table.from_pandas(df, preserve_index=False)
batch = pa.RecordBatch.from_pandas(df, preserve_index=False)
path_table = str(tempdir / 'data_table.parquet')
path_batch = str(tempdir / 'data_batch.parquet')
with pq.ParquetWriter(
path_table, table.schema, filesystem=filesystem, version='2.6'
) as writer:
writer.write_table(table)
result = _read_table(path_table).to_pandas()
tm.assert_frame_equal(result, df)
with pq.ParquetWriter(
path_batch, table.schema, filesystem=filesystem, version='2.6'
) as writer:
writer.write_batch(batch)
result = _read_table(path_batch).to_pandas()
tm.assert_frame_equal(result, df)
with pq.ParquetWriter(
path_table, table.schema, filesystem=filesystem, version='2.6'
) as writer:
writer.write(table)
result = _read_table(path_table).to_pandas()
tm.assert_frame_equal(result, df)
with pq.ParquetWriter(
path_batch, table.schema, filesystem=filesystem, version='2.6'
) as writer:
writer.write(batch)
result = _read_table(path_batch).to_pandas()
tm.assert_frame_equal(result, df)
@pytest.mark.pandas
@pytest.mark.parametrize("filesystem", [
None,
LocalFileSystem._get_instance(),
fs.LocalFileSystem(),
])
def test_parquet_writer_filesystem_local(tempdir, filesystem):
df = _test_dataframe(100)
table = pa.Table.from_pandas(df, preserve_index=False)
path = str(tempdir / 'data.parquet')
with pq.ParquetWriter(
path, table.schema, filesystem=filesystem, version='2.6'
) as writer:
writer.write_table(table)
result = _read_table(path).to_pandas()
tm.assert_frame_equal(result, df)
@pytest.mark.pandas
@pytest.mark.s3
def test_parquet_writer_filesystem_s3(s3_example_fs):
df = _test_dataframe(100)
table = pa.Table.from_pandas(df, preserve_index=False)
fs, uri, path = s3_example_fs
with pq.ParquetWriter(
path, table.schema, filesystem=fs, version='2.6'
) as writer:
writer.write_table(table)
result = _read_table(uri).to_pandas()
tm.assert_frame_equal(result, df)
@pytest.mark.pandas
@pytest.mark.s3
def test_parquet_writer_filesystem_s3_uri(s3_example_fs):
df = _test_dataframe(100)
table = pa.Table.from_pandas(df, preserve_index=False)
fs, uri, path = s3_example_fs
with pq.ParquetWriter(uri, table.schema, version='2.6') as writer:
writer.write_table(table)
result = _read_table(path, filesystem=fs).to_pandas()
tm.assert_frame_equal(result, df)
@pytest.mark.pandas
@pytest.mark.s3
def test_parquet_writer_filesystem_s3fs(s3_example_s3fs):
df = _test_dataframe(100)
table = pa.Table.from_pandas(df, preserve_index=False)
fs, directory = s3_example_s3fs
path = directory + "/test.parquet"
with pq.ParquetWriter(
path, table.schema, filesystem=fs, version='2.6'
) as writer:
writer.write_table(table)
result = _read_table(path, filesystem=fs).to_pandas()
tm.assert_frame_equal(result, df)
@pytest.mark.pandas
def test_parquet_writer_filesystem_buffer_raises():
df = _test_dataframe(100)
table = pa.Table.from_pandas(df, preserve_index=False)
filesystem = fs.LocalFileSystem()
# Should raise ValueError when filesystem is passed with file-like object
with pytest.raises(ValueError, match="specified path is file-like"):
pq.ParquetWriter(
pa.BufferOutputStream(), table.schema, filesystem=filesystem
)
@pytest.mark.pandas
@parametrize_legacy_dataset
def test_parquet_writer_with_caller_provided_filesystem(use_legacy_dataset):
out = pa.BufferOutputStream()
class CustomFS(FileSystem):
def __init__(self):
self.path = None
self.mode = None
def open(self, path, mode='rb'):
self.path = path
self.mode = mode
return out
fs = CustomFS()
fname = 'expected_fname.parquet'
df = _test_dataframe(100)
table = pa.Table.from_pandas(df, preserve_index=False)
with pq.ParquetWriter(fname, table.schema, filesystem=fs, version='2.6') \
as writer:
writer.write_table(table)
assert fs.path == fname
assert fs.mode == 'wb'
assert out.closed
buf = out.getvalue()
table_read = _read_table(
pa.BufferReader(buf), use_legacy_dataset=use_legacy_dataset)
df_read = table_read.to_pandas()
tm.assert_frame_equal(df_read, df)
# Should raise ValueError when filesystem is passed with file-like object
with pytest.raises(ValueError) as err_info:
pq.ParquetWriter(pa.BufferOutputStream(), table.schema, filesystem=fs)
expected_msg = ("filesystem passed but where is file-like, so"
" there is nothing to open with filesystem.")
assert str(err_info) == expected_msg