mirror of
https://github.com/aykhans/HuaweiHealthDataVisualization.git
synced 2025-04-18 23:09:43 +00:00
Data operations removed from main and added to data_access
This commit is contained in:
parent
74079ef92d
commit
749c8c7bad
@ -3,59 +3,29 @@ from pathlib import Path
|
||||
main_path: Path = Path(__file__).resolve().parent.parent
|
||||
|
||||
from sys import path
|
||||
path.append(main_path)
|
||||
if str(main_path) not in path:
|
||||
path.append(str(main_path))
|
||||
|
||||
import pandas as pd
|
||||
import plotly.express as px
|
||||
import streamlit as st
|
||||
from datetime import (datetime,
|
||||
timedelta)
|
||||
from data_access import LocalTestData
|
||||
from data_access import LocalDataAccess
|
||||
|
||||
|
||||
st.set_page_config(page_title = 'Health Data Visualization',
|
||||
page_icon = ':bar_chart:',
|
||||
layout = 'wide')
|
||||
|
||||
local_data = LocalTestData('data')
|
||||
data = local_data.get_data('huawei_health_data.json')
|
||||
|
||||
heart_rate = []
|
||||
for d in data:
|
||||
if d['type'] == 7:
|
||||
heart_rate.append(
|
||||
{
|
||||
'rate': float(d['samplePoints'][0]['value']),
|
||||
'time': (datetime.fromtimestamp(
|
||||
int(str(d['samplePoints'][0]['endTime'])[:10])
|
||||
) + timedelta(
|
||||
hours = int(data[0]['timeZone'][1:].replace('0', ''))
|
||||
)
|
||||
)
|
||||
}
|
||||
)
|
||||
local_data = LocalDataAccess('data')
|
||||
_ = local_data.get_data('huawei_health_data.json')
|
||||
heart_rate = local_data.get_heart_rate()
|
||||
|
||||
if st.sidebar.checkbox(f'All Data ({len(heart_rate)})', False):
|
||||
if st.sidebar.checkbox('Average of Days', False):
|
||||
heart_rate = pd.DataFrame(
|
||||
list(
|
||||
map(
|
||||
lambda t: {'rate': t['rate'], 'date': t['time'].strftime("%d-%m-%Y")}, heart_rate
|
||||
)
|
||||
)
|
||||
)
|
||||
heart_rate_grouped = heart_rate.groupby('date', sort=False).mean()['rate']
|
||||
x = heart_rate_grouped.keys()
|
||||
y = heart_rate_grouped.values
|
||||
x, y = local_data.get_average_heart_rate_for_days_as_axis()
|
||||
labels = {'x': 'Date of The Day', 'y': 'Average Heart Rate'}
|
||||
|
||||
else:
|
||||
heart_rate = pd.DataFrame(heart_rate)
|
||||
x = list(map(
|
||||
lambda t: t.strftime("%d-%m-%Y %X"),
|
||||
heart_rate['time']
|
||||
))
|
||||
y = heart_rate['rate']
|
||||
x, y = local_data.get_heart_rate_for_all_days_as_axis()
|
||||
labels = {'x': 'Date and Time', 'y': 'Heart Rate'}
|
||||
|
||||
else:
|
||||
@ -66,19 +36,7 @@ else:
|
||||
max_value = heart_rate[-1]['time']
|
||||
).strftime("%d-%m-%Y")
|
||||
|
||||
heart_rate = pd.DataFrame(
|
||||
list(
|
||||
filter(
|
||||
lambda t: t['time'].strftime("%d-%m-%Y") == day, heart_rate
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
x = list(map(
|
||||
lambda t: t.strftime("%d-%m-%Y %X"),
|
||||
heart_rate['time']
|
||||
))
|
||||
y = heart_rate['rate']
|
||||
x, y = local_data.get_heart_rate_for_one_day(day)
|
||||
labels = {'x': 'Date and Time', 'y': 'Heart Rate'}
|
||||
|
||||
st.sidebar.header('Split Data:')
|
||||
@ -90,14 +48,7 @@ average_number = st.sidebar.number_input(
|
||||
)
|
||||
|
||||
if average_number > 1:
|
||||
heart_rate2 = []
|
||||
rates = list(y)
|
||||
|
||||
for i in range(0, len(rates), average_number):
|
||||
t = rates[i:i + average_number]
|
||||
heart_rate2.append(sum(t) / len(t))
|
||||
x = range(len(heart_rate2))
|
||||
y = heart_rate2
|
||||
x, y = local_data.get_averages_of_heart_rates(y, average_number)
|
||||
labels = {'x': 'Number of Heart Rate', 'y': 'Heart Rate'}
|
||||
|
||||
chart_type = st.sidebar.selectbox(
|
||||
|
@ -1 +1 @@
|
||||
from .local_data_access import LocalTestData
|
||||
from .local_data_access import LocalDataAccess
|
97
src/data_access/data_opeartions.py
Normal file
97
src/data_access/data_opeartions.py
Normal file
@ -0,0 +1,97 @@
|
||||
import pandas as pd
|
||||
from datetime import (datetime,
|
||||
timedelta)
|
||||
from typing import (List,
|
||||
Tuple)
|
||||
|
||||
|
||||
class DataOperations:
|
||||
heart_rate = None
|
||||
|
||||
def is_data_none_wrapper(func):
|
||||
def __is_data_none(self, *args, **kwargs) -> None | NameError:
|
||||
if self.data is None:
|
||||
raise NameError(f'data not found. You must call the get_data function before calling the {func.__name__} function')
|
||||
return func(self, *args, **kwargs)
|
||||
return __is_data_none
|
||||
|
||||
def is_heart_rate_none_wrapper(func):
|
||||
def __is_heart_rate_none(self, *args, **kwargs) -> None | NameError:
|
||||
if self.heart_rate is None:
|
||||
raise NameError(f'heart_rate data not found. You must call the get_heart_rate function before calling the {func.__name__} function')
|
||||
return func(self, *args, **kwargs)
|
||||
return __is_heart_rate_none
|
||||
|
||||
@is_data_none_wrapper
|
||||
def get_heart_rate(self) -> List:
|
||||
# sourcery skip: inline-immediately-returned-variable, list-comprehension
|
||||
self.heart_rate = []
|
||||
for d in self.data:
|
||||
if d['type'] == 7:
|
||||
self.heart_rate.append(
|
||||
{
|
||||
'rate': float(d['samplePoints'][0]['value']),
|
||||
'time': (datetime.fromtimestamp(
|
||||
int(str(d['samplePoints'][0]['endTime'])[:10])
|
||||
) + timedelta(
|
||||
hours = int(self.data[0]['timeZone'][1:].replace('0', ''))
|
||||
)
|
||||
)
|
||||
}
|
||||
)
|
||||
return self.heart_rate
|
||||
|
||||
@is_heart_rate_none_wrapper
|
||||
def get_heart_rate_for_all_days_as_axis(self) -> Tuple:
|
||||
heart_rate = pd.DataFrame(self.heart_rate)
|
||||
return (
|
||||
list (
|
||||
map(
|
||||
lambda t: t.strftime("%d-%m-%Y %X"),
|
||||
heart_rate['time']
|
||||
)
|
||||
),
|
||||
heart_rate['rate']
|
||||
)
|
||||
|
||||
@is_heart_rate_none_wrapper
|
||||
def get_average_heart_rate_for_days_as_axis(self) -> Tuple:
|
||||
heart_rate_grouped = pd.DataFrame(
|
||||
list(
|
||||
map(
|
||||
lambda t: {'rate': t['rate'], 'date': t['time'].strftime("%d-%m-%Y")}, self.heart_rate
|
||||
)
|
||||
)
|
||||
).groupby('date', sort=False).mean()['rate']
|
||||
|
||||
return (heart_rate_grouped.keys(), heart_rate_grouped.values)
|
||||
|
||||
@is_heart_rate_none_wrapper
|
||||
def get_heart_rate_for_one_day(self, day) -> Tuple:
|
||||
heart_rate = pd.DataFrame(
|
||||
list(
|
||||
filter(
|
||||
lambda t: t['time'].strftime("%d-%m-%Y") == day, self.heart_rate
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
return (
|
||||
list (
|
||||
map(
|
||||
lambda t: t.strftime("%d-%m-%Y %X"),
|
||||
heart_rate['time']
|
||||
)
|
||||
),
|
||||
heart_rate['rate']
|
||||
)
|
||||
|
||||
def get_averages_of_heart_rates(self, y: pd.Series, average_number: int) -> Tuple:
|
||||
heart_rate2 = []
|
||||
rates = list(y)
|
||||
|
||||
for i in range(0, len(rates), average_number):
|
||||
t = rates[i:i + average_number]
|
||||
heart_rate2.append(sum(t) / len(t))
|
||||
|
||||
return (range(len(heart_rate2)), heart_rate2)
|
@ -1,13 +1,16 @@
|
||||
from pathlib import Path
|
||||
import json
|
||||
from typing import List
|
||||
from .data_opeartions import DataOperations
|
||||
|
||||
|
||||
class LocalTestData:
|
||||
class LocalDataAccess(DataOperations):
|
||||
def __init__(self, data_folder_name: str) -> None:
|
||||
self.data_dir: Path = Path(__file__).resolve().parent.parent.parent / data_folder_name
|
||||
self.data = None
|
||||
self.data_dir: Path =\
|
||||
Path(__file__).resolve().parent.parent.parent / data_folder_name
|
||||
|
||||
def get_data(self, file_name: str) -> List:
|
||||
with open(self.data_dir / file_name) as f:
|
||||
data: List = json.load(f)
|
||||
return data
|
||||
self.data: List = json.load(f)
|
||||
return self.data
|
Loading…
x
Reference in New Issue
Block a user